
 59

УДК 621 

W. Korczyński, G. Wawrzoła*, S. Wawrzoła** 
Wyższa Szkoła Umiejętności, 

*Politechnika Wrocławska, 
Wydział Elektroniki, 

**Akademia Świętokrzyska, 
Wydział Zarządzania i Administracji 

ON A RECONSTRUCTION PROBLEM FOR MEMBRANE SYSTEMS 
 Korczyński W., Wawrzoła G., Wawrzoła S., 2004 

The problem of reconstruction of an object from some of their reduct is very important 
in many areas of life and science. It is one of the well known problems in the theory of partial 
orders. In the paper we describe and solve this problem in a very special case: the 
infrastructure of Paun’s systems (called also membrane structures). The main result of the 
paper is an algorithm of reconstruction of the original membrane structure from two of its 
reducts. 

1. Introduction. Paun’s systems are widely used tool in analyzing of massively parallel 
computations and natural computing. Perhaps the most well known area connected with Paun’s systems are 
DNA\ computations called also molecular computations. Let us recall some problems from the area of 
computational complexity theory.  

The notion of NP-hard problem is based on the classical von Neuman paradigm of computing understood 
as a sequence of actions. This paradigm works very well and almost all the theory of complexity is based on it. 
The considering of a set of parallel computing devices like Turing machines do not improve the complexity of 
NP hard problems. A problem can be perhaps solved a bit more quickly, but it remains in the same class of 
complexity (namely in the class of NP hard problems). In this sense one can say that (theoretically only of 
course) adding new processors does not allow for really improvement of the solving process of the problem. 
Another paradigm of computing, called DNA computing, seems to be a tool which allows to transform an NP 
hard problems to the class of problems which can be solved in polynomial time. It can be made, roughly 
speaking, by a really massively parallelism. L.M. Adleman has shown in 1994 [1] that the well known salesman 
problem can be solved in polynomial time using the so called DNA computation. The theory of DNA 
computation is nowadays one of the most quickly developed area of theoretical computer science. Paun’s 
systems endowned with a stochastic mechanism may be seen as a model of devices in which some DNA 
computations may be performed. This fact determines the role and the meaning of Paun’s systems in the 
(theoretical) computer science. The interested reader can find details in [5, 6, 7, 10, 13]. 

Paun’s systems are also used in other areas where one has to deal with hierarchical systems In this 
case Paun’s systems can be seen as a model of hierarchical dynamical systems that means systems 
changing their (local) situations on different levels. So, they allow to consider the concurrence on various 
level of system description. A hierarchical system can be seen as a tree. In the vertices of the tree there 
may be allocated multisets of some objects. The way of working of the system consists of the changing of 
the allocation of these multisets object. It seems to be natural to allowed such a changing of allocation as a 
kind of diffusion of these objects trough the “membranes” delimiting the objects represented by the 
vertices of the tree. The way of working (the way of life) of such hierarchical systems is determined by the 
so called evolution rules describing in which situations the “diffusion”‘ of some objects through the 
membranes is possible. The definition of Paun’s systems and some of their properties are described in part 
2. This is – roughly speaking – the ideology of the way of working of Paun’s systems. The interested 
reader can find more details in [11, 14, 17]. One of these evolution rules describes when, that means in 
which situation, a “region” (that means an object corresponding to a vertex of the tree mentioned above) 
can be deleted. The problem we solve in the paper is the following. Let us consider a Paun’s system 
represented by a tree, say T. Let us assume that some vertices, say v1 and v2 have been deleted from this 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 60

tree by means of the above mentioned deleting rules. Now a very natural question arises. What for 
information is needed to reconstruct the original shape of the tree representing the corresponding Paun’s 
system? We show that we need only information about the place (the region) in which the membranes 
mentioned above have been deleted. More precisely we show that having the information of two such 
places of deleting of membranes we can reconstruct the original tree. This problem can be seen as a variant 
of the well known reconstruction problem for partial orders more precisely for trees. The difference is that 
we assume in a sense more information that in the classical reconstruction problem. Namely we assume we 
know the parents which children (two) have been deleted. The nature of these informations that means 
“how to recognize” the parents which have lose the children is irrelevant in our consideration1. 

In the definition of P system, the notion of multiset there occurs. The most important difference 
between multisets and sets is that in a multiset the object are allowed to occur more than once. Let us 
define the notion formally. The set N∞ is the set of natural numbers extended with the element ∞. 

Definition. Let A be a set. A multiset on A is a function m: A→ N∞. The class of multisets (on A) is 
denoted by Mst (Mst(A)). Let a∈A. We say that an element a of the set A has in a multiset M multiplicity 
n iff M(a) = n. We define a∈M⇔ M(a)>0 and say that a is an element of M. The multiset inclusion 
relation is defined by X ⊆ Y ⇔ ∀a∈A Y(a) ≥ X(a). We say that X is a submultiset of Y. 

In the paper the standard mathematical terminology and notation is used. The terminology and 
notation of Paun’s systems originates from [17]. We also use some additional notions which are specific 
for the so called “reconstruction” of partial orders ([8, 9, 15, 16]). 

2. P-systems – a short description. In this section we define the notion of Paun’s systems. The 
material and the “plan” of this section is based on [17]. 

The infrastructure of the Paun’s systems are membrane structures. Membrane structures may be seen 
as Venn diagrams in which every two sets are either included or disjoint. Such structures may be models of 
many various objects; computational devices (see [11, 13, 17]), (biological) cell structures, hierarchical 
systems in economy or management and many, many others. Formally such structures may be defined in 
many ways. The membrane structures we define in this section are one of possibly descriptions of such 
structures. The approach we use in the paper is based on the paper [17] from which the definition, 
examples and many descriptions have been taken. 

Roughly speaking, a membrane structure is a tree. The vertices of this tree are interpreted as objects 
containing some multisets of objects like directories in directories-tree of an operating system like UNIX 
or DOS. The similarity is really very strong except the fact that directories contain some sets, not multisets 
of objects. One of the applications of P-systems is the complexity theory, where formal languages are 
frequently used. This is one of the reasons for which P-systems are often defined as some “linguistic” 
objects. Probably the most popular presentation of membrane structures defines them as some structures of 
parentheses.  

Definition Let us consider the language MS over the alphabet {[, ]}, whose strings are recursively 
defined as follows: 

• [ ] ∈ MS; 
• if µ1,...,µn ∈ MS, n ≥ 1, then [µ1,...,µn] ∈ MS; 
• nothing else is in MS. 

For each pair (x, y) ∈ MS, x ∼ y if and only if the two strings can be written in the form 
x = [1...[k...]k...[k+1...]k+1...]1  and  y = [1...[k+1...]k+1...[k...]k...]1                                      (1) 

that is two pairs of parentheses which are neighbors at the same level are interchanged together with their 
contents. We denote by ∼* the reflexive and transitive closure of the relation ∼. Let MS  denote the set of 
equivalence classes of MS with respect to this relation. The elements of MS  are called membrane 
structures. 

                                                 
1 One of the possibilities is to compare the contents of a region in two subsequent situations, but this is neither 

the only possibility nor the sufficient difference. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 61

By a membrane it is meant any pair of matching parentheses [, ]. The membrane consisting of 
external parenthesis is called the skin, and membranes containing no other membranes are called 
elementary membranes. By the degree of µ denoted by deg(µ) it is meant the number of membranes in the 
membrane structure µ. By the depth of a membrane structure µ, denoted by dep(µ), we mean the function 
defined recursively as follows: 

• if µ = [ ], then dep(µ) = 1; 
• if µ = [µ1,...,µn], then dep(µ) = max{dep(µi): 1 ≤ i ≤ n}+1 for some µ1,...,µn ∈ MS. 
The notion of depth of an membrane system corresponds to the standard notion of the depth of a tree. 
To each membrane we associate a region. In the graphical presentation of an MS it can be seen as a 

space boarded by this membrane, that means the membrane is “the topological border” of this region. 
In the picture below the skin of the membrane structure is labeled by the number 1, elementary 

membranes are 2, 3, 5, 7 and 8. 
 

 
 

Having a finite set U, of objects, a membrane structure µ = [1...[n...]n...]1 of degree n, n ≥ 1, with the 
membranes labeled in a one to one manner with the numbers {1,...,n}, one can identify the regions with the 
numbers {1,...,n}. Let us associate with each region i of µ, 1 ≤ i ≤ n, a multiset Mi on U. 

Definition By a super-cell we mean any 
SC = {([µ, M1,...,Mn): µ ∈ MS  and deg(µ) = n} 

where each Mi: U → N is the multiset associated with region i, 1 ≤ i ≤ n. 
The multiset corresponding to a region of a super-cell is called its contents. If a membrane m’ is 

placed in a membrane m and there isn’t any membrane m’’ such that m’ is placed in m’’ and m’’ is placed 
in m, then all objects placed in the region m (i.e. the objects are immediately outside m’ and inside 
membrane m) are said to be adjacent to membrane m’. By the support of a super-cell π, denoted by 
supp(π), it is meant the set of all objects appearing in π at least once. 

Definition A membrane system (or P system) of degree n, n ≥ 1, is a construct 
Π = (V, µ, M1,...,Mn, R1,...,Rn, i0), 

where: 
• V is an alphabet which elements are called objects; 
• µ is a membrane structure consisting of n membranes, with the membranes and the regions 

labeled in a one-to-one manner with the elements of a given set; we will use the labels 1,2,...,n; 
• Mi, 1 ≤ i ≤ n, are strings representing multisets over V associated with the regions 1,...,n of µ; 
• Ri, 1 ≤ i ≤ n, are finite sets of evolution rules over V associated with the regions 1,...,n of µ; An 

evolution rule is a pair (u, v), usually written in the form u → v, where u∈ V+ and v = v’ or v = 
v’δ, where v’ is a string over 

(V×{here, out}) ∪ (V×{inj: 1 ≤ j ≤ n}), 
and δ is a special symbol not in V. The length of the string u is called the radius of the rule u → v. 

• i0 ∈ {1,2,...,n} ∪ {∞}. If i0 is a number between 1 and n then it specifies the output membrane 
of Π. If i0 = ∞, or if it is omitted, then output is read in the outer region. 

The evolution rules are interpreted as a kind of moving of objects between regions of a membrane 
systems. All rules which do not contain the symbol δ can be interpreted in this way. The rules containing 
this symbol correspond to deleting of some membranes. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 62

A configuration of the system Π is a sequence (µ‘,
kii MM ',...,'

1
) where µ‘ is obtained from µ by 

removing all membranes different from i1,...,ik (the skin membrane is not removed), M’j, 1 ≤ j ≤ k, are 
strings over V, and {i1,...,ik} ⊆ {1,2,...,n}.  

The system can change the configuration by using the evolution rules in parallel to all objects which 
can evolve. For two configurations 

C1 = ( '' ,...,,'
1 kii MMµ ),C2 = ( '''' ,...,,''

1 kjj MMµ ) 

of Π, a transition C1 ⇒ C2 is the passing from C1 to C2 by applying the evolution rules appearing in 

kii RR ,...,
1

 in the following way: 

Consider a rule of the form u → v in a set of rules 
hi

R . If in the region associated with the 

membrane ih all the objects in u, with the multiplicities specified in u, appear in m( '
hi

M ), then we apply the 

rule u → v. All objects to which the rule can be applied must be the subject of the rule application: all 
objects in u are “consumed”, that is, the multiset identified by u is subtracted from the multiset m( '

hi
M ). 

We examine the rules and assign objects to them. A rule can be used only if there are copies of the objects 
needed to apply such rule.  

If in the rule u → v occurs the symbol δ in v, then the membrane ih is dissolved. Simultaneously the 
set of rules 

hi
R  is removed. The objects from dissolved membrane are added to the region immediately 

external to dissolved membrane. 
The rules associated to regions may be used concurrently, independent in all regions. It can be that at 

the same time two or more membranes are dissolving. This isn’t a cause for any contradiction. 
Thank the notion of configuration we can speak about a computing device: one can define the 

computation with respect to P system Π as a sequence of transitions C0 ⇒ C1 ⇒...⇒ Cm, m ≥ 0, where C0 
is the initial configuration. If in the configuration Cm there isn’t a rule which can be applied to the objects 
in Cm, then the computation halts, and we say that it is successful. Otherwise we call the computation 
unsuccessful. This is in the case when there is a rule in Cm which allows to evolve to a configuration Cm+1, 
that is Cm ⇒ Cm+1. The configuration Cm+1 can be equal to Cm. 

If the output membrane i0∈{1,...,n} belongs to the set of membranes of the system, then we say that 
system Π works in internal mode and it can be seen as a computing device which generates various 
objects: 

• multisets – the multiset generated by system Π is the multiset contained in the output membrane 
in the configuration on which the system halts. This is the case when a successful computation 
has been occurred 

• numbers – the number generated by the system is the sum of multiplicities of all objects in 
membrane i0  

• relations – each k-tuple (n1,..., nk) is an element of a relation generated by system Π if for some 
initial objects 

kii aa ,...,
1

 there is in the output membrane in the end of a successful computation 

n1 copies of 
1i

a ,..., nk copies of 
ki

a  – in other words n1 is the multiplicity of 
1i

a ,..., nk is the 

multiplicity of 
ki

a  in the output membrane after the successful computation. 

• A P-system can also be seen as a device recognizing a multiset or a number or a relation. In this 
case a P-system works similar to a Turing machine or an automaton.. 

If i0 = ∞, that means the “output membrane” is outside of the system, then it works in external mode: 
the object expelled through the skin membrane ordered in the order they are ejected, form a string. Some 
objects can be expelled at the same time. In such a case one take any permutation of them. So one can 
associate to any P-system a language. It will be denoted by L(Π). 

The biochemical interpretation of the previous description is the following.  

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 63

We have a cell, delimited by a skin (the cell membrane). Inside, we have cell-organs and free 
molecules, organized in a hierarchical way. The molecules and the organs float randomly in the 
“cytoplasmic liquid” of each membrane. 

Under specific conditions, the molecules evolve (alone or with the help of certain catalysts). This is 
done in parallel, synchronously for all molecules (a universal clock is assumed to exist). The new 
molecules can remain in the same region where they have appeared, or can pass through the membranes 
delimiting this space, selectively. Some reactions modify not only the molecules but the membranes too; in 
particular certain chemical are produced which dissolve the membrane. When a membrane is broken, the 
molecules previously placed inside it will remain free in the larger space newly created, but the evolution 
rules of the former membrane are lost. If the external membrane is broken, then the cell ceases to exist. 

An example of P-system given below comes from [11]. 
 

 
 

This system can evaluate for example as follows: 
 

 
 
 

 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 64

3. Preliminaries. Let T be a tree. By the labeling of T it is meant any function of the form l: T → A 
where A is a set. By an isomorphism of a tree T = (T, ≤) into a tree T’ = (T’, ≤‘) it is meant any function 
f:T → T’ transforming the relation ≤ into ≤‘. By an isomorphism of labeled tree T = (T, ≤, l: T → A) into 
T’ = (T’, ≤‘, l’: T’ → A) it is meant any isomorphism from T = (T, ≤) into T = (T, ≤) respecting the 
labeling of the trees that means l’ (f(x)) = l(x) for any x∈T. The notion of card of a labeled tree is defined 
analogously. 

We except the standard terminology and notation for trees. Particularly for any element a∈T the set 
of children of a is the set 

children(a) = {x∈T: x ∠ a} 
and the set of parent of a is one-element set 

parent(a) = { x∈T: a ∠ x } 
where ∠ = ≤ \ ≤ 2 

Definition. The tree T1 is longer (deeper) than T2 if there exists a sequence a1∠a2∠...∠an where 
a1,...,an∈T1 such that for all sequences of the form b1∠b2∠...∠bk where b1,...,bk∈T2 it holds n>k. 

By a labeled card we mean the card, say Ta, such that the parent of the element a has the information 
of the deleted element. By a labeled card we mean any card of the form Ta = (T \ {a}, ≤|T \ {a}, parent(a)). 
In what follows by a card we always mean a labeled card. The problem we solve in the paper is the 
reconstruction of a tree from two of its cards. 

Remark The above notion may be seen a little artificial. Formally such a card is simple a pointed 
tree that means the tree with distinguished element. Similarly to the notions of pointed graph or pointed set. 
The only difference is that we do not consider the category of pointed trees, i.e. we do not need consider 
mappings of such trees respecting the points of them. We exploit this “pointing” in order to fix an 
information about the place, where the element of the original tree has been deleted. 

By a part of a tree (T, ≤) we mean any partial order of the form (T’, ≤|T’) with T’ ⊆ T. 
Let T be a tree, a∈T. By (a] we denote the ideal generated by the element a, that means the set (a] = 

= {x∈T: x ≤ a}. For any tree T and a∈T by T-a we mean the tree T-a = (T \ (a], ≤|T \ (a]). Let us note that T-a 
is really a tree. For any tree T and an element a∉T the order T+a = (T ∪ {a}, ≤ ∪ {(x, a): x∈T}). For any 
trees T, T’ and any element x∈T by T[x]T’ we mean the partial order (T ∪ (T’ \ root(T’)), ≤ ∪(T’ \ 
root(T’))×{x}). 

Fact. For any trees T, T’ and an element x∈T the structure T[x]T’ is a tree. 
By a forest F we mean a set of trees. Two forests F1 and F2 are isomorphic, denoted F1 ≅ F2 if there 

exists a bijection f: F1→F2 such that for each T∈F1 it holds T≅f(T), that means corresponding trees are 
isomorphic. 

In the paper we use the notion of level and level of an element. The second one can be defined 
recursively. 

1. level(root) = 0 
2. level(x) = level(parent(x))+1 
The level is the set of elements x, for which the function level(x) has the same value. The elements in 

the first level, that means the children of root, will be called antiatoms. For each element x ≠ root we can 
find its antiatom, that is such an antiatom y, that x ≤ y, thus the function antiatom(x) is well defined for all 
element of the tree not equal to the root. 

4. A reconstruction of a Paun’s system from two its states. We prove that any structure of Paun’s 
system can be reconstructed from their two cards. In other words we show that double using of the rule of 
the form u→xδy (δ is the special symbol which denotes dissolving of a membrane) allow to reconstruct the 
original state of a P-system. 

The main result of the paper is the following proposition. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 65

Proposition Let T = (T, ≤) be a tree and a, b∈T. Given non-isomorphic2 cards Ta and Tb we can 
reconstruct the original tree T. 

The sketch of the proof 
The proof is effective. The block scheme of the corresponding algorithm is given below. 
 

 
 

In what follows the card Ta and Tb will be numbered; roughly speaking the card Tx (x = a, b) obtains 
the number 1 if x is nearer the root then the second element of the set {a, b}. In other words Ta obtains 
number 1 and Tb number 2 if level a is higher then level of b. If both a and b are on the same level, the 
numbering of cards is irrelevant. Let us describe the procedures used in the algorithm. 

5. Procedures descriptions 
5.1. Procedure 1 (used in the case when the deleted elements were on different levels, and there is 

only one branch on the card nr 2) 
This is the case in which both deleted elements were comparable. In the first step we find and delete 

(the copy we put on the stack) the isomorphic branches on both trees. The procedure below describes the 
searching of isomorphic branches and putting one of them on the stack. B and C are variables running the 
set of branches, that means the ideals generated by antiatoms. T1 and T2 are the trees from the first and the 
second card respectively. s is the stack on which we put the branches.  

                                                 
2 The case when the cards are isomorphic is the case in which actually we have to reconstruct the tree from one 

card. We can do it uniquely when the information is in a leaf. When it isn’t – the reconstruction is not unique – there 
can exists many non-isomorphic trees which are “reconstructions” 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 66

procedure find_isomorphic_branches (T1, T2, s) 
while exist B ≤ T1 & C ≤ T2 & B≅ C do 

begin 
T1:=T1 \ B; 
T2:=T2 \ C; 
put (s, B) 

end 

When the procedure stops, on the tree T2 there is only one antiatom and almost whole tree (almost – 
because without a root) is the ideal generated by this antiatom. In the next step we add a new element to 
the tree T1 from the first card. Let i be the element with information on the tree T1 and x∉T1 a new element. 
We add the element x to the tree T1 in following way: T 0

1 :=(T1∪{x}, ≤ ∪ (y, x) ∪ (x, root)) for each 

element y ≠ root. T 0
1  is the tree obtained in this way from the tree T1. 

In the last step of the procedure 1 we add the branches deleted as isomorphic from the file s to the tree: 
while stack_pointer ≠ EOF do T 0

1 := T 0
1 +get(s). 

T 0
1  and all trees isomorphic to this tree are now the reconstruction of the tree. 

An example of using procedure 1 illustrates a figure below 
 

 

 

 

 
 

5.2. Procedure 2. In the first step we find and delete (copying one of them to a file) the isomorphic 
branches like in procedure 1. The corresponding procedure is the procedure find_isomorphic_branches. 
Let us note that when we start the searching of the isomorphic\ branches, we should start from the card 
number 2. However the conjunction “&” is commutative, but in the second card there is the original 
number of branches (that means the same number like in the tree we try to reconstruct) and in the tree on 
the first card there can be more than the original number of branches and we can find more than one branch 
without the information which hasn’t the corresponding isomorphic branch on the second card. Fortunately 
the computer executes the conjunction sequentially and it can first get a branch from the second card and 
next search for the branch isomorphic to it on the first card. After the procedure find_isomorphic_branches 
on the tree from the second card there should be only two branches: one with an element with information 
and the second without such an element. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 67

Let i be the element with information on the card C1 and j the element with information on card C2. 
Let level(x) denotes the level on which there is the element x. In the next step we consider forests of the 
form (a] \ {a}, where (a] is an ideal generated by element a. 

1) delete the branch (antiatom(j)] 
2) mark the elements x on the card C2 for which level(x) = level(i) 
3) procedure isomorphic forests (F2, xk, X) 

begin 
F1:=(i] \ {i}; 

repeat 
k:= 1; 
F2:= (xk] \ {xk}; 
k:= k+1; 

until F2 \simeq ⊆ F1; 
end 

4) T1:= T_{1} \ X+(xk]↑ i, where (xk]↑ i means that we add to the relation ∠ on the tree T1 the pair 
(xk, i) and all elements belonging to xk. 

5) we add the branches deleted as isomorphic from the file s to the tree T1 like in last step in 
procedure 1. 

The tree T1 and each isomorphic to it is now the reconstruction of the tree. 
On the picture below one can see the case in which procedure 2 is executed 

 

 

 

 

 

 
 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 68

5.3. Procedure 3. This procedure is used in the case when the elements with information are on the 
same level but not on zero level – the informations are not in roots. The loop occurring in block scheme 
leads to the situation, we have to consider two trees or subtrees on cards C1 and C2 (the cards are numbered 
arbitrarily in this case) in which we have two branches: one with the information and the other without it. 
In the loop the word “branch” should be understood as a branch in the subtree where the root is the element 
on the current level. The loop uses procedure find_isomorphic_branches described above. Let us mark the 
two new cards 0

1C  and 0
2C  and the corresponding trees 0

1T  and 0
2T . Let us mark the element with 

information on the tree 0
1T  by i and the element with information on the tree 0

2T  by j. Next we construct 
the tree: 

0
1T := 0

1T \ (antiatom(i)]; 
0

2T := 0
2T \ (antiatom(j)]; 

0
1T := 0

1T + 0
2T  

The last operation + is a simple sum of trees. The added trees 0
1T  and 0

2T  have different roots. We 
identify the roots (they are stickled together) but don’t identify any other element of the trees. In the next 
step we add the deleted branches. The procedure which gets the branches from a file can be executed more 
than once in the sense that the branches can be remembered in more than one file: it can be that the 
branches are added not only to the root of the tree but also to the roots of subtrees considered during 
running of the loop from block scheme. 

The procedure 3 is used in situation like in the example below 
 

 
 

 
 

      
 

 
 

5.4. Procedure 4. The loop defined in the description of the procedure 3 can be executed before the 
execution of the procedure 4. Thus the notions of root and branch are relative, in the sense that the root or a 
branch can be the toot or a branch of a subtree, not necessarily of the whole tree. When we start with 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 69

procedure 4, we have two cards 0
1C  and 0

2C  and the corresponding trees 0
1T  and 0

2T  on the cards. One of 

the tree is deeper and this will be called 0
1T  and the second one 0

2T . 
The elements with informations are on the same level on both cards and the informations can be in 

roots (of considered trees – maybe subtrees of whole trees). 
1) find the longest branch on the tree 0

1T . By a longest branch it is meant a subtree constructed as 

follows. Search the longest sequence of the form $a1 ∠ a2 ∠ ... ∠ an where a1, a2, ... an ∈ 0
1T . The longest 

branch is (an] – the ideal generated by  an. 
2) the longest branch in 0

1T  is original (in 0
1T , because the whole branch in which, probably, the 

longest branch in 0
1T  is a subtree, may be not original. The element with information can be in this whole 

branch). Delete all other branches from 0
1T . 

0
1T :=(antiatom(an)] ∪ root( 0

1T ) 

3) Let us assume that i is the element with information in the tree 0
2T . There should be only one 

element, say β, on the tree 0
1T  on the level level(i)+1 such that after deleting this element β the tree 0

1T  get 
shorter. Find such an element β. In order to find this element we can for example execute a procedure like 
this: 

x := an    (we understand an like in point 1) and 2)) 
while level(x)>level(i)+1 do 

begin x:= parent(x) end 
β := x 

4) delete the element β and set 1
1T := 0

1T β. 

5) check if F1 = (root( 1
1T )] \ {root( 1

1T )} ≅ X ⊆ F2 = (root( 0
2T )] \ {root( 0

2T )} 

6) if so, 0
2T := 0

2T  \ X + 0
1T  where operation + is like in procedure 3). The tree 0

1T  is with element β. 

Among the trees constructed in this procedure only the tree 1
1T  is without this element (in fact the tree 0

2T  
before the last operation was without the element β. β is the failed element in card C2). 

7) if not – it is an error. 
8) we add all the branches deleted as isomorphic – like in procedure 3) 
9) 0

2T  and all trees isomorphic to them should be the wanted reconstruction. 
An example of using procedure 4 is illustrated in a figure below 
 

 
 

 
 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 70

 
 

 
 

 
 

 
 

5.5. Procedure 5. Before using the procedure 5 we can use the procedure find_isomorphic_bran-
ches, but the set which is run by variables B and C is the set of branches of maximal length (the set can 
change during executing of corresponding loop). Corresponding loop is illustrated on the block scheme. 
This operation is not yet in proper procedure 5. 

In the first step of procedure 5 we find on one of cards the deepest branch. Let us denote the element 
on the deepest level by an like in procedure 4.  

We construct the tree 0
1T = (antiatom(an)] ∪ root(T1). The further steps are like in procedure 4 

(points 3) – 8)). We can see it on the picture-example. 
The example of using procedure 5 is illustrated in the figure below 

 

 
 

 
 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 71

 
 

 
 

 
 

6. Sketches of proof in various cases 
6.1. The case of procedure 4. If the tree on one of the cards is deeper (has more levels than 

the other tree) than the tree on the other card, then the difference between the depths is one. If the 
difference was greater than one, then we would have not the cards, that would mean the two trees 
hadn’t been obtained from the same tree by deleting one element. When we delete one element 
the tree can get shorter and the number of levels decreases at one or the depth of tree can stay not 
changed – when deleted element was not on the “longest path”. Since we consider a subtree where 
the root is the element with information (it can be the whole tree, if the information is in the level 
zero, that means in the root of the tree), the situation is like this, when we delete an antiatom 
(element on the first level) from the longest branch and in this case the number of levels of the 
tree get decreases at one, thus the longest branch on the card with the deeper tree is original (the 
branch is also in the original tree). If it wasn’t so, that would mean, that this branch originates by 
deleting an atom in considered subtree and that would mean that in original tree existed a branch 
longer at least two levels than the tree on the second card. It is impossible, because the second 
card is originated from the original tree by deleting exactly one element and such a deleting can 
make the tree at most one level shorter (less deep). 

6.2. When the deleted elements are comparable. I. It is sufficient to consider the case, when one of 
information is on the zero-level (in the root) and the second on the level of greater number. If one of the 
information is on the non-zero level, say level k and the second on the level l where l > k then we consider 
a subtree, in which the root is this element on the level k in which we have the information. The remaining 
part of the tree is not changed. 

II. On the card with number two the levels 0,1,...,l are not changed – they are like in original tree, 
because the zero level cannot change (one of foundation of these consideration) and when something is 
changed on the level i, we have the information on the level i-1, and the information is not before level l. 

1. The branches without information on the second card are like in original tree, thus the branches 
on the first card isomorphic to them are like in original tree, too. 

2. The subtree (or fragment – for example a tree (T \ (a] \ (b] \ … for some elements a, b,...), which 
remain on the first card after deleting isomorphic branches on both cards, has one level less than in original 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 72

tree, because the deleted element is an atom: if it had some elements under, then now they are all one level 
higher (the level with number one less than their original level), else on the first card we have only the root 
(in this case). 

3. In order to return to the original tree we have to add an atom, and all the elements from the first 
card, except the root, should go one level lower. 

4. On the first card, after the deleting of isomorphic branches, there aren’t, except the root, elements 
which are on their original level, especially the elements on the first level are not original atoms: if they 
were, they would be also on the second card, where weren’t changes on the first level. But now, after the 
deleting of isomorphic branches, on the first level in the second card is only one element, and this element 
is deleted in the first card – we know that, because we have an information in the root. 

6.3. Other cases. I. After the deleting of isomorphic branches remain two branches on the first and 
two branches on the second card (the deleted elements are not comparable), their lowest upper bound is the 
root or an element different from the root – in the last case we consider a subtree, which root is this lowest 
upper bound. 

This can be in the case, when elements are deleted on the same level or in different levels. This 
proof is not correct for the case, when at least one of elements of the first level (one of antiatoms) is 
deleted. 

1. If the antiatoms are not deleted, then on the first, and on the second card also, is the same number 
of branches like in original tree. 

2. On each card only one branch is changed, because only one element is deleted, then on each card 
only one of branches can be different from original. When we have the information on the first or next 
levels we know which branch is changed (namely this one in which is the information). 

3. One of the two branches, which remain after the deleting of isomorphic branches, on the first card 
is original, the same situation is on the second card. 

4. The branch which is changed on the first card is this which is original on the second card. If it 
wasn’t so, the same branch would have to be changed in both cards. The others would be not changed, thus 
isomorphic on both cards. But we have on each card two branches, which haven’t isomorphic branch on 
the other card. 

II. Not comparable elements from different levels, among them one from the first level, are deleted 
1. After the deleting of isomorphic branches from both cards, on the second card (this is the card, on 

which the information is on the non-zero level) remain two branches, among them one without the 
information and this is an original branch. 

2. On the first card there isn’t the branch isomorphic to the original branch from the second card, 
but there is a fragment (usually it isn’t a subtree, it is a branch or a few branches, we can see it as a forest) 
which originates after deleting an antiatom from the original branch from the second card. 

3. When we delete this fragment, in the first card will remain one branch. It is original. If it wasn’t 
original, that means if one element (antiatom) was deleted from it, then the original branch from the second 
card should have the isomorphic branch in the first card, because only one element was deleted. But there 
isn’t such an isomorphic branch. 

4. We know, which branches are original (one from the first card, and one from the second). We add 
the branches and the branches from the stack to root and we have the reconstruction of the tree. 

III. The elements are deleted from the same level and they have the same parent. This case includes 
the situation when the parent is the root and the situation when the parent is an element different from the 
root – we consider then the subtree in which the root is this parent, because the remaining part of the tree is 
not changed 

1. In the case, when on the cards are different numbers of levels, we prove the reasoning like in case 
of procedure 4. 

2. When on both cards is the same number of levels, we check in turn the branches which have the 
greatest depth. If we find for a deepest (or one of deepest) branch from card 1 an isomorphic branch on the 
card 2, the branches are original, because if one of them originates by deleting an atom, then on the other 
card should be a branch one level deeper. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 73

3. If we have a branch which has the greatest number of levels, say on the card A, and there isn’t 
any branch isomorphic to its on the other card (say B), then this branch is original, and on the second card 
(B) should be a fragment (usually branch or a few branches) isomorphic to the fragment (a branch or few 
branches also) which we obtain when delete the atom from this original branch. Then we delete this 
fragment from the card B and we put into the place the original branch from card A. 

4. If all the deepest branches on the first card have branches isomorphic to them on the second card, 
we delete them (copy to the stack) and again search the branches which now have the greatest number of 
levels. The tree is finite, thus we should find finally a branch which hasn’t isomorphic branch on the other 
card. If we don’t find such a branch, that means the card are isomorphic and we cannot uniquely 
reconstruct the tree. 

There is a question: why in the last case we start the searching with deepest branches? If we deleted 
all isomorphic branches, we could go to bad results. The cause is among other that some branches which 
are in cards, aren’t in original tree. Some of these branches can be isomorphic to original branches on the 
other cards and we can delete an original branch in one card and an isomorphic, but not original branch in 
the other card. In the picture illustrating the using of procedure 5 we cannot delete the isomorphic 
branches. If we deleted them, we obtain two trees like below 
 

 
 

It is probably very difficult to reconstruct the original tree using the above cards. But if we start with 
situation like in the first picture and if we start with the deepest branches, we can reconstruct the tree 
without problems. 

7. An implementation. In this section a way of using of the program (build by the second of the 
authors) will be, very roughly, described. The program reads data containing a description of two cards and 
produces the original tree. The best way to use this program is to prepare a file with data (two cards) and 
specify it as an input of the executing file (the name of executing file is treerec.exe) 

>treerec data   (> means prompt) 
The data file is the text file where we prepare the two cards. It should be done as follows: 
number of elements of the card 
(empty line) 
card1 (name of card 1) 
number-of-vertex [space] number-of-its-parent (if root then doesn’t occur) [space] i (only by the 

vertex with information – one vertex in one card) 
We explain the way of using of the program by an example. The data file can see as follows: 

6 
 
Card1 
0 
1 0 
2 0 
3 0 i 
4 2 
5 2 
 
Card2 
0 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



 74

1 0 
2 0 i 
3 0 
4 2 
5 3 

 
The last line must be empty, like the lines which separate the cards and the number of elements and 

the cards. The program will print the reconstruction tree (if in data file are really the non-isomorphic cards) 
on the screen in the same form as in data file. The program one can get from  

http://www.pu.kielce.pl/~sylwaw. 

8. Concluding remarks. The problem of reconstruction of an object from information about a kind 
of its reducts occurs very often in many areas of life. Probably the most well known is the problem of 
reconstruction of scenario of a crime act solved by every investigation done by the police or other similar 
institution. But the problem of reconstruction is also of higher important in many branches of biology or 
medicine where we try to inference some properties of the actual state of a patient from some partial 
informations on his state in the past. We don’t know the biological or medical “roots” of such 
investigations but we know that they have been taken up. This paper originates from simple notification 
that the well known reconstruction problem for partial order has a very easy and natural interpretation in 
the theory of Paun’s systems. Some other consequences of these comparison will be described in further 
papers. 

1. Adleman L.M. Molecular computation of solutions to combinatorial problems. Science, 226 
(1994). – S. 1021–1024. 2. Beaver D. Factoring: The DNA Solution, ASIACRYPT 1994. – S. 419–423.  
3. Beaver D., Computing with DNA, Journal of Computational Biology 2(1). 1–7 (1995). 4. Bondy J.A., 
Hemminger R.L. Graph reconstruction – a survey, Journal of Graph Theory 1 (1977). – P. 227–268.  
5. Boneh D., Dunworth C., Lipton R., Sgall J. On the computational power of DNA, In Discrete Applied 
Mathematics, Special Issue on Computational Molecular Biology. Vol. 71 (1996). – P. 79–94. 6. Boneh D., 
Dunworth C., Lipton R. Breaking DES using a molecular computer, In Proceedings of DIMACS workshop 
on DNA computing, 1995, published by the AMS. 7. Boneh D., Dunworth C., Lipton R. Making DNA 
computers error resistant, In proceedings of second annual DIMACS conference on DNA computing. – 
1996. 8. Kelly P.J. A congruence theorem for trees, Pacific Journal of Matematics 7. – 1957. – P. 961–968.  
9. Kratsch D., Rampon J.-X. Towards the Reconstruction of Posets}, Order 11, 317-341, Kluwer Academic 
Publishers. – 1994. 10. Lipton R.J., Speeding up computations via molecular biology, draft, Princeton 
University. – December 1994. 11. Madhu M. Studies of P Systems as a model of cellular computing, 
Department of Computer Science and Engineering, Indian Institute of Technology Madras, Ph. D. Thesis, 
2003. 12. van Oostrom, V., Confluence for Abstract and Higher-Order Rewriting, Academic Proefschrift, 
Vrije Universiteit te Amsterdam, Ph.D. Thesis. 13. Păun, Gh., Computing with Bio-Molecules, Springer 
Verlag, 1998. 14. Păun, Gh., Computing with membranes, Journal of Computer and System Sciences, 61, 
1, 108–143, 2000. 15. Rampon J.-X. Reconstruction of finite ordered sets, “Ordered Sets”, Warsaw, 19–31 
July 1999. 16. Schröder B.S.W., Examples on ordered set reconstruction, Order 19, nr 3, 283–294, Kluwer 
Academic Publishers, 2002. 17. Zandron, C., A Model for Moloecular Computing: Membrane Systems, 
Università degli Studi di Milano, Dipartimento di Informatica, Dottorato di Ricerca in Informatica – 
XIIICiclo, Ph.D. Thesis  
 
 
 
 
 
 
 
 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


