
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 1, No. 2, 2016

PROGRAM CODE PARALLELIZATION METHOD

Liubomyr Tsyhylyk

Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine.
Authors e-mail: l.tsyhylyk@gmail.com

Submitted on 04.12.2016

© Tsyhylyk L., 2016

Abstract. Method of parallelism extraction from
sequential program is proposed. The definition of three-
address code is given. The requirements to the sequential
and parallel program are determined. The structure and
design performance of the parallel program are given. The
description of two stages of the parallelism extraction
method is proposed: stage of preliminary field initialization
and recursive stage of the parallel extraction. Evaluate
efficient of the parallelism extraction method based on an
example of FFT 64p.

Index Terms — parallelization, program parallelization,
method of program parallelization, parallel code structure,
tree-address program

I. INTRODUCTION
More than a dozen companies are engaged in

developing automated systems for design special devices
and processors [1]. To achieve flexibility in the design,
the minimum of effort for the design and performance of
such devices, the company developed a technology C to
HDL [1] [2] [3] [4]. The technology used for those tasks
where time for execution on universal processors
architecture is unacceptably high. These tasks include
processing biological data, modeling of physical
processes, financial forecasts and others. Embedded
systems that require high-performance computing or data
processing in real time also use this technology.

C to HDL compilers should be used in large projects
or tasks which might need to change the algorithm in
future. Development of large projects solely on the HDL
code is a complex task that requires a lot of time to
design a system. Abstraction level of C code for such
projects significantly reduces design time, over-order
design written in HDL code, modify heavier compared
to the C language. If the engineer needs to add new
functionality to the existing system, he/she needs to
add/modify a few lines of C language code. For instance,
to perform the same task in HDL needs to modify/add
functional modules of the system, which require more
time to develop.

A high-level synthesis system of specialized devices
“Chameleon” [4] [6] was developed using technology C
to HDL (hereinafter C2HDL). The aim of this system is
the generation of HDL code that performs the algorithm
presented in C with predetermined performance. The IP
core synthesis process consists of several stages [7]. An
intermediate stage is the generation of three-address

code program, which aims at submitting flow graph
algorithm for further processing.

For the maximum performance of any computer
system, it is necessary to use the parallelism and the pipe
[8] [9]. These approaches will significantly reduce the
computation time. Given that the main purpose of the
system configuration is C2HDL productivity perfor-
mance computing, it is recommended to use instructions
and data pipelining to goal achievement.

II. TASK
To develop a parallel three-address application code

structure, create data pipelining stages and develop a
consistent method of three-address code parallelization.

III. SEQUENSIAL PROGRAM CODE STRUCTURE
One of the main characteristics of the system design is

reflected in C2HDL flow graph algorithm [10] from a
sequensial program code (three-address code). It is a
simple code structure to extract maximum of paralleliza-
tion and tracking dependencies between the commands.

We assume that three-address source program is a
sequence of commands describing algorithm where one line
is represented by only one command that should be
performed on two operands of data and the result of this
operation is assigned an another operand for example (1).

123 RRRadd (1)
where add – mnemonic mark of adding command, R1
and R2 – operands of data for computation execution,
 R3 – operand that stores result of command execution.

According to the main problems, facing the system
C2HDL, three-address code must meet the following
requirements:

• Contains only the algorithm description, reflects the
algorithm’s flow graph [10]. There is no index of the
array calculations.

• Loops, used in the C language, is fully unwound
and presented in a sequential way.

• Three-address code consists of a set of operands
(registers, R1, R2, ...), their number is unlimited, as
three-address code is an intermediate representation of
the algorithm and is not based on a predefined computer
architecture. One command may use the same name
operands:

111 RRRadd (2)

Liubomyr Tsyhylyk

132

Table 1
List of the three-address commands

Ca
te

go
ry

N
um

be
r o

f c
on

di
tio

n
co

m
m

an
d

N
um

be
r o

f c
on

di
tio

n
co

m
m

an
d

fo

r w
hi

ch
 cu

rre
nt

 co
m

m
an

d
de

pe
nd

en
t

Co
nd

iti
on

 o
f c

ur
re

nt

co
m

m
an

d
ex

ec
ut

io
n

M
ne

m
on

ic
 m

ar
k

O
pe

ra
nd

 o
f t

he
 re

su
lt

O
pe

ra
nd

 o
f t

he
 ar

gu
m

en
t #

1

O
pe

ra
nd

 o
f t

he
 ar

gu
m

en
t #

2

Po
rt

nu
m

be
r

Command description

1 2 3 4 5 6 7 8 9 10 11
1 0 y z in R1 – – i Input data loading from the external port number #i (port

number can be any natural number). Here “y” – is a number
of conditional command on which the current command
depends, “z” – the execution condition of the current
command. The In-command will be executed when the
result of the conditional command “y” is equal to “z”.

2

Lo
ad

in
g

of
 in

pu
t d

at
a

0 y z ld R1 k – – Constant loading from internal memory. Where “k” is
integer constant. Also, it can be written in float point format.
Example: 234.76543 or -0.000345

3

G
iv

in
g

th
e

re
su

lts
 0 y z out R1 – – i Giving output result using external port #i

4 0 y z add R3 R1 R2 – Adding command execution between R1 and R2, the test
result is written in R3

5 0 y z sub R3 R1 R2 – Subtracting command execution between R1 and R2, the
test result is written in R3

6 0 y z mul R3 R1 R2 – Multiplication command execution between R1 and R2, the
test result is written in R3

7 0 y z div R3 R1 R2 – Division command execution between R1 and R2, the test
result is written in R3

8 0 y z adds R3 R1 R2 – Adding command execution between R1 and R2, one bit
shift right performed, the test result is written in R3

9

A
rit

hm
et

ic
al

 co
m

m
an

ds

0 y z subs R3 R1 R2 – Subtracting command execution between R1 and R2, one
bit shift right performed, the test result is written in R3

10 0 y z sll R3 R1 R2 – Shift logic left R1 for R2 bits, the test result is written in R3
11 0 y z sal R3 R1 R2 – Shift arithmetic left R1 for R2 bits, the test result is written

in R3
12 0 y z slr R3 R1 R2 – Shift logic right R1 for R2 bits, the test result is written in R3
13 0 y z sar R3 R1 R2 – Shift arithmetic right R1 for R2 bits, the test result is written

in R3
14 0 y z and R3 R1 R2 – Logic ‘and’ execution between R1 and R2, the test result is

written in R3
15 0 y z or R3 R1 R2 – Logic ‘or’ execution between R1 and R2, the test result is

written in R3
16 0 y z xor R3 R1 R2 – Logic ‘xor’ execution between R1 and R2, the test result is

written in R3
17

Lo
gi

ca
l c

om
m

an
ds

0 y z not R2 R1 – – Logic ‘not’ execution with R1, the test result is written in R2
18 x y z cmpeq – R1 R2 – ‘Equal’ operation execution between R1 and R2. Where

“x” – sequential number of conditional command. The test
result is automatically stored on HW predefined register.

19 x y z cmpneq – R1 R2 – ‘Not equal’ operation execution between R1 and R2. The
test result is automatically stored on HW predefined register.

20 x y z cmpleq – R1 R2 – ‘Less or equal’ operation execution between R1 and R2. If
R1 is less or equal to R2 that the result is ‘true’. The test
result is automatically stored on HW predefined register.

21 Co
nd

iti
on

 c
om

m
an

ds

x y z cmpl – R1 R2 – ‘Less’ operation execution between R1 and R2. If R1 is less
than R2 that the result is ‘true’. The test result is automatically
stored on HW predefined register.

 Program Code Parallelization Method

133

Table i continuation

1 2 3 4 5 6 7 8 9 10 11
22 x y z cmpgreq – R1 R2 – ‘Greater or equal’ operation execution between R1 and R2.

If R1 is greater or equal to R2 that the result is ‘true’. The
test result is automatically stored on HW predefined
register.

23 x y z cmpgr – R1 R2 – ‘Greater’ operation execution between R1 and R2. If R1 is
greater than R2 that the result is ‘true’. The test result is
automatically stored on HW predefined register.

24

Ju
m

p 0 y z jmp @R1 – – – ‘Jump’ operation. Command pointer jumps to the address
stored in @R1.

25

A
ss

ig
n 0 y z asgn

R1 R2 – – Assign operation. The value of the register R2 is assign to

the R1 register.

• Commands of loading input data and giving output

results should be composed in the following way:
nRcom 1 (3)

where, com – command of loading/giving data (in/out),
R1 – data register, n – port number (n ∈Z).

• Conditional command supporting [10].
• Contains the following set of commands (Table 1).
Mathematical model of three-address code shows in

next way:

⊗⊗⊗
=

i

dest

portregconstreg

regcomandzyx
P

2arg1arg

00
 (4)

where x∈N – conditional command number; y∈N –
conditional command number that instant command
dependents; z{0 | 1} – condition of the instant command
execution; command ∈ COM – mnemonic mark of a
command, COM – set of the commands; regdest∈REG –
the result register, REG – set of registers; regarg1∈REG –
the first argument register; const∈R – constant (fix and
float (IEEE 754) point supported); regarg2∈REG – the
second argument register; port∈N – port number;
i∈N – sequential number of the command line.

This mathematical model P describes any combi-
nation of the three-address program.

IV. PARALLEL CODE REQUIREMENTS
C2HDL system uses configurable architecture of

special processor [7] for high performance IP core
generation. The main advantage of this architecture to
compare with existing [8] [11] [12] [13] [14] [15] [16] is
its scalability and “adaptation” to the input algorithm.
Under “adaptation” we should understand configuration
possibility of all units in that way to set desired system
performance with minimal HW resource usage. The next
parallel code requirements were elaborated during
analyzing particularity of the configurable architecture:

• The parallelization level of the sequential code
should depend definitely on the input algorithm
characteristics.

• Pipeline usage between stages: input data loading,
output data extracting and perform calculations.

V. PARALLEL CODE STRUCTURE
AND CHARACTERISTIC

The next list refers to the main parallel code
characteristic:

• Number of the parallel code branches for arithmetic
and logic operations execution.

• Command-loading level of each branch (the value
is determinates in percentage). This value has higher
priority than number of the parallel code branches set by
user. Thereafter if command-loading level is not reach at
least for one branch, the parallel branch number decrease
by one and repeat this procedure again.

• The input/output ports number.
• Stages count (parallel lines) of the program.
Performance of any designed system is determined by

the combination of these entire characteristic (Fig. 1),
but the dominant role belongs to count of the parallel
code branches. This value shows how many parallel
arithmetical units (ALU) are used for program execution.
The higher this number is, the higher isprogram
parallelization and, accordingly, higher system perfor-
mance can be achieved. Taking into account that each
algorithm has its own parallel level, thereafter the code-
loading level of each parallel branch can be different.
One branch of the parallel code is additional ALU. The
command-loading level is ratio of the commands that
should be executed in this ALU, to the total amount of
the parallel lines (stages) of code. Set the requirements to
the command-loading level for each ALU we determine
performance of the desired system.

Additional characteristic of system performance is
pipeline usage. Based on three stages for computation
execution [14]: loading input data, computation execu-
tion and output data extraction, thereafter these stages
can be implemented using pipeline. The first stage is
loading input data, three-address command is in (e.x.
loading i “portion” of data). The second stage is compu-
tation execution (e.x. computation of the i “portion” of data
and loading i-1 “portion”). The third and the last one stage
is extract output data, three-address command is out (e.x.
extract output results of the i “portion” of data, computation
i-1 “portion” of data and loading i-2 “portion”).

Liubomyr Tsyhylyk

134

The advantage of using such pipeline is reducing
number of parallel lines of code. All commands of
loading and extracting data and also arithmetic and
logical commands are executed in parallel way but with
different “portions” of data.

C2HDL system executes synthesis all the HW modules
that are necessary for computation execution. Accordingly,
there is no needed to use commands to load constants into
the RAM provisionally read this data from the ROM but
expedient directly save this data in the RAM

originally have initialized it during HDL code synthesis.
This allows saving the ROM resource usage assigned to
store parallel program that are required by the HDL system.
Fig. 1 shows example of three-address RGB→YUV
program (coefficients are random). Here are shown
parallel program characteristics and determined pipeline
stages of data computation. The parallel branches
number (ALU = 5) was chosen based on the efficiency
level. Conditional command fields are absent for
convenience.

Fig. 1. Three-address program code in parallel and sequential

The parallel code structure can be shown in next

mathematical model (5).
() () ()(){ }

jzyx ALUOUTINPL = (5)

where j∈N – ordinal number of a stage, x∈N – ordinal
number of input port, y∈N – ordinal number of output
port, z∈N – ordinal number of ALU.

{ }⊗= destreginzyIN 00 (6)

{ }⊗= destregoutzyOUT 00

 (7)

⊗
⊗

=

2arg

1arg

00

reg

regregcomand

zyx

ALU dest

(8)

Mathematical model (5) allows describing any
parallel algorithm that executes as input task of C2HDL

system. Input/output ports and ALUs numbers are
configurable (Fig. 2) that allows select configuration to
get user desired performance after analyzing. Fig. 2
shows example of previous (Fig. 1) three-address se-
quential code in three different parallel configu-
rations. There is no needed to make parallel in-
put/output ports thus the round of execution arithmetic
operations, with maximum parallel branches, is longer
than the round of input/output commands execution
(see the first configuration on Fig. 2).

VI. SEQUENTIAL TO PARALLEL CODE
TRANSFORMATION METHOD

Taking into account requirements described in
section IV lets dig deeper and create additional re-
quirements to sequential code. Take mathematical
model P as essential and complement it with additio-
nal fields.

 Program Code Parallelization Method

135

Fig. 2. Parallel configurations of three-address program RGB→YUV

The aim of extending mathematical model is to
enlarge information of sequential code with relationships
between commands. Sequential code structure will be
next – (9).

{ }IPP U=mod (9)

=

jdest

dest

sourceOutsource

sourceineexecuteInL
I

;

;;

2arg

1arg (10)

where j∈N – ordered line number of command in sequential
code; executeInLinedest∈N – ordered stage number (parallel
line number), in which, the instant command will be
executed; sourcearg1∈N – ordered line number of command
in sequential code, the first argument of instant command is
initialized there; sourcearg2∈N – ordered line number of
command in sequential code, the second argument of instant
command is initialized there; sourceOutdest∈N – ordered line
number of command in sequential code, the output argument
of “out” command is initialized there.

Additional fields in (10) are prime numbers. It doesn’t
contain any arrays or data structures.

Method for program code parallelization consists of
two stages:

1. Field initialization (Table 2): sourcearg1, sourcearg2
and sourceOutdest. The aim of this stage is to show up
all command relationships. Each command argument is
analyzed to determine number of line where this
argument was initialized. “in” and “out” commands
placement is executed on this stage also. Each “in” or
“out” command contains port number (5). These port
numbers are used as vectors for in/out command
execution. Arrangement of mutual placement of in/out
commands is the same, for the same port names, as in

sequential program code. Algorithm flow chart can be
created based on the results of this stage. This informa-
tion allows displaying the algorithm for visualization.

2. Recursive method of the code parallelization
(Table 3). This is the main round of code paralle-
lization. Field executeInLinedest is formed in this stage,
this field is equal to j (j∈PL), all fields of PL (5) are
determined also in this stage. This method is based on
two-level recursion where the first level is command
determination for initialization state analyzing its
arguments, the target of the second level is command
placement analyzing in parallel code that initializes
input arguments of instant command. The idea of this
method is to place those commands in parallel code
the results of execution of which are required for
farther computations.

VII. EFFICIENCY OF THE METHOD
Parallelization method efficiency can be determined

according to the next criteria:
• PC time consuming required for parallelization

process.
• PC memory usage required for parallelization

process.
Parallel commands count.
• Parallelization level of sequential code (parallel

branches count).
Personal computer with next performance characte-

ristic used for investigation efficiency of current method:

Processor Intel Core i7-3630QM 2.4 ГГц
RAM DDR3 1600 МГц; 16 ГБ
Operation system Windows 7 Professional 64-bit.

Liubomyr Tsyhylyk

136

Table 2
Field initialization method

Step
Discription Example

1 All sequential commands analyzing.
If instant command is “in” or “out” – this

command should be assigned to correspond
row ‘ j ’ of parallel command and column
according to the port number of this
command.

If there is any input/output command
placed in ‘ j ’ line and specific port of parallel
code – thereafter this instant command
should be placed in the next free parallel line.

IN (6) and OUT (7) of set PL (5) are determined in this stage.

.
2 All sequential commands analyzing.

If the instant command is not “in” or
“out” – need to determine in which line of
sequential code command arguments are
initialized (regarg1 and regarg2, see (4)). The
row numbers where these arguments are
initialized assigned to regarg1 and regarg2
accordingly.

〈� � � � � �� � � � � �〉〈� � � � � �� � � � � � � �〉〈� � � � � �� � � � � � � �〉〈� � � � � �� � � � � � � �〉 � � � � � � � � � � � �� � � � � � � �= � � � �; � �� � � � � � � � � �� � � � � � � �= � � � �

3 All sequential commands analyzing.

If the instant command is “out” – need to
determine in which line of sequential code its
argument is initialized (regdest, see (4)). The
row number where this argument is
initialized assigned to sourceOutdest.

〈� � � � � �� � � � � �〉〈� � � � � �� � � � � � � �〉〈∅〉〈∅〉〈� � � � � � � �〉 � � � � � � � � � � � �� � � � � �� � � � � � � �= � �� �

Table 3
Recursive method of the code parallelization

Step # Description Explanation
1 Initialize parallel code characteristic:

– parallel ALU count;
– ALU loading level (percentage of commands).
Initialized field executeInLinedest=-1. This field is used by

arithmetic, logic and conditional commands. Field
executeInLinedest is also set for commands “in” and “out”.

Set condition for command placement in parallel code
placeCommand = false

Example:
– ALU count = 4;
– ALU loading level (com_level) at least 70 %.
Command placement condition is used for

recursive level identification. It is forbidden to place
commands in parallel code on the first level of
recursion. Commands are placed in parallel code only
on the second level of recursion.

2 The first level of recursion executes.
Select arithmetic, logic, condition or input/output command
from the sequential code.

3 If instant command is one of the arithmetic, logic or
conditional commands – select sourcearg1 and sourcearg2 for
farther analyzing. If this is ‘out’ – select number of
command from sourceOutdest field for analyzing.

Select commands that initialized input arguments of
the instant command select sourcearg1 and sourcearg2,
or sourceOutdest.

4 According to selected command executeInLinedest field is
analyzed. Go to step #5 if this field is equal to ‘-1’.
If executeInLinedest is equal to instant parallel line (this
checking is applicable only for arithmetic, logical or condition
commands) – go to step #2, in other case go to step #6.

‘-1’ means that instant command is not placed in
parallel code.
Only those commands can be placed in parallel code
which arguments are already initialized and placed in
parallel code.

5 The second level of recursion executes.
Analyze selected command. Set field placeCommand =
true. Go to step #3.

6 If placeCommand field is true – place instant command in
parallel code, in other case – increase ALU number and go
to the step #2.

 Program Code Parallelization Method

137

Example of placing command #18 in parallel code.

Execute step #2. Select command #26 (this is output command “out”). Step #3. sourceOutdest field is analyzed of instant
command. This field is equal to command #18. Step #4. executeInLinedest field is analyzed of command #18, this field is equal
to ‘-1’. Step #5. Set placeCommand = true. Step #3. sourcearg1 and sourcearg2 fields of command #18 are analyzed. sourcearg1
field is 17. Step #4. sourceInLinedest field of command #17 is analyzed, this field is equal to ‘3’. The line ‘3’ is not equal to
current line – ‘4’, then repeat step #4 for sourcearg2. sourcearg2 field is 7.
Command #7 is constant command, as a result this command is not used for analyzing since it will be stored in RAM during
synthesis process. The arguments of command #18 are already placed in parallel code, thus command #18 can be placed in
parallel code according to index of ALU. Step #6. placeCommand field is analyzed. The field value is true. Place command
#18 in parallel code.
Check ALU-loading level with commands for each parallel branch. The minimal command loading level for parallel code #1 is
50 %. According to the input requirements, this value should not be less than 70%. Therefore, reduce number of parallel ALUs
from 4 to 3 and repeat parallel process again. The result of this process is parallel code #2 that has minimal ALU loading value
71 %. All requirements are met.

The most optimal example for method efficiency investi-

gation is FFT algorithm [17] [18] [19]. This algorithm allows
execute sequential commands parallelization to load ALUs
by commands uniformly. If number of parallel commands is
equal to FFT base – thus all parallel ALUs is 100 % loaded
by commands. The FFT characteristic shows below.

Number of points 64
Base 2
Input ports 2

– Real part 1
– Imaginary part 1
– Output ports 2
– Real part 1
– Imaginary part 1

Constants 32
Number of sequential three-address commands 2208

Based on the parallel code characteristic 30 parallel
configurations of FFT algorithm were generated. The
maximum number of ALUs (for which cycle of
commands execution is the least) is 30. There is no
reason to parallel code for bigger number of ALUs since
the cycle of loading input and extracting output data for
FFT algorithm is 64 commands (based on FFT
characteristic of sequential code: (2208-(2∙64)-(2∙64)-
32)/64=30). Plot of the dependency between parallel
commands number vs parallel ALUs is created (Fig. 3).
This plot shows that the parallelization method is effi-
cient for any number of ALUs < 30. Parallel commands
number decrease with exponential dependency without
any peaks this mean that all ALUs are 100 % loaded by
the commands.

Analyzing information of this graph, we see that
calculation cycle for one ALU (1920) is less than

Liubomyr Tsyhylyk

138

sequential commands count (2208). The root cause of
this difference is that system uses pipe-line for
calculation. The parallel process of input/output data and
data processing is used.

Sequential code parallelization based on proposed me-
thod doesn’t require exponential dependency of compu-
ter memory and does not use matrix representation for
storing sequential command dependencies [20]. Based
on (10) we just need four additional fields for each
command to perform parallelization.

The result is linear dependency between number of
sequential commands and RAM memory usage.

The main criteria of method evaluation are machine
time consuming during algorithm execution. The
method consider being efficient if dependency
function of time of algorithm execution vs parallel
ALUs number is linear and gain of linear function
(coefficient α) is less than 1. Fig. 4 shows dependency
graph between time required for parallelization and
parallel ALUs number.

Fig. 3. Parallel commands number vs parallel ALU dependency graph

Fig. 4. Dependancy graph between time required for code parallelization vs parallel ALUs

Straight line on this graph is approximated function of

the data. This function can be outlined using next equation
(11):

y= α∙x+b (11)

where y – time required for parallelization execution;
x – number of ALUs; α – linear function gain; b –
approximately time of algorithm execution using just one
ALU.

This gain is equal to 0.5568 for current algorithm.
This means that proposed method is efficient because
dependence function between time required for

parallelization and parallel ALUs number is linear
(Fig. 4) and gain of this function α is less than 1. So in
other words, speed of increasing parallelization time is in
two times slower than speed of increasing parallel
ALUs. Equation (11) can be used to forecast
approximate time required for algorithm execution with
specify ALUs number tentatively determine time
required for algorithm execution for one ALU.

VIII. CONCLUSIONS
This article describes three-address program paralleli-

zation method. Three-address program definition has

 Program Code Parallelization Method

139

been determined and a list of all commands (Table 1) is
shown. Structure and set of the main requirements for the
sequential program code have been determined. These
requirements allow determining output characteristics and
parallel code structure. Mathematical model of parallel code
was created. Purpose of all fields of the algorithm and their
structure was described. Method of code parallelization was
described according to its requirements. This method
contains of two stages: field initialization and recursive
method of code parallelization. The input data of code
parallelization method is sequential three-address code and
desired performance. Desired performance value is
specified by minimal percentage of commands of ALU
loading. The example of code parallelization is shown that
emphasize on reaching of performance target. Efficiency of
the method is shown based on FFT 64 algorithm. The graph
of dependency between parallel commands and parallel
ALUs is shown (Fig. 3). The efficiency of this method is
proved based on graph analyzing result. The command
loading level for each ALU is almost equal 100 % for any
parallel configuration (ALUs number <= 30). The
dependency graph between time required for code
parallelization vs parallel ALUs is shown (Fig. 4). Based on
the data of this graph, dependency between time required
for code parallelization execution and parallel ALUs is
linear function with gain 0.5568. Taking into account
parallel code requirements and investigation results, we can
make conclusion that this method is efficient. The method
efficiency denominates consuming required for algorithm
execution and computer resources usage in time.

REFERENCES
[1] “Compile Your C code into Verilog”, [Online]. Available: http://c-

to-verilog.com/index.html.
[2] “C-to-FPGA Solutions”, [Online]. Available:

http://www.impulseaccelerated.com/products_universal.htm.
[3] “Handel-C Synthesis Methodology”, [Online]. Available:

http://www.mentor.com/products/fpga/handel-c/.
[4] I. Innovations, “CHAMELEON – the System-Level Design

Solution”, [Online]. Available: http://intron-
innovations.com/?p=sld_chame.

[5] A. Melnyk, A. Salo, V. Klymenko та L. Tsyhylyk, “Chameleon –
system for specialized processors high-level synthesis”, Scientific-
technical magazine of National Aerospace University “KhAI” No. 5,
pp. 189-195, 2009.

[6] A. Melnyk, A. Salo, “Automatic generation of ASICs”, NASA-ISA
Conference AHS-2007, pp. 96-101, 2007.

[7] D. Cordes, A. Heinig and P. Marwedel, “Automatic Extraction of
Pipeline Parallelism for Embedded Software Using Linear
Programming”, in IEEE 17th International Conference on Parallel and
Distributed Systems, 2011.

[8] J. V. Dyken and J. O. Delgado-Frias, “A Medium-Grain
Reconfigurable Processor Organization”, School of Electrical
Engineering and Computer Science, Washington, 2011.

[9] A. Melnyk, “Design of SCS”, 1996.
[10] L. Tsyhylyk, “Transformation Method of conditional comands in

parallel way”, Bulletin of National University “Ukraine”, pp. 156–
159, 2010.

[11] D. Cordes, M. Engel, O. Neugebauer and P. Marwedel, “Automatic
Extraction of Pipeline Parallelism for Embedded Heterogeneous
Multi-Core Platforms”, Dortmund, Germany, 2013.

[12] A. Gontmakher, A. Mendelson, A. Schuster and G. Shklover, “Code
Compilation for an Explicitly Parallel Register-Sharing Architecture”,
in International Conference on Parallel Processing, 2007.

[13] C. Roth, S. Reder, H. Bucher, O. Sander and J. Becker, “Adaptive
Algorithm and Tool Flow for Accelerating SystemC on Many-Core
Architectures”, in 17th Euromicro Conference on Digital System
Design, 2014.

[14] T. Bernard; K. Bousias; L. Guang; C. R. Jesshope; M. Lankamp;
M. W. van Tol; L. Zhang, “A General Model of Concurrency and its
Implementation as Many-core Dynamic RISC Processors”, Institute
for Informatics, University of Amsterdam, Amsterdam, Netherlands,
2008.

[15] A. Melnyk and V. Melnyk, Personal Supercomputers: Architecture,
Design, Application, Lviv: Lviv National Polytechnic University
Publishing, 2013.

[16] L. Yan, B. Wu, Y. Wen, S. Zhang and T. Chen, “A reconfigurable
processor architecture combining multi-core and reconfigurable
processing unit”, in 10th IEEE International Conference on Computer
and Information Technology (CIT 2010), 2010.

[17] A. Melnyk and B. Dunets, “FFT Processor IP Cores synthesis on the
base of configurable pipeline architecture”, CADSM’2003, Lviv-
Slasko, 2003.

[18] V. Chandrakanth; Tripathi Srijan, “Customized Architecture For
Implementing Configurable FFT on FPGA”, 3rd IEEE International
Advance Computing Conference (IACC), pp. 1280–1282, 2013.

[19] Y. Li, Z.-y. Wang, J. Ruan and K. Dai, “Research and Implement a
Low-Power Configurable Embedded Processor for 1024-Point Fast
Fourier Transform”, in School of Computer, National University of
Defense Technology, Hunan Changsha, P. R. China, 2007.

[20] A. Melnyk, I. Yakovleva, V. Uschenko, “Design and Matrix
representation of Data Flow Graph”, Bulletin of Vinnitsky
Polytechnic Institute No. 3, pp. 93–99, 2009.

[21] “C to HDL”, 16 September 2014. [Online]. Available:
http://en.wikipedia.org/wiki/C_to_HDL.

Liubomyr Tsygylyk

(l.tsyhylyk@gmail.com) received his
MS degree at Electronic Computa-
tional Machine Department of Lviv
Polytechnic National University, Lviv,
Ukraine in 2007. Since 2008, he has
been working as assistant at Lviv
Polytechnic National University. His
research interests include high-perfor-
mance computations, FPGA-based
systems, C to HDL code compilation
and configurable processors synthesis.

He is the author of eight articles and several theses. Current
research includes C to HDL algorithm compilation with
specialized processors synthesis using full set of C-language
structures.

Liubomyr Tsyhylyk

140

