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Abstract. Method of parallelism extraction from 
sequential program is proposed. The definition of three-
address code is given. The requirements to the sequential 
and parallel program are determined.  The structure and 
design performance of the parallel program are given. The 
description of two stages of the parallelism extraction 
method is proposed: stage of preliminary field initialization 
and recursive stage of the parallel extraction. Evaluate 
efficient of the parallelism extraction method based on an 
example of FFT 64p. 

Index Terms — parallelization, program parallelization, 
method of program parallelization, parallel code structure, 
tree-address program 

I. INTRODUCTION 
More than a dozen companies are engaged in 

developing automated systems for design special devices 
and processors [1].  To achieve flexibility in the design, 
the minimum of effort for the design and performance of 
such devices, the company developed a technology C to 
HDL [1] [2] [3] [4]. The technology used for those tasks 
where time for execution on universal processors 
architecture is unacceptably high. These tasks include 
processing biological data, modeling of physical 
processes, financial forecasts and others. Embedded 
systems that require high-performance computing or data 
processing in real time also use this technology. 

C to HDL compilers should be used in large projects 
or tasks which might need to change the algorithm in 
future. Development of large projects solely on the HDL 
code is a complex task that requires a lot of time to 
design a system. Abstraction level of C code for such 
projects significantly reduces design time, over-order 
design written in HDL code, modify heavier compared 
to the C language. If the engineer needs to add new 
functionality to the existing system, he/she needs to 
add/modify a few lines of C language code. For instance, 
to perform the same task in HDL needs to modify/add 
functional modules of the system, which require more 
time to develop. 

A high-level synthesis system of specialized devices 
“Chameleon” [4] [6] was developed using technology C 
to HDL (hereinafter C2HDL). The aim of this system is 
the generation of HDL code that performs the algorithm 
presented in C with predetermined performance. The IP 
core synthesis process consists of several stages [7]. An 
intermediate stage is the generation of three-address 

code program, which aims at submitting flow graph 
algorithm for further processing. 

For the maximum performance of any computer 
system, it is necessary to use the parallelism and the pipe 
[8] [9]. These approaches will significantly reduce the 
computation time. Given that the main purpose of the 
system configuration is C2HDL productivity perfor-
mance computing, it is recommended to use instructions 
and data pipelining to goal achievement. 

II. TASK 
To develop a parallel three-address application code 

structure, create data pipelining stages and develop a 
consistent method of three-address code parallelization. 

III. SEQUENSIAL PROGRAM CODE STRUCTURE 
One of the main characteristics of the system design is 

reflected in C2HDL flow graph algorithm [10] from a 
sequensial program code (three-address code). It is a 
simple code structure to extract maximum of paralleliza-
tion and tracking dependencies between the commands. 

We assume that three-address source program is a 
sequence of commands describing algorithm where one line 
is represented by only one command that should be 
performed on two operands of data and the result of this 
operation is assigned an another operand for example (1). 

123 RRRadd                      (1) 
where add – mnemonic mark of adding command, R1 
and R2 – operands of data for computation execution, 
 R3 – operand that stores result of command execution. 

According to the main problems, facing the system 
C2HDL, three-address code must meet the following 
requirements: 

• Contains only the algorithm description, reflects the 
algorithm’s flow graph [10]. There is no index of the 
array calculations. 

• Loops, used in the C language, is fully unwound 
and presented in a sequential way.  

• Three-address code consists of a set of operands 
(registers, R1, R2, ...), their number is unlimited, as 
three-address code is an intermediate representation of 
the algorithm and is not based on a predefined computer 
architecture. One command may use the same name 
operands: 

111 RRRadd                             (2) 
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Table 1 
List of the three-address commands 
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Command description 

1 2 3 4 5 6 7 8 9 10 11 
1 0 y z in R1 – – i Input data loading from the external port number #i (port 

number can be any natural number). Here “y” – is a number 
of conditional command on which the current command 
depends, “z” – the execution condition of the current 
command. The In-command will be executed when the 
result of the conditional command “y” is equal to “z”. 

2 

Lo
ad

in
g 

of
 in

pu
t d

at
a 

0 y z ld R1 k – – Constant loading from internal memory. Where “k” is 
integer constant. Also, it can be written in float point format. 
Example: 234.76543 or    -0.000345 

3 

G
iv

in
g 

th
e 
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su

lts
 0 y z out R1 – – i Giving output result using external port #i 

4 0 y z add R3 R1 R2 – Adding command execution between R1 and R2, the test 
result is written in R3 

5 0 y z sub R3 R1 R2 – Subtracting command execution between R1 and R2, the 
test result is written in R3 

6 0 y z mul R3 R1 R2 – Multiplication command execution between R1 and R2, the 
test result is written in R3 

7 0 y z div R3 R1 R2 – Division command execution between R1 and R2, the test 
result is written in R3 

8 0 y z adds R3 R1 R2 – Adding command execution between R1 and R2, one bit 
shift right performed, the test result is written in R3 

9 
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0 y z subs R3 R1 R2 – Subtracting command execution between R1 and R2, one 
bit shift right performed, the test result is written in R3 

10 0 y z sll R3 R1 R2 – Shift logic left R1 for R2 bits, the test result is written in R3 
11 0 y z sal R3 R1 R2 – Shift arithmetic left R1 for R2 bits, the test result is written 

in R3 
12 0 y z slr R3 R1 R2 – Shift logic right R1 for R2 bits, the test result is written in R3 
13 0 y z sar R3 R1 R2 – Shift arithmetic right R1 for R2 bits, the test result is written 

in R3 
14 0 y z and R3 R1 R2 – Logic ‘and’ execution between R1 and R2, the test result is 

written in R3 
15 0 y z or R3 R1 R2 – Logic ‘or’ execution between R1 and R2, the test result is 

written in R3 
16 0 y z xor R3 R1 R2 – Logic ‘xor’ execution between R1 and R2, the test result is 

written in R3 
17 
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0 y z not R2 R1 – – Logic ‘not’ execution with R1, the test result is written in R2 
18 x y z cmpeq – R1 R2 – ‘Equal’ operation execution between R1 and R2. Where  

“x” – sequential number of conditional command. The test 
result is automatically stored on HW predefined register. 

19 x y z cmpneq – R1 R2 – ‘Not equal’ operation execution between R1 and R2. The 
test result is automatically stored on HW predefined register. 

20 x y z cmpleq – R1 R2 – ‘Less or equal’ operation execution between R1 and R2. If 
R1 is less or equal to R2 that the result is ‘true’. The test 
result is automatically stored on HW predefined register. 

21 Co
nd
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on

 c
om

m
an

ds
 

x y z cmpl – R1 R2 – ‘Less’ operation execution between R1 and R2. If R1 is less 
than R2 that the result is ‘true’. The test result is automatically 
stored on HW predefined register. 
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Table i continuation 
 

1 2 3 4 5 6 7 8 9 10 11 
22  x y z cmpgreq – R1 R2 – ‘Greater or equal’ operation execution between R1 and R2. 

If R1 is greater or equal to R2 that the result is ‘true’. The 
test result is automatically stored on HW predefined 
register. 

23  x y z cmpgr – R1 R2 – ‘Greater’ operation execution between R1 and R2. If R1 is 
greater than R2 that the result is ‘true’. The test result is 
automatically stored on HW predefined register. 

24 

Ju
m

p 0 y z jmp @R1 – – – ‘Jump’ operation. Command pointer jumps to the address 
stored in @R1. 

25 

A
ss

ig
n 0 y z asgn 

 
R1 R2 – – Assign operation. The value of the register R2 is assign to 

the R1 register. 

 
• Commands of loading input data and giving output 

results should be composed in the following way: 
nRcom 1                                  (3) 

where, com – command of loading/giving data (in/out), 
R1 – data register, n – port number (n ∈Z). 

• Conditional command supporting [10]. 
• Contains the following set of commands (Table 1). 
Mathematical model of three-address code shows in 

next way: 
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where x∈N – conditional command number; y∈N – 
conditional command number that instant command 
dependents;  z{0 | 1} – condition of the instant command 
execution; command ∈  COM – mnemonic mark of a 
command, COM – set of the commands; regdest∈REG – 
the result register, REG – set of registers; regarg1∈REG – 
the first argument register; const∈R – constant (fix and 
float (IEEE 754) point supported); regarg2∈REG – the 
second argument register; port∈N – port number; 
i∈N – sequential number of the command line.  

This mathematical model P describes any combi-
nation of the three-address program. 

IV. PARALLEL CODE REQUIREMENTS 
C2HDL system uses configurable architecture of 

special processor [7] for high performance IP core 
generation. The main advantage of this architecture to 
compare with existing [8] [11] [12] [13] [14] [15] [16] is 
its scalability and “adaptation” to the input algorithm. 
Under “adaptation” we should understand configuration 
possibility of all units in that way to set desired system 
performance with minimal HW resource usage. The next 
parallel code requirements were elaborated during 
analyzing particularity of the configurable architecture: 

• The parallelization level of the sequential code 
should depend definitely on the input algorithm 
characteristics. 

• Pipeline usage between stages: input data loading, 
output data extracting and perform calculations. 

V. PARALLEL CODE STRUCTURE  
AND CHARACTERISTIC 

The next list refers to the main parallel code 
characteristic: 

• Number of the parallel code branches for arithmetic 
and logic operations execution. 

• Command-loading level of each branch (the value 
is determinates in percentage). This value has higher 
priority than number of the parallel code branches set by 
user. Thereafter if command-loading level is not reach at 
least for one branch, the parallel branch number decrease 
by one and repeat this procedure again. 

• The input/output ports number. 
• Stages count (parallel lines) of the program. 
Performance of any designed system is determined by 

the combination of these entire characteristic (Fig. 1), 
but the dominant role belongs to count of the parallel 
code branches. This value shows how many parallel 
arithmetical units (ALU) are used for program execution. 
The higher this number is, the higher isprogram 
parallelization and, accordingly, higher system perfor-
mance can be achieved. Taking into account that each 
algorithm has its own parallel level, thereafter the code-
loading level of each parallel branch can be different. 
One branch of the parallel code is additional ALU. The 
command-loading level is ratio of the commands that 
should be executed in this ALU, to the total amount of 
the parallel lines (stages) of code. Set the requirements to 
the command-loading level for each ALU we determine 
performance of the desired system. 

Additional characteristic of system performance is 
pipeline usage. Based on three stages for computation 
execution [14]: loading input data, computation execu-
tion and output data extraction, thereafter these stages 
can be implemented using pipeline. The first stage is 
loading input data, three-address command is in (e.x. 
loading i “portion” of data). The second stage is compu-
tation execution (e.x. computation of the i “portion” of data 
and loading i-1 “portion”). The third and the last one stage 
is extract output data, three-address command is out (e.x. 
extract output results of the i “portion” of data, computation 
i-1 “portion” of data and loading i-2 “portion”). 
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The advantage of using such pipeline is reducing 
number of parallel lines of code. All commands of 
loading and extracting data and also arithmetic and 
logical commands are executed in parallel way but with 
different “portions” of data. 

C2HDL system executes synthesis all the HW modules 
that are necessary for computation execution. Accordingly, 
there is no needed to use commands to load constants into 
the RAM provisionally read this data from the ROM but 
expedient directly save this data in the RAM  

originally have initialized it during HDL code synthesis. 
This allows saving the ROM resource usage assigned to 
store parallel program that are required by the HDL system. 
Fig. 1 shows example of three-address RGB→YUV 
program (coefficients are random). Here are shown 
parallel program characteristics and determined pipeline 
stages of data computation. The parallel branches 
number (ALU = 5) was chosen based on the efficiency 
level. Conditional command fields are absent for 
convenience. 
 

 
Fig. 1. Three-address program code in parallel and sequential 

 
The parallel code structure can be shown in next 

mathematical model (5). 
( ) ( ) ( )( ){ }

jzyx ALUOUTINPL =     (5) 

where j∈N – ordinal number of a stage, x∈N – ordinal 
number of input port, y∈N – ordinal number of output 
port, z∈N – ordinal number of ALU. 

{ }⊗= destreginzyIN 00     (6) 

{ }⊗= destregoutzyOUT 00    

 (7) 
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Mathematical model (5) allows describing any 
parallel algorithm that executes as input task of C2HDL 

system. Input/output ports and ALUs numbers are 
configurable (Fig. 2) that allows select configuration to 
get user desired performance after analyzing. Fig. 2 
shows example of previous (Fig. 1) three-address se-
quential code in three different parallel configu-
rations. There is no needed to make parallel in-
put/output ports thus the round of execution arithmetic 
operations, with maximum parallel branches, is longer 
than the round of input/output commands execution 
(see the first configuration on Fig. 2). 

VI. SEQUENTIAL TO PARALLEL CODE 
TRANSFORMATION METHOD 

Taking into account requirements described in 
section IV lets dig deeper and create additional re-
quirements to sequential code. Take mathematical 
model P as essential and complement it with additio-
nal fields. 
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Fig. 2. Parallel configurations of three-address program RGB→YUV 
 

The aim of extending mathematical model is to 
enlarge information of sequential code with relationships 
between commands. Sequential code structure will be 
next – (9). 

{ }IPP U=mod         (9)
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where j∈N – ordered line number of command in sequential 
code; executeInLinedest∈N – ordered stage number (parallel 
line number), in which, the instant command will be 
executed; sourcearg1∈N – ordered line number of command 
in sequential code, the first argument of instant command is 
initialized there; sourcearg2∈N – ordered line number of 
command in sequential code, the second argument of instant 
command is initialized there; sourceOutdest∈N – ordered line 
number of command in sequential code, the output argument 
of “out” command is initialized there.  

Additional fields in (10) are prime numbers. It doesn’t 
contain any arrays or data structures.  

Method for program code parallelization consists of 
two stages: 

1. Field initialization (Table 2): sourcearg1, sourcearg2 
and sourceOutdest. The aim of this stage is to show up 
all command relationships. Each command argument is 
analyzed to determine number of line where this 
argument was initialized. “in” and “out” commands 
placement is executed on this stage also. Each “in” or 
“out” command contains port number (5). These port 
numbers are used as vectors for in/out command 
execution. Arrangement of mutual placement of in/out 
commands is the same, for the same port names, as in 

sequential program code. Algorithm flow chart can be 
created based on the results of this stage. This informa-
tion allows displaying the algorithm for visualization. 

2. Recursive method of the code parallelization 
(Table 3). This is the main round of code paralle-
lization. Field executeInLinedest is formed in this stage, 
this field is equal to j (j∈PL), all fields of PL (5) are 
determined also in this stage. This method is based on 
two-level recursion where the first level is command 
determination for initialization state analyzing its 
arguments, the target of the second level is command 
placement analyzing in parallel code that initializes 
input arguments of instant command. The idea of this 
method is to place those commands in parallel code 
the results of execution of which are required for 
farther computations. 

VII. EFFICIENCY OF THE METHOD 
Parallelization method efficiency can be determined 

according to the next criteria: 
• PC time consuming required for parallelization 

process. 
• PC memory usage required for parallelization 

process.  
Parallel commands count. 
• Parallelization level of sequential code (parallel 

branches count). 
Personal computer with next performance characte-

ristic used for investigation efficiency of current method: 
 

Processor  Intel Core i7-3630QM 2.4 ГГц 
RAM DDR3 1600 МГц; 16 ГБ 
Operation system Windows 7 Professional 64-bit. 
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Table 2 
Field initialization method 

Step 
# Discription Example 

1 All sequential commands analyzing.  
If instant command is “in” or “out” – this 

command should be assigned to correspond 
row ‘ j ’ of parallel command and column 
according to the port number of this 
command.  

If there is any input/output command 
placed in ‘ j ’ line and specific port of parallel 
code – thereafter this instant command 
should be placed in the next free parallel line. 

 

IN (6) and OUT (7) of set PL (5) are determined in this stage. 
 

. 
2 All sequential commands analyzing.  

If the instant command is not “in” or 
“out” – need to determine in which line of 
sequential code command arguments are 
initialized (regarg1 and regarg2, see (4)). The 
row numbers where these arguments are 
initialized assigned to regarg1 and regarg2 
accordingly.  
 

 

〈� � � � � �� � � � � �〉〈� � � � � �� � � � � � � �〉〈� � � � � �� � � � � � � �〉〈� � � � � �� � � � � � � �〉  � � � � � � � � � � � �� � � � � � � �= � � � �;  � �� � � � � � � � � �� � � � � � � �= � � � � 

 
3 All sequential commands analyzing.  

If the instant command is “out” – need to 
determine in which line of sequential code its 
argument is initialized (regdest, see (4)). The 
row number where this argument is 
initialized assigned to sourceOutdest.  

 

〈� � � � � �� � � � � �〉〈� � � � � �� � � � � � � �〉〈∅〉〈∅〉〈� � � � � � � �〉 � � � � � � � � � � � �� � � � � �� � � � � � � �= � �� � 

 
 

Table 3 
Recursive method of the code parallelization 

Step # Description Explanation 
1 Initialize parallel code characteristic: 

– parallel ALU count; 
– ALU loading level (percentage of commands). 
Initialized field executeInLinedest=-1. This field is used by 

arithmetic, logic and conditional commands. Field 
executeInLinedest is also set for commands “in” and “out”. 

Set condition for command placement in parallel code 
placeCommand = false 

Example: 
– ALU count = 4; 
– ALU loading level (com_level) at least 70 %. 
Command placement condition is used for 

recursive level identification. It is forbidden to place 
commands in parallel code on the first level of 
recursion. Commands are placed in parallel code only 
on the second level of recursion. 

2 The first level of recursion executes. 
Select arithmetic, logic, condition or input/output command 
from the sequential code. 

 

3 If instant command is one of the arithmetic, logic or 
conditional commands – select sourcearg1 and sourcearg2 for 
farther analyzing. If this is ‘out’ – select number of 
command from sourceOutdest field for analyzing. 

Select commands that initialized input arguments of 
the instant command select sourcearg1 and sourcearg2, 
or sourceOutdest. 

4 According to selected command executeInLinedest field is 
analyzed. Go to step #5 if this field is equal to ‘-1’.  
If executeInLinedest is equal to instant parallel line (this 
checking is applicable only for arithmetic, logical or condition 
commands) – go to step #2, in other case go to step #6. 

‘-1’ means that instant command is not placed in 
parallel code. 
Only those commands can be placed in parallel code 
which arguments are already initialized and placed in 
parallel code. 

5 The second level of recursion executes. 
Analyze selected command. Set field placeCommand = 
true. Go to step #3. 

 

6 If placeCommand field is true – place instant command in 
parallel code, in other case – increase ALU number and go 
to the step #2. 
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Example of placing command #18 in parallel code. 
 
Execute step #2. Select command #26 (this is output command “out”). Step #3. sourceOutdest field is analyzed of instant 
command. This field is equal to command #18. Step #4. executeInLinedest field is analyzed of command #18, this field is equal 
to ‘-1’. Step #5. Set placeCommand = true. Step #3. sourcearg1 and sourcearg2 fields of command #18 are analyzed. sourcearg1 
field is 17. Step #4. sourceInLinedest field of command #17 is analyzed, this field is equal to ‘3’. The line ‘3’ is not equal to 
current line – ‘4’, then repeat step #4 for sourcearg2. sourcearg2 field is 7.  
Command #7 is constant command, as a result this command is not used for analyzing since it will be stored in RAM during 
synthesis process. The arguments of command #18 are already placed in parallel code, thus command #18 can be placed in 
parallel code according to index of ALU. Step #6. placeCommand field is analyzed. The field value is true. Place command 
#18 in parallel code. 
Check ALU-loading level with commands for each parallel branch. The minimal command loading level for parallel code #1 is 
50 %. According to the input requirements, this value should not be less than 70%. Therefore, reduce number of parallel ALUs 
from 4 to 3 and repeat parallel process again. The result of this process is parallel code #2 that has minimal ALU loading value 
71 %. All requirements are met. 

 
The most optimal example for method efficiency investi-

gation is FFT algorithm [17] [18] [19]. This algorithm allows 
execute sequential commands parallelization to load ALUs 
by commands uniformly. If number of parallel commands is 
equal to FFT base – thus all parallel ALUs is 100 % loaded 
by commands. The FFT characteristic shows below. 
 

Number of points 64 
Base 2 
Input ports 2 

– Real part 1 
– Imaginary part 1 
– Output ports 2 
– Real part 1 
– Imaginary part 1 

Constants 32 
Number of sequential three-address commands  2208 

Based on the parallel code characteristic 30 parallel 
configurations of FFT algorithm were generated. The 
maximum number of ALUs (for which cycle of 
commands execution is the least) is 30. There is no 
reason to parallel code for bigger number of ALUs since 
the cycle of loading input and extracting output data for 
FFT algorithm is 64 commands (based on FFT 
characteristic of sequential code: (2208-(2∙64)-(2∙64)-
32)/64=30). Plot of the dependency between parallel 
commands number vs parallel ALUs is created (Fig. 3). 
This plot shows that the parallelization method is effi-
cient for any number of ALUs < 30. Parallel commands 
number decrease with exponential dependency without 
any peaks this mean that all ALUs are 100 % loaded by 
the commands. 

Analyzing information of this graph, we see that 
calculation cycle for one ALU (1920) is less than 



Liubomyr Tsyhylyk 

 

138 

sequential commands count (2208). The root cause of 
this difference is that system uses pipe-line for 
calculation. The parallel process of input/output data and 
data processing is used. 

Sequential code parallelization based on proposed me-
thod doesn’t require exponential dependency of compu-
ter memory and does not use matrix representation for 
storing sequential command dependencies [20]. Based 
on (10) we just need four additional fields for each 
command to perform parallelization. 

The result is linear dependency between number of 
sequential commands and RAM memory usage. 

The main criteria of method evaluation are machine 
time consuming during algorithm execution. The 
method consider being efficient if dependency 
function of time of algorithm execution vs parallel 
ALUs number is linear and gain of linear function 
(coefficient α) is less than 1. Fig. 4 shows dependency 
graph between time required for parallelization and 
parallel ALUs number. 

 

 
Fig. 3. Parallel commands number vs parallel ALU dependency graph 

 

 
 

Fig. 4. Dependancy graph between time required for code parallelization vs parallel ALUs 
 
Straight line on this graph is approximated function of 

the data. This function can be outlined using next equation 
(11): 

y= α∙x+b          (11) 

where y – time required for parallelization execution;  
x – number of ALUs; α – linear function gain; b – 
approximately time of algorithm execution using just one 
ALU.   

This gain is equal to 0.5568 for current algorithm. 
This means that proposed method is efficient because 
dependence function between time required for 

parallelization and parallel ALUs number is linear  
(Fig. 4) and gain of this function α is less than 1. So in 
other words, speed of increasing parallelization time is in 
two times slower than speed of increasing parallel 
ALUs. Equation (11) can be used to forecast 
approximate time required for algorithm execution with 
specify ALUs number tentatively determine time 
required for algorithm execution for one ALU. 

VIII. CONCLUSIONS 
This article describes three-address program paralleli-

zation method. Three-address  program  definition has  
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been determined and a list of all commands (Table 1) is 
shown. Structure and set of the main requirements for the 
sequential program code have been determined. These 
requirements allow determining output characteristics and 
parallel code structure. Mathematical model of parallel code 
was created. Purpose of all fields of the algorithm and their 
structure was described. Method of code parallelization was 
described according to its requirements. This method 
contains of two stages: field initialization and recursive 
method of code parallelization. The input data of code 
parallelization method is sequential three-address code and 
desired performance. Desired performance value is 
specified by minimal percentage of commands of ALU 
loading. The example of code parallelization is shown that 
emphasize on reaching of performance target. Efficiency of 
the method is shown based on FFT 64 algorithm. The graph 
of dependency between parallel commands and parallel 
ALUs is shown (Fig. 3). The efficiency of this method is 
proved based on graph analyzing result. The command 
loading level for each ALU is almost equal 100 % for any 
parallel configuration (ALUs number <= 30). The 
dependency graph between time required for code 
parallelization vs parallel ALUs is shown (Fig. 4). Based on 
the data of this graph, dependency between time required 
for code parallelization execution and parallel ALUs is 
linear function with gain 0.5568. Taking into account 
parallel code requirements and investigation results, we can 
make conclusion that this method is efficient. The method 
efficiency denominates consuming required for algorithm 
execution and computer resources usage in time. 

REFERENCES 
[1] “Compile Your C code into Verilog”, [Online]. Available: http://c-

to-verilog.com/index.html. 
[2] “C-to-FPGA Solutions”, [Online]. Available: 

http://www.impulseaccelerated.com/products_universal.htm. 
[3] “Handel-C Synthesis Methodology”, [Online]. Available: 

http://www.mentor.com/products/fpga/handel-c/. 
[4] I. Innovations, “CHAMELEON – the System-Level Design 

Solution”, [Online]. Available: http://intron-
innovations.com/?p=sld_chame. 

[5] A. Melnyk, A. Salo, V. Klymenko та L. Tsyhylyk, “Chameleon – 
system for specialized processors high-level synthesis”, Scientific-
technical magazine of National Aerospace University “KhAI” No. 5, 
pp. 189-195, 2009.  

[6] A. Melnyk, A. Salo, “Automatic generation of ASICs”, NASA-ISA 
Conference AHS-2007, pp. 96-101, 2007.  

[7] D. Cordes, A. Heinig and P. Marwedel, “Automatic Extraction of 
Pipeline Parallelism for Embedded Software Using Linear 
Programming”, in IEEE 17th International Conference on Parallel and 
Distributed Systems, 2011.  

[8] J. V. Dyken and J. O. Delgado-Frias, “A Medium-Grain 
Reconfigurable Processor Organization”, School of Electrical 
Engineering and Computer Science, Washington, 2011. 

[9] A. Melnyk, “Design of SCS”, 1996.  
[10] L. Tsyhylyk, “Transformation Method of conditional comands in 

parallel way”, Bulletin of National University “Ukraine”, pp. 156–
159, 2010.  

[11] D. Cordes, M. Engel, O. Neugebauer and P. Marwedel, “Automatic 
Extraction of Pipeline Parallelism for Embedded Heterogeneous 
Multi-Core Platforms”, Dortmund, Germany, 2013. 

[12] A. Gontmakher, A. Mendelson, A. Schuster and G. Shklover, “Code 
Compilation for an Explicitly Parallel Register-Sharing Architecture”, 
in International Conference on Parallel Processing, 2007.  

[13] C. Roth, S. Reder, H. Bucher, O. Sander and J. Becker, “Adaptive 
Algorithm and Tool Flow for Accelerating SystemC on Many-Core 
Architectures”, in 17th Euromicro Conference on Digital System 
Design, 2014.  

[14] T. Bernard; K. Bousias; L. Guang; C. R. Jesshope; M. Lankamp;  
M. W. van Tol; L. Zhang, “A General Model of Concurrency and its 
Implementation as Many-core Dynamic RISC Processors”, Institute 
for Informatics, University of Amsterdam, Amsterdam, Netherlands, 
2008. 

[15] A. Melnyk and V. Melnyk, Personal Supercomputers: Architecture, 
Design, Application, Lviv: Lviv National Polytechnic University 
Publishing, 2013.  

[16] L. Yan, B. Wu, Y. Wen, S. Zhang and T. Chen, “A reconfigurable 
processor architecture combining multi-core and reconfigurable 
processing unit”, in 10th IEEE International Conference on Computer 
and Information Technology (CIT 2010), 2010.  

[17] A. Melnyk and B. Dunets, “FFT Processor IP Cores synthesis on the 
base of configurable pipeline architecture”, CADSM’2003, Lviv-
Slasko, 2003. 

[18] V. Chandrakanth; Tripathi Srijan, “Customized Architecture For 
Implementing Configurable FFT on FPGA”, 3rd IEEE International 
Advance Computing Conference (IACC), pp. 1280–1282, 2013.  

[19] Y. Li, Z.-y. Wang, J. Ruan and K. Dai, “Research and Implement a 
Low-Power Configurable Embedded Processor for 1024-Point Fast 
Fourier Transform”, in School of Computer, National University of 
Defense Technology, Hunan Changsha, P. R. China, 2007.  

[20] A. Melnyk, I. Yakovleva, V. Uschenko, “Design and Matrix 
representation of Data Flow Graph”, Bulletin of Vinnitsky 
Polytechnic Institute No. 3, pp. 93–99, 2009.  

[21] “C to HDL”, 16 September 2014. [Online]. Available: 
http://en.wikipedia.org/wiki/C_to_HDL. 

 
Liubomyr Tsygylyk 

(l.tsyhylyk@gmail.com) received his 
MS degree at Electronic Computa-
tional Machine Department of Lviv 
Polytechnic National University, Lviv, 
Ukraine in 2007. Since 2008, he has 
been working as assistant at Lviv 
Polytechnic National University. His 
research interests include high-perfor-
mance computations, FPGA-based 
systems, C to HDL code compilation 
and configurable processors synthesis.  

He is the author of eight articles and several theses. Current 
research includes C to HDL algorithm compilation with 
specialized processors synthesis using full set of C-language 
structures.   

 
 
 
 
 
 
 
 
 
 



Liubomyr Tsyhylyk 

 

140 

 
 

 
 

 
 
 
 

 
 

 
 
 

 




