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Abstract. The paper discusses versatile constraint
equations used for providing compatibility between
the solutions obtained for separate sub-domains of
eectromagnetic fidd which are andyzed sSmultaneoudy.
The mathematical model of the task has been developed
using invariant approximation technique for finite-
difference method. Different techniques for domain
decomposition are considered. The discussed constraint
equations and domain decomposition techniques have
been applied to solving a test problem, and namely the
problem of magnetic skin-effect. On the basis of
obtained computationa results some recommendations
regarding the scope of overlapping and applicability of
different constraint equations have been formulated.
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1. Introduction

Parallelization of computations is widely used
for the analysis of lumped and distributed electric
circuits [1]. Its application to electromagnetic fields
analysis is even more crucial because of high order
of a system of equations obtained as a result of the
implementation of finite-difference or finite-element
method. In that case parallelization of computations
leads to necessity of dividing the computational area
into sub-domains (so called domain decomposition)
that can be completed in many different ways [2].
Usually non-overlapping sub-domains are used [3].
The decomposition may be not only spatial one, but
also performed in time-domain [4].

Our paper discusses the development of congtraint
equations intended for increasing the compatibility of
solutions obtained for different sub-domains of field
distribution. The discussion concentrates on discrete
anadogues of partid differential equations obtained by
the application of invariant approximation technique [5]
to finite-difference method.

2. Application of Finite-Difference Method to
Maxwell Equations

In generd, a boundary problem of dectromagnetic field
andysis on a domain filled with a nonlinear heterogeneous
anisotropic medium is formulated as follows. Let us condder
the domain W of the fidd propagation with the boundary G
thet, in generd, may be divided into three parts with the
Dirichlet, Neumann, and Robin boundary conditions The
eectromagnetic field in any point of the domain is described
by Maxwe| partid differentid equations supplemented by
medium characteridics:

rotH = J +D/1t, divB =0,

rotE =-B/ft, divD=r, (1)

where H, J, D, B, E are vectors of magnetizing field,
electric current density, displacement field, magnetic
field, and eectric field, respectively; r is dectric
charge dengity.

Let us apply to the field domain a grid consisting
of M =My, +Mg nodes. Using the invariant
approximation technique, we can assign a nonsingular
set of P nodes to any mth node (m=l_M) and

calculate the agebraic analogue of Hamiltonian
operator for each node. Therefore, the algebraic
analogue of the system (1) can be written in the form:

H.=J +1D,./1t Ry, *B,=0;
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where Ry, is an agebric andogue of the Hamiltonian

operator for the m-th node, D,,,E,,,B,,,H,, ae nodd
columns of fidd variables for the m-th nodal s&.
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formulation (where A is vector magnetic
isscalar electric potential):

Rum” Hy=J[E,]+ 1D, /1t;

A= AlRy AJ=0
Em:-ﬂ/%n/ﬂt-mr:

ﬁﬂm XISm = r m; (3)
D= DEE.B
that can be combined into two equations:
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where @ istensor of differential dectric pam|tt|V|ty.

The dgebraic anadogue cond sts of equations (4) applied
to internd nodes and boundary conditions applied to
boundary nodes.

The gpplication of invariant approximaion technique
dlows us to utilize nodal sats of arbitray form for
congruction of difference analogues of differential operators.
The only requirement is non-singularity of Taylor matrix.
Examples of interna and near-border 2D nodal setsare given
inFg. 1-3.
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Fig. 1. Internal 2D nodal sets.

Mariya Howykowycz, Petro Stakhiv

o8 o7
03

09 04 02 06

9 6 O4 010
10 Oy Og 1 o3
! 0z O3 7 02 09
5 6 7 8
—— —

Fig. 3. Near-border 2D nodal setsin case of a piece-wise boundary.
3. Application of Diak optics Approach

3.1. Ways of Domain Decomposition and
Constr uction of Constraint Equations

Let us divide the domain W into sub-domains which
means bresking up the system (3) into a s& of sub-systems.
Each sub-domain contains two kinds of nodal sets: sets with
nodes bel onging to the sub-domain (called “native’) and sats
with nodes bel onging both to the sub-domain and to adjacent
s (caled “dien”). The borders between the sub-domains
may be put amid nodes, aswell asindude nodes as shown in
Fig. 4and Fg. 5.

Fig. 4. Srict divison of nodesinto “ native’ and“ alien” ones.
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Fig. 5. Divison of nodesinto “ native’ ,
“aien”, and“ common” ones.

At each integration Sep the values of fidld characteridics
in “dien” nodes may be fixed & the values obtained at the
previous gep; congraint equations may be of two kinds. new
vaues of fidd charactaidics are equd to ther values
obtained as a result of solving “dien” sub-sysems, new
values of fidd characteridics are cd culated as a combingtion
of thar vaues obtained as a result of solving “dien” aub-
systems and old values with chosan weight coefficients.
Congraint eguations for “common” nodes may aso be of
two kinds new values of fidd characterigtics are cdculated
as the arithmetic mean of their values obtained as aresult of
solving different sub-systems or as the combination of the
values with chosen weight coefficients The order of a sub-
system corresponds to the number of the nodesin itsrelevant
sub-domain. Therefore, we have a dilemma. If we indude
into sub-systems the “common” nodes, the order of the total
system increases (eguations for “common” nodes are present
in dl adjacent sub-systems) but, presumably, the accuracy of
computation increases

3.2. Techniquesfar Increasing Accuracy

1) New values of fidd characterigics in “dien” nodes
are cdculated aslinear combinaions of their values obtained
as a result of solving the “alien” sub-sysem and their old
valueswith chosen weight coefficients

2) New values of fidd characterigics in “common”
nodes are calculated as a liner combinaion of the values
obtained in different sub-domains with chosan weight
coefficients,

3) No drict fixation of sub-domains they may penetrate
each other if it is dictated by reasons of accuracy or
convergence.

4. Computational Experiment
As a tes problem we have chosen a tak that has an
andyticd solution, thet is the flow of aternating magnetic

flux F =F , coswt in a cylindrical conductor of radius
a=6 mm with magnetic permesbility m=1000m, and

specific eledtric conductivity g =10” Stvm. The problem is
described by thefollowing equations:

rotH =gE, divH =0,

rotE =- mH / i, (5)
After subgtitution
rotrotH = - nofH / 1t, (6)
Taking into account the second equition
N2H =ngfH / 1t. 7)

Magnetic field is directed dong the axis z dedric fidd
is directed aong the axis a. That is why we can rewrite the
equation (7) in complex scalar magnitudes

d’  1dH
+=— - jmyH =0. 8
dr? rodr J ®
The obtained equation may be presented in theform
2
d?H L1 dH +H =0,

d(y- jwngr)® - jwngr d(/- jwmgr)
We have received the Bessd equation of order zero; its

solutionis K = I-gloﬁo[J- jwngr].

Let us show how to solve this task gpplying finite-
difference method with pardldizaion of computations. For
example, on thei-th gep of integration thea gebraic analogue
of the differentid equaion for the eectric fidd in a near-
border node (number 2), while gpplying the fourth order
Taylor polynomid and congtant grid gep h, looks like

11 5 1 1 1
2 E 4+~ E, +—FE, - —E.)+
(o B ™ e B * o B F g B o B
1, 1 5 3 1 1
+ (- E -2 E, +—E, - YE + 1 E )=
h( 4h E1,| 6h 2, 2h 3,0 2h 4,|+12h 5,|)
:(iE 4 3 4 25E-).

a2t §E2,i-3 +H 22" 2,i-1+E 2i
On the 3-rd gtep of integration the adgebraic and ogue of
the differentid equation for dectric fidd in k-th node, while
applying the fourth order Taylor polynomial and congant
gridgep h, lookslike:
(- é Ev 23 +3_:2 Ec 13- Z_ﬁz Ecs +3—:2 Exia- # Ei+2.3)
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Boundary conditions are obtained from Ampere slaw:
E|_, =0, E|_, =wF ,/(2pa)sinwt.

The computational domain was covered with the grid of
101 nodes (100 geps). The domain was divided in such sub-
domains. 50/50 geps 40/20/40 seps 30/40/30 Seps,
25/25/25/25 steps, 20/20/20/20/20 seps, 10x10 seps, as well
asthdr modificaions.

5. Conclusion

1. The technique of dividing the domain into sub-
domains with drict recognition of “alien” and “native’ nodes
failed.

2. Internd sub-domains mugt be less than boundary sub-
domainsby a least 10%.

3.1f the vaues of fidd charadeidics obtained for
“common” nodein different sub-domainsdiffer by morethan
30%, it is necessary to gpply deeper penetration of sub-
domains or reduce the gep of timeintegration.

4.1f the physical condition of a problem dlows us to
increase the physical sze of sub-domains concurrently with
increasing satia gep, the speed of increasing the spatid step
cannot exceed 20%.
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3ACTOCYBAHHS JIAKONITHYHOI' O
MIIXOIY 10 AHAJI3Y
EJJEKTPOMATHETHOTO TIOJISI
13 3BACTOCYBAHHSIM METOY
CKIHYEHHHUX PI3HUIIbL

Mapis 'oBuxoBuy, Ilerpo Craxis

3anpornoHOBaHO pPI3HOMAHITHI PIBHAHHA 3B'A3Ky JUIS
Y3TO[DKEHHSI PO3B’sI3KiB, OTPHMAaHUX JUII OKPEMHX Iio0ia-
CTeH eJIeKTPOMAarHeTHOT0, PO3PaxyHOK SIKHX 3HiHCHIOETHCS
napanesibHo. MareMaTH4yHy MOJIENb TaKol 3a/laul OTpUMaHO Ha
mijcTaBi Teopil iHBapiaHTHUX HAONMKEHB i3 3aCTOCYBaHHSIM
METOMYCKIHUCHHHMX pi3HuIb. Po3risHyro pi3Hi MeTomuku
po30uTTs obyacTi po3paxyHKy IOl Ha IMigoOiacTi mapa-
JIETIBHOTO  PO3PaxyHKy. 3acTOCYBaHHA  3alpPOIIOHOBAHHX
PIBHSIHB 3B'sI3Ky 1 METOAMK PO3OHTTS ITOKA3aHO HA TECTOBIH
3ajadi MarHeTHoro mnosepxHeBoro edekry. Ha miacrasi
OTPHMAaHUX YHUCIIOBHX PE3yJIbTaTiB BHCIIOBJICHO PEKOMEHIALT
moA0 o0cAry B3a€EMHOrO MNEpeKpUTTs migobiacrel Ta
KOHKPETHOI'O 3aCTOCYBaHHS PiBHSHb 3B’ A3KY.
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