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Abstract: The macromodel of transients of a three-
phase induction motor in the terms of stator current,
rotation rate and loading on the axisis described.

Experimantal data are averaged per an aternating
current (AC) period. Regularization of the experimantal
data differentiation is demondrated using cubic
smoothing splines. The number of coefficients of
macromodel is minimized by reduction of the
approximating polynomial. Due to the reduction of
macromodd the identification became correct. Adequate
behavior of the macromodd has been verified for input
signals different from those for which the macromodel
has been built. Experimental transents are reproduced
by two continuous nonlinear macromodels of the first
order with arelative mean square error less than 1%.

The received macromodel is notable for its low
order and high-fidelity output signals.
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1. Introduction

Mathematical models of varying complexity
describing the induction motor (IM) have been known
for along time [1]. They were created according to the
description of the engine dynamics with the use of
algebraic-differential  equations of e ectromechanical
processes.

The macromode approach (“black box’ approach)
allows us to create amode that is much simpler than the
traditional ones and is not inferior to them in point of
accuracy of external variables, omitting complex internal
processes of the object [2].

The macromode can be built in different
mathematical forms. integral, differential, difference
equations. The examples of an induction motor
macromodel in difference equations are presented in [3].
A modd in [3] is of the third order and reproduces
transients with averaged relative square error of several
percent. The proposed publication describes the
macromodel of the induction motor by differential
equations of a lower order and with less error
reproduction of transients.

According to experimental data shown below the
induction motor transient processes may be discribed by
differential equations of the first order. For first-order
systems with scalar input and output the overall
macromodd structure looks like
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where u(t) is the input variable, y(t) is the output
variable; and the function of the right sde of the
equation is approximated by a power polynomial.

In the seventies such an equation was used to
identify the dynamic macromodels of non-linear systems
[4].

The macromodel is expected to repeat output
signals. ldentification of the mathematical model (1) in
the quadratic metric means the determination of the
vector of coefficients C for given sets of values u(ty),
y(ty), k=1,...,N with the least square error of the equation
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The problem (2) is reduced to solving a system of
linear algebraic equations being always compatible and
having a unique solution. But in general, the problem (2)
isincorrect and needs regularization [2, 5].

2. Preparation of experimental data

Experimental transent characteristics of the three-
phase IM A051-4A (wye-connection of stator windings,
nominal power B,=4.5 kW, supply voltage 220V,

nominal rotation rate w,=150.8 rad/sec) have been kindly
provided by Professor Y. Paranchuk (Lviv Polytechnic,
Ukraine, yparanchuk@yahoo.com). The induction motor
is considered as a “black box”. Asinput signal the load
curent S of a direct-coupled DC generator, that
simulates the mechanical load of the motor, has been
chosen. Output signals are supply current | of one of the
phases and voltage of a direct-coupled tacho-generator
recalculated into rotation rate W of the rotor. The
corresponding graphs are shown in Fig. 1.
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Fig. 1. Graphsof IM transients. S- load current, A,
W-rotatoinrate, Hz | - supply current, A.

The beginning of the graphs from 0 to 1.4 sec
corresponds to the IM acceleration after switching on the
power. Next, the generator load is switched on and off
twice, first with current S equal to 3A, and then with
current Sequal to 8 A.

The data in Fig. 1 contain more than 13,000 time
points and, therefore, are unsuitable for building a
macromodd .

The macromodel is constructed for root-mean-
sguare (rms) aternating current Is and averaged on the
period of AC power (0.02 sec) rotation rate Ws. The
number of time pointsisreduced to 357. Graphs of these
signalsare shown in Fig. 2.
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Fig. 2. Graphs of rms AC Is and the averaged rotation
frequency Ws.

3. Macromodel development

The graphs in Fig. 2 show that the dynamics of the
IM can be described by two independent nonlinear
systems of first order. So, the macromodel equations
may take the form of two differential equations for the
state variablesWs and Is;

r . .
—‘Z'tsz A KiyjNs Sl i+ £,
) "J:ro ©)
aws _ a KW, s ssl; i+ jEr;
d o
ii=

The identification of the macromoded (3) can be
performed traditionally (2), as the problem of
minimizing mean sgquare residuals of the equations (3) at
all 357 time pointst, where values Sty), 1s(ty), Ws(ty) are
given:
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To solve the problem (4), besides S(ty), 1s(t), Ws(ty),
dWs(t,)
at
the discrete functions can be calculated by many
methods [6]. But, if the numerical calculation of
derivatives is incorrect, it causes additional difficulties.
A universal and regularized method is using smoothing
splines [7]. Cubic smoothing splines are constructed for
Isty) and WSty using 357 time points. The
corresponding function csaps with smoothing parameter
0.99999 is implemented in MATLAB software
distty) ., W)

at at
calculated by analytical differentiation of splines. The
graphs of interpolating splines and their derivatives are
shown in Fig. 3and Fig. 4.
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Fig. 3. Graphs of the splineinterpolating Is(t,) and its

dis(ty )

derivative *0.1, k=1,...,357.
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Fig. 4. Graphs of the spline interpolating Ws(ty)
and its derivative % *0.5, k=1,...,357.

So, the identification of the systems (3) means
determining the coefficients Kl;; and KW in the
problems (4).

If r=5, the number of coefficients is 21 for every
polynomial. So the problems (4) areincorrect and do not
give thedesired result.

The method of aproximated polynom reduction [2]
may regularize the problems (4). This method
determines mathematically the required coefficients for a
given task, while all others should be removed.

The idea of the method consists in the twofold
identification of the coefficients - for an initial problem
and for a problem with small random deviations of
experimental data. Coefficients with the greatest
relative deviations should be remove. This method is
judtifiedin [2].

As a result of the reduction of the polynomials in
(4), only 8 coefficientsin the first polynomial and 7 ones
in the second polynomia have been kept. Then the
macromode (3) becomes much easier:

% = Kly + Kl %S+ Kl 3 ¥s+ Kl , xSxis+

+Klg ¥s? + Klg 983 + Kl ¥s* + Klg ¥s°;
dws

T = KV KW 5+ KW -+ KW, S s +

©)

+ KW WS + KW Wis® + KW, Wis®;
where the first three terms of the right parts of
differential equations describe the linear parts of the
macromodels, and the rest reproduce nonlinear
effects.
The corresponding identification problems (6) are
formulated asfollows:
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Fifteen obtained coefficients (7) are substituted in
macromodd differential equations (5).

Kl :(2,3037&0*1 6,5546X0"0 - 3,2962x0"1

-9,305340° 1 9,9106:40™ - 1,711340™
1781540 ! - 7,6451>10‘3);

KW = (1 0955%0'1 3,079720™ 2,237640"

-2,492430° 1 - 50003401 3355040 2
-3 030240‘5).

The solutions of the equations (5) with the
coefficients (7) and the experimenta signals I(ty), Ws(ty)
areshown in Fig. 5.

The averaged reative sguare error of the
reconstruction is less than 1%. Thus, they are practically
identical.
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Fig. 5. Compar ative graphs of IM experimental data and
corresponding values cal culated using the macromode.

4. Verification of the macromodel for different
input signals

Adequate behavior of the macromodd has been
verifyed for input signals St) different from those for
which the macromodel was built. Fig.6 shows
comparative graphs of solutions of the macromode
equations (5) for input signals multiplied by 0.6, within
the same time as for signals §(t) 3A and 8A, which were
the basis for building the macromodels. The same figure
shows the macromodel transients with input signals St)
multiplied by 1.3. The behavior of the macromode is
qualitatively satisfactory.
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Fig. 6. Thetransients obtained by the means of the macromode
with input signals St) multiplied by 1.0, 0.6 and 1.3.

5. Conclusion

The developed IM macromoded is notable for its
extremely low order and high-fidelity reproduction of
the experimental transient response.

The identification of the macromodel has become
satisfactory only owing to the regularization of
calculating derivatives and reduction of the macromodel.

However, for macromodds with different input and
output sgnds and/or different IM the whole identification
procedure must be performed from its very beginning.

All cdculaions have been carried out in the MATLAB
R2012a The corresponding program is available on request
through the author’ se-mail box matv@ua.fm.
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MAKPOMO/IEJb
ACUHXPOHHOTI'O JIBUT'YHA
3A EKCHEPUMEHTAJTbHUMU
JTAHUMHA

SApocnas Matsiliuyk

Omnucano  Makpomoznenb TpU(pa3HOrO ACHHXPOHHOIO
JIBUT'YHA, OTPUMAaHy UL TAKUX [APaMETPiB, K HABAHTaXEHHS
Ha Bally, CTPyM JKMBJICHHS OHi€l 3 (a3 Ta yacTora 0OepTaHHs
poropa. EkcrepumeHTanbHi JaHI ycepeIHEHO 3a Iepiof
3MIHHOT'O CTPYMY JKHBJICHHSL.

[IponeMOHCTPOBaHO pETYIAPH3ALII0 OOYMCICHHS ITOX1THUX
BHXIIHUX CHTHAJIiB MAakpoOMOZEJi 3a JIOIIOMOIOK 3IJIaDKYIOUHX
KyOlunux cruiainiB. Kingpkicte  KoeillieHTIB  Makpomozesi
MiHIMi30BaHO 32 METOIOM PEAYKIli alpOKCHMYIOUOro IOJIIHOMY.
3aBIUIKM peIyKLi i1eHTH(DIKALIS MAKPOMOJIEI CTajla KOPEeKTHOIO.
AniexBaTHY MHOBEAIHKY MaKpoOMOZENi INEepeBipeHO Ha CHUrHajax,
BIIMIHHMX BiJl CHT'HAJIB, 32 SIKUMH 30yJOBaHO MaKpPOMOJEJb.
ExcriepuMeHTanpHI  nepexifHi MpOLecH BiATBOPEHO JABOMA
HENHIHIMHA ~ MaKpoOMOIEISIMH  IIEpIIOro MOpsiIKy 31 ce-
PEAHBOKBA/IPATIYHOO TOXHOKOI0, MEHIIOH 32 1 %.

OTpumMaHa MakpOMOJEIb BHPI3HAETHC
MaJIUM TOPAJKOM 1 BHCOKOIO TOUHICTIO BiITBOPEHHS BH-

X1JHUX CUTHAJIB.
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