
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING
Vol. 4, No. 2, 2014

MODULAR NETWORK INTERFACE FOR DISTRIBUTED
INFORMATION NAVIGATION SYSTEMS

Iryna Pasternak, Yuriy Morozov
Lviv Polytechnic National University, Lviv, Ukraine

pas_irusj@ukr.net, m_urij@ukr.net

© Pasternak I., Morozov Y., 2014

Abstract: A modular approach providing unification
by dividing a network interface into the universal and
special parts in the context of distributed information
navigation systems is proposed. The main principles of
such approach and its software implementation are
considered in the article. It is shown that the efficiency
of the modular structure of the interface of distributed
navigation systems, including the development time and
speed of data processing, depends on the techniques used
for their implementation and tools of object-oriented
technologies.

Key words: modular construction, computer
networks, network interface, client-server interaction,
distributed navigation systems.

1. Introduction
Competition is forcing manufacturers of electronic

systems to reduce the development time of new
products. Recently, two years of lifetime for electronic
devices were considered normal. Today this time is
reduced to six months with the perspectives of further
decreasing. The mobile phone is the vivid example of
this situation. In addition, the growth of the “Internet of
things” calls for reducing design time for network
applications, services, etc. [1–6], which need specialized
hardware and software solutions. The special aspects are
power consumption, a range of wireless networks, cloud
computing [7–10], security [11–15] etc. Besides, each
task needs specialized solution for network interface, as
universal solutions are not suitable here. Thus, the
unification of specialized network interfaces development is
a topic of current interest.

Modern mobile navigation systems include built-іn
devices and related services that allow users to combine them
into one system via a wireless network through the
appropriate interfaces. In the hardware and software part of
navigation systems there are network interfaces of three link
classes: 1) between navigation devices and navigation
services; 2) between navigation services and a user interface;
3) between navigation services and a database.

Navigation devices are rapidly changing and
outdated ones are decommissioned. There are dozens of
types of these devices that are constantly updated. They
are not compatible with each other. The quick change of

types of navigation devices requires constant implementation
of network interfaces designed for them. In order to
reduce the amount of programming for realizing the
network interface intended for connecting the navigation
devices with navigation service in each new type of the
navigation device, we need to unify the network
interface for different types of devices.

Different users require different information, which is
made up of the same navigational data. There are many
types of navigational information and they are always
caused by new types of users’needs. This in turn requires a
large number of different forms of information. The user
interface should display all kinds of navigation information
on screens, in reports etc. The network interface generates a
stream of requests to navigation service and interprets its
answers. Accordingly, we should always handle distributed
flow of requests that will come from the user interface to
the navigation service, so it would be necessary to
implement a network interface that will implement this
interaction.

Navigation tasks require to be promoted by
databases. According to new and modified existing
navigational problems for different users, database
contents change. The database can be located on a
remote server, but even if the database is physically
placed in the software and hardware navigation service,
it interacts with the server through the network interface
used for classic client-server interaction.

These interfaces use different communication
protocols and data transmitted through them. But for
them there is a common problem of reducing the amount
of work on developing interfaces and improving their
technical efficiency while their life is reduced.

The above problems can be solved by the
decomposition of interfaces into universal and special
parts, so the interface will become modular. The
universal part will be a standard for many interfaces, and
the special part will be unique to each network interface
and quasi-universal, as developed on the basis of a single
template. So, this can reduce the amount of work and
time of development. The task of designing network
interfaces can be implemented using object-oriented
technologies [1-4, 6, 7].

Iryna Pasternak, Yuriy Morozov

The main tasks of the analysis and synthesis
of hardware and software models of various parts of
the interfaces are: 1) identification of objects and
structures for functional algorithms and methods of
implementation, which can be combined in appropriate
modules; 2) the selection of classes, services and
procedures for optimal criteria of the minimum
development time and maximum performance of
implemented interfaces. The aim of this work is an
attempt to solve these problems basing theoretically on
one possible mathematical model of interface, and
developing practical guidelines for its implementation by
means of object-oriented programming using the
methods of inheritance, use and instantiation, and of the
comparative analysis of different solution models of
client-server interaction between interface modules.

2. Mathematical Model of Network Interface
The analysis of network interface behavior is

simplified by neglecting the parameters requested by
users as well as their responses. If some features of
functioning the network interface are to be examined,
you can ignore or the user’s request or an incoming
stream of a lower-level network interface [8, 9–14].

Considering the rules of network interface
composition and using it as the result of certain
operations applied to its components, we take into
account that requests to component are formed by the
network interface.

The network interface is described by this set:

 (, , , , ,)=IS Q R A St φ ψ (1)

where Q are input requests network interface, R are
responses of the lower level of the network interface, A
is the output alphabet network interface, St is the set of
conditions of the network interface, φ , ψ are functions
of transitions and outputs.

Let us consider each component of the network
interface. The set of characters that form the input
alphabet of the network interface is described as follows:

 { }=Q Qi , (2)

 { }(1)
() (1) (1)

1, ,...,= i
Q Na

Q Id Pq Pq (3)

 (1) (1)
() (1) () (),⊂ ×⋅⋅⋅× =

Qij j

i l j
j PQ Q

P D D l N , (4)

where IdQ is the set of unique identifiers queries.
The set of characters output alphabet network

interface, describe as follows:

 { }=A Ai , (5)

 { }(1)
(1) (1) (1)

1, ,...,= A NA
Ai Id Pa Pa , (6)

 (1) (1)
() (1) () (),⊂ ×⋅⋅⋅× =

Aij j

i l j
j PA A

P D D l N , (7)

where IdA is the set of unique request identifiers.
The set of characters that make up the response of

the lower level of the network interface, we describe as
follows:

 { }=R Ri , (8)

 { }(1)
() (1) (1)

1, Pr , ,Pr= ⋅⋅⋅i
R NR

Ri Id , (9)

(1) (1)
() (1) () (),⊂ ×⋅⋅⋅× =

Rij j

i l j
j PR R

P D D l N , (10)

where IdR is the set of unique response identifiers of the
lower level of the network interface.

Each request to the network interface and its answer
has two parts: identification and parametric. The
identification part uniquely identifies the type of request.
The parametric one is actually additional information
that accompanies requests and responses to them by the
network interface. The description of the network
interface state is also based on similar approach. In
general, a specific state St of the network interface can
be described as follows:

 { }() () ()
1, , ,= ⋅⋅⋅i i i

St NStSt Id St St , (11)

when the network interface has some components, or

 () () (1) ()= ⊂ ×⋅⋅⋅×i i l
St St

St St D D , (12)

when the network interface has no components,
where St1

(i), …, StNSt
(i) are states of the network

interface components.
Thus, the formal description of the network interface

is recursive (to a certain low level of refinement at which
states are of atomic nature).

Each state St(i) contains the IdSt state and status of all
components belonging to the network interface. The
number of states is limited to the number of possible
component states.

However, in reality this number is significantly
reduced by the constraints and relationships that can
exist between the states of the network interface.

The reaction of the network interface cannot be fully
determined in case of parametric descriptions. That is,
the system response to each request is described by the
set of possible transitions, outputs and their probabilities.

Taking into account formulae (1), (11), (12), we
obtain the function of transition to the network interface:

48

Modular Network Interface for Distributed Information Navigation Systems

 { }(,) (, Pr (, ,)=i j k k i jQ St St St Q Stϕ , (13)

 Pr (, ,) 1=∑ k i j
k

St Q St . (14)

Then, with the use of the same formulae (1), (11),
(12) we can obtain the output function for the network
interface:

 { }(,) (,Pr (, ,)Ψ =i j k j i kQ St A St Q A , (15)

 Pr (, ,) 1=∑ j i k
k

St Q A . (16)

In our opinion, the mathematical description and
approach to grouping input, transition and output
functions of the network interface allows further correct
distribution of client-server interaction services among
universal and specific parts of hardware and software
interface implementation. In addition, it causes multi-
device distributed control processes for several processor
cores depending on their configuration, and, therefore,
the increase in the communicative efficiency of the
system.

3. Model of Modular Client-Server Interaction
Firstly, we have to analyse the network interface and

modular network interface for correct modelling of
modular client-server interaction. The network interface
has standard and special features shown in Fig. 1.

Fig. 1. The functions of network interface.

The analysis of these features shows that some of
them do not depend on implementation and can be
generalized (for example, task management, access to
application, linking etc.), while others depend on their
implementation and can not be generalized. The first part
of services, which are universal for different objects, we
will develope and test once, and the second part of
services, which are different for different network
interfaces, we transferred to a special module, which is
to be developed for each network interface separately
(see Fig. 2).

Fig. 2. Modular network.

The model of modular client-server interaction
consists of client and server parts, and interaction
between them occures through the network interfaces in
a distributive network (Fig. 3).

Fig. 3. Model of modular client-server interaction.

The difference is that on the server side the network
interface is in the waiting mode, during which it waits
for a signal from some port or channel. On the client
side the network interface is in a passive state, but when
a user sends a request to the server, it will create a
connection and call to the server.

The model of the modular network interface
consists of the universal part, whose functionality is
supported by all clients, and the specialized part specific
to the type of client’s implements realizing specific
commands and data types. Being based on a general
model of modular client-server interaction, the model of
modular network interface on the basis of inheritance,
instantiation and use can be realized.

4. Model of Modular Network Interface Based on
Principle of Inheritance

Static-dynamic method of network interaction. In
cases, where the structure of command and data
customers does not change and repeate, that is, it is
static and dynamic, it is possible to implement the

49

Iryna Pasternak, Yuriy Morozov

modular network interface based on the principle of
inheritance. The principle of inheritance is used in the
model of the modular network interface realized by the
author. This principle allows one class to emulate the
characteristics of another. Thus, a derived class gets all
features of a base class, and can be enhanced by adding
its own features. The derived class is a specialized
version of the base class. The derived class inherits all
members defined in the base class, and adds its own
unique elements to them. At the process of inheritance
the base class remains unchanged [5, 19–21]. A class
can have “subclasses”, that is, special, extended versions
of a superclass. Whole trees may even be formed on the
basis of the principle of inheritance. Subclasses inherit
attributes and behavior of their parent classes, and
introduce their own features. Inheritance can be single
(one immediate parent) and plural (several parents). It
depends on the choice of a programmer who
implements the class and programming languages. The
scheme of the modular network interface based on the
principle of inheritance is shown in Fig. 4.

The model of modular network interface based on
the principle on inheritance and serving for the
connection of each client to the server should have its
own network interface (1, 2, .., N), which contains a
communication protocol (1,2, .., N).

The communication protocol can be divided into an
universal part, common to all network interfaces, and a
special part specific for each type of customer. The
universal part of the network interface will describe the
base class. For each type of communication protocol its
own class is created by inheriting from the base class
with the expansion of its range by the set of special
commands.

Fig. 4. Model of modular network interface based

on the principle of inheritance.

Thus, we have a base class network interface. It is
inherited by subclasses for each type of client and
according to each type of the communication protocol,
and they in turn shape objects which themselves are the
network interfaces designed for a certain communication
protocol.

The advantage of this model is that the principle of
inheritance allows us to use the existing code of the

parent class for all derived classes many times. Using a
modular network model based on the principle of
inheritance, we can create the base class that will
determine the features inherent in many objects. And
then we can use it to create any number of specialized
derived classes with the addition to each of them its
unique features.

The model of the network interface based on the
principle of inheritance was practically implemented in
an informational navigation system “ZITtrack” (Lviv,
Ukraine). The user can access this information system
(IS) through a web interface which is created
interactively by users’ activities using information from
an IS database. The user interface is implemented in the
programming languages Java and JavaScript. In this
case, the user interface consists of a template designed
according to a Java Server Page technology (JSP) and a
content formed programmatically. Information forms of
the user interface can be divided into several categories.
The information form of each category is built by the
same principle. For example, all statements look similar
but contain different information [10-15].

The user interface is loaded into a user's browser as a
web page, which interact with the server using IP
technology Ajax, and it is a standard client-server
interaction. The network interface of a class can be divided
into the universal part, which includes web site design and
programming on the page using JavaScript, and the special
part which includes information form data.

The universal part of the network interface is
realized in a WebPageAdaptor class (Fig. 5), and special
parts of modular network interface for each information
form are described in appropriate derived classes. For
example, the information form of navigation devices is
formed by the DeviceInfo class, which is inherited by a
WebPageAdaptor class. All other classes of the network
user interface also inherit the WebPageAdaptor base
class. Taking into account these facts, we can define the
base class, knowing the functions and variables which
are inherited by its subclasses.

Fig. 5. Practical implementation of model modular

network interface based on principle of inheritance.

50

Modular Network Interface for Distributed Information Navigation Systems

The universal part is implemented as a WebPageAdaptor
class. The special part of the network interface can be
realized, for example, as a DeviceInfo class.

5. Model of Modular Network Interface Based on
Principle of Instantiation

The dynamic method of network interaction. In cases
when the structure of customer data will often change,
that is, it will be dynamic, but commands are not
changeable, the modular network interface based on the
principle instantiation can be realized. The model of the
modular network interface based on the principle of
instantiation (Fig.6) involves the use of generalized
programming or programming-based templates. A
template is a class in which the data type is a parameter;
for the creation of an object of this class the data type
must be specified. This process is called instantiation.
The modular network interface can be implemented as a
template using the instantiation principle [16, 17]. The
universal part of the modular network interface can be
described by a template class and a special part by the
parameter class.

Fig. 6. Model of modular network interface based
on instantiation principle.

A certain network interface in the model is the
object of the parameterized class of the template
instantiated by the special class of the network interface.
Instantiation of the template by different classes of the
special part of network interface leads to the creation of
different network interfaces. That is, for implementing
many network interfaces using the instantiation principle
it is necessary to create one template class of the
universal part of the network interface and required
number of classes of the specific parts of the network
interfaces. A template class exports operations which can
be performed on its sample.

On the contrary, a parameterized class argument is
used to import classes and values which are used as
communication protocols.

We use software in Java programming language,
precisely because at the compilation it checks their
interactions when the instantiation is carried out.

For the practical implementation of the model of the
modular network interface based on the principle of
instantiation, the server of the information navigation
system “ZitTrack” is connected as a client to the
database server. The information in database is
subdivided into tables by functionality. The access to
any table is gained by using queries in SQL language.
The same queries to different tables are similar, differing
only in names of tables and lists of attributes, and the
conditions of selection results. Interaction with the server
database and the server itself can be described by a set of
commands which look similarly but have a different
content.

The appearance of commands providing the access
to the database can be considered the universal part of
the network interface, and data tables, attributes and
conditions form the special part of the network interface.

Any template class is instantiated before being used.
The template class of the modular network interface
based on the instantiation principle is created as
parameterized.

The essence of the model of the modular network
interface based on the instantiation principle is to
create the template of the access to the database
whose parameter will be the relevant database table.
The network interface is implemented as a DB
server, which provides the access to the database.
This server has a lot of classes and all of them are
instantiated. So the whole work with the database is
instantiated. The classes of the server will be:
DBRecord, DBFactory and other supporting classes,
for example, DeviceRecord (Fig.7).

DatabaseDB Record

DB

DB Factory

DeviceRecord

Fig. 7. Implementing a practical model of modular network

interface based on principle instantiation.

How to create universal methods when all tables are
different and they have different arguments? For this
task the pattern of the access to the table is used which is
called DBRecord. To use this template the class
DBFactory is used. In addition, there is a set of classes,
each of them describing a particular table and working
with it. Each method of working with these tables uses

51

Iryna Pasternak, Yuriy Morozov

the object which is instantiated by the class DBRecord,
and this object is a table object, so it can call itself
through the same pattern. That is, a table template exists,
and there are universal techniques for working with
tables. When it is necessary to refer to a specific table,
this pattern is instantiated by the object of the table
which already contains mechanisms of working with this
certain table, but not with others. So there are
generalized methods and individual implementations for
each table.

In practical implementation of the model of the
modular network interface based on the principle of
instantiation (Fig. 7), in which the DeviceRecord class is
instantiated by the DBRecord class, the template of the
universal part of the network interface is presented in the
DB Record class.

6. Model of Modular Network Interface Based on
Principle of Use

The static method of network interaction. In cases
when the client network interface is specific to each
customer and includes unique commands but similar
data structure, i.e., the network interface is static, you
can implement the modular network interface on the
basis of use. The model of the modular network
interface on basis of use (also called composition or
inclusion), we mean the method of creating a new class
from existing classes by incorporating (also known as
delegation) the attached object. Nested objects are
usually announced closed classes, making them
unavailable for application programmers working with
the class. On the other hand, a class creator can change
these objects without disturbing the operation of
existing client codes [18–21].

In addition, the replacement of embedded objects at
the stage of program operation allows us to change its
behavior dynamically. The model of the modular
network interface based on the principle of inheritance
does not have this flexibility because for the derived
classes some restrictions are set which are checked at the
stage of compilation. On the basis of the model of the
modular network interface based on the principle of use
a delegation method is implemented when the task set
before the external object is delegated to the internal
object, specializing in solving problems of this type. In
this model, there is a “part-whole” relation between two
equal objects: the network interface and communication
protocols. Thus, one object (a container) has a reference
to another object. Both objects can exist independently if
the container is destroyed, its content will still exist. Fig.
8 shows the appearance of the modular network interface
based on use patterns.

Fig. 8. Model of modular network interface based on use.

In the model of the modular network interface on
the basis of use the network interface is the object of a
container class. In practice, the network interface is
only one for one server, but it uses the first
communication protocol for the connection with the
first client, the second communication protocol for the
second client, and the N-th communication protocol for
the N-th client. In general, we can say that each client
has its own type of the network protocol and this type
will determine the type of the client. Each type of the
network protocol is characterized by a set of
commands, and each command is processed by some
feature. The set of command formats and processing
functions contained in the object communication
protocol are used by client and server. Only with one
difference, each client has his own network interfaces,
but for the server there is only one network interface
for all of them. In turn, communication protocols (1,2,
.., N) will be included in the object of the network
interface. In this model we have one network interface
object and the corresponding class, and many objects
that are responsible for communication protocols.

The practical implementation of the modular
network interface based on the principle of use are
realized in information navigation system “ZITtrack”. In
this information system navigation devices transmit their
information to the server, and each type of devices has
its own communication protocol. Also, the device can be
in different modes. Information from the device is stored
in the same database table. This means that all data must
be given in the same form. In the communication
protocols of navigation devices the universal part can be
identified which is the same for all of them, namely, the
establishment and termination of connections, logging
and so on. Meanwhile, each device has its own message
format and connection settings.

The special part of the modular network interface
consists of constants of the configuration of
the universal part and functions of data processing of
the communication protocol. While implementing

52

Modular Network Interface for Distributed Information Navigation Systems

practically the method of use, we face the problem of
conveying information. The whole set of information
consists of telemetry data. Typically, they are sent over
network in the form of data streams consisting of a
header and some data packets received from the sensor
subsystem. This program being implementing,
everything looks like a simple set of data.

The network interface based on the principle of use
in the information navigation system “ZITtrack” is used
for communication with navigation devices. In practical
implementation of this model there is an object
connection as the method of the object of the universal
part of the network interface which, being a parameter,
has the objects of the special part of the network
interface. The universal part of the network interface for
the communication with navigation devices consists of
the object of the communication server (such as
GPSEvent) and linking object. The special part of the
network interface is implemented as a constant object
and the object of the communication protocol (such as
TrackClientPacketHandler) (see Fig. 9).

Fig. 9. Appearance of modular network interface
on basis of use.

The universal part of the network interface on the
basis of use will contain GPSEvent. As we can see, the
universal part of the network interface on the basis of
use, which is used by all IS servers and is the same for
all of them, irrespective of the number of the servers,
contains the file GPSEvent. In the first file program the
ports are announced via which the client will
communicate with server and vice versa in the network.
The second file describes server configuration.

The special part of the modular network interface
based on the principle of use in this case is contained in
TrackClientPacketHandler.

We can see that the special part of the modular
network interface based on the principle of use is
simplified and contains two files of Track Client Packet
Handler. The Track Client Packet Handler file will
include information on connections and transactions
having occurred and occurring at client-server network
interaction. The modular network interface based on the

principle of use, as the term “use” implies, uses the date
of the function named getHandlePacket. In the modular
network interface based on the principle of use, the client
will have access to the universal part of network
interface connection with devices, information on which
will be on the server.

7. Comparison of Technical Performance and
Reliability of Models

The example of the network interface of the
navigation system is the network interface based on Jini
architecture. Its disadvantage is a relatively long
programming and adaptation to the specific system
(Table 1).

Network interface consists of several options for
communication protocols which are loaded on the client
side when looking for server and then executed locally.
When the client calls a communication protocol, it sends
a request to a server on the network that creates the
connection. The network interface can use specialized
equipment to fulfill client requests. One of the important
principles of Jini architecture is that the protocol used for
communication between the object in proxy service and
the remote server does not have to be known to the
client. However, it is not important for the client,
because the communication protocol is the part of the
implementation of the already known network interface.

The advantage of modular interfaces is that the
approach to implementation may change over time.
Alternatively, the network interface module can only be
used as a proxy to a remote server.

The comparison of the performance parameters of
the Jini interface and the proposed solutions of modular
network interfaces was made. The criterion for assessing
the technical efficiency may be a runtime of the server
client request. On the client side the time measurement
for processing the request is not correct, because there
are network delays affecting the passage of connection
command. Measurements of processing time on the
server side give the time duration from receiving a
request to sending a reply. The laptop Asus K73E-
TY272DAt plays a role of the client at the setting of an
experiment.

According to the accepted standard methodologies,
for example, those used for distributed GRID-systems
and so on, technical efficiency of the interface is
determined by the average indicators of processing
requests in terms of the maximum (100 %), minimum
(at 1 %) and moderate/nominal (10 to 30 %) by a load
processor system. In all cases, when tests determine a
stable stay in a fixed position, they limit switch to the
next cycle. Summary results of testing are shown in
Table 1.

53

Iryna Pasternak, Yuriy Morozov

Based on the mathematical model of the network
interface module compared models were calculated, the
modular network interface was built by three principles
and the following data was obtained. The processing
time of the client request has a value about 0,2 ms for the
modular interface implemented on the basis of the
principle of use, and it is determined by a direct time
value of processing the command. Similar values for the
interface implemented on the basis of inheritance
principle are ~ 0,3 ms, and on the basis of instantiation ~
0,04 ms. In the latest version, the increasing of the
number of requests from the client can lead to increasing
the processing time, which is needed for processing
requests to the database, and on the basis of these criteria
modular network interface is built on the instantiation
principle.

Table 1

Comparison of the performance parameters
of modular network interfaces, 2015

Interface type
Applied /Ethernet

The response
time of network

interface,
ms

Time for
developing a

network
interface, folk. /

hr.
Specialized network
interface

1,6 8,7

Modular network interface is built on principle:

Inheritance 0,3 2,7
Use 0,2 0,7
Instantiation 0,04 1,8

Modular network
interface (thresholds)

~0,3-0,04 ~2,7-3,64

Network Interface based
on Jini

1,2-2,0 7,4

Thus, on basis of mentioned above it can be said that

the modular network interfaces based on the principles
of inheritance and instantiation are more reliable than the
interface based on the principle of use. But in turn, the
interface based on the principle of use is also very
efficient.

As we can see in Table 1, the response time of the
network interface built in a modular fashion depends
heavily on the method of its implementation by means of
object-oriented programming. In particular, the interface
implemented on the basis of instantiation method has a
timing at 20-40 times better than the interfaces based on
the principles of use and inheritance, and more then ten
times better than specialized interface settings, including
the interface realized on the basis of Jini technology.

These data suggest that the development of the modular
network interface saves time and reduces complexity. Their
implementation is not always, but in most cases more
efficient than the generic network interface.

8. Recommendations for Implementation of
Modular Network Interface

According to above mentioned principles, the
network interface should be divided into 2 parts:
universal and special. To implement the modular
network interface, it is also necessary to identify which
principle is to be used. The universal part contains
shared functions and constants, and functions specific to
each network interface will be included in its special
part. That is necessary to analyze classes of network
interfaces and identify common features, which are to be
considered in the universal class, and features unique to
the given network interface which should be separated
into some class of the special part.

The specific model of implementation of the
modular network interface is chosen for practical
reasons.

The algorithm of the selection of the principle of
implementation of the network interface is shown below:
1. It is necessary to describe the network interface in

abstracto to be implemented in the terms of
functions.

2. Then the decomposition of network interface into
two parts should be carried out, one of which
includes features that are the same for all interfaces,
and the second part consists of special functions.

3. Then we need to evaluate the structure of the
argument of the special function:

3.1. If there is a group of functions which are
common to all network interfaces but have a
different implementation for each network
interface, we need to use the principle of
inheritance (see part 4 of the article).

3.2. If the function described by the special part
of the network interface is unique to each
network interface, then it is advisable to use
the instantiation principle, (see part 5 of the
article).

3.3. If functions making up the universal part of
the network interface are identical and their
arguments are identical too, but they get
various data at their implementation, it is
advisable to apply the principle of use (see
part 6 of the article).

3.4. If none of options is suitable, see part 1 of
the article.

4. Programmatic implementation of the selected
principle for the construction of the network
interface is fulfilled.
For example, in order to speed up the development

of the network interface it is advisable to apply the
principle of use, as it is shown above in the
recommended algorithm.

54

Modular Network Interface for Distributed Information Navigation Systems

9. Conclusions
The main results of this article address the solution

of an applied problem, namely, the improvement of
methods of designing hardware and software of network
interfaces for distributed navigation systems. It was
theoretically grounded and experimentally confirmed
that the response time of the network interface built in a
modular fashion considerably depends on the method of
its implementation by means of object-oriented
programming. In particular, the interface implemented
on the basis of the instantiation method operates twenty
times faster than interfaces based on the principles of use
and inheritance, and more than ten times better than
specialized interface settings, including based on the Jini
technology. The modular network interface based on the
principle of inheritance is less technically effective, but
reliable. The interface on the basis of the principle of use
is more technological, and can be used for the complex
solution of the problem of increasing query processing
speed and reducing the time of developing the modular
interface. The proposed recommendations for designing
the modular interfaces, in our opinion, may be useful in
dealing with basic issues of improved and effective
information processing in navigation systems.

References
[1] L. Pierce and S. Tragoudas, “Threshold network

synthesis”, ACM Journal on JETC, vol. 10, no. 2,
pp. 17–21, 2014.

[2] P. Wettin, A. Vidapalapati, A. Gangul, and
P. P. Pande, “Complex network-enabled robust
wireless network-on-chip architectures”, ACM
Journal on JETC, vol. 9, no. 3, pp. 24–30, 2013.

[3] R. Beckman, K. Channakeshava, F. Huang, J. Kim,
A. Marathe, M. Marathe, S. Saha, G. Pei, and
V. S. Anil Kumar, “Integrated Multi-Network Modeling
Environment for Spectrum Management”, IEEE
Journal on Selected Areas in Communication,
special issue on Network Science, vol. 31, no. 6,
pp.1158–1168, 2013.

[4] P. Dourish, R. E. Grinter, J. Delgado de la Flor, and
M. Joseph, “Security in the wild: user strategies for
managing security as an everyday, practical
problem,” Personal and Ubiquitous Computing
(ACM/Springer), vol. 8, no. 6, pp. 391–401,
November 2004.

[5] R. J. Wirfs-Brock, “Refreshing patterns,” IEEE
Software, vol. 23, no. 3, pp. 45–47, May/June 2006.

[6] H. H. Thompson and R. Ford, “Perfect storm: The
insider, naivety, and hostility,” ACM Queue (Special
Issue: Surviving Network Attacks), vol. 2, no. 4,
pp. 58–65, June 2004.

[7] D. P. Anderson, “BOINC: A System for Public-
Resource Computing and Storage”, in Proc. of the

Intl. Workshop on Grid Computing. IEEE, pp. 4–10,
2004.

[8] H. Blohm, Hierarchical Arrangement of Modified
Class Loaders and Token Driven Class Loaders and
Methods of Use, United States Patent 7.536.412.B2.
2009.

[9] M. D. Dikaiakos, G. Pallis, D. Katsaros, P. Mehra,
and A.Vakali, “Cloud Computing – Distributed
Internet Computing for IT and Scientific Research”,
IEEE Internet Computing, vol. 13, no. 5, pp. 10–13,
2009.

[10] K. Geihs, Selbst-Adaptive Software. Informatik
Spektrum. Springer. pp. 133–145, 2007.

[11] R. L. Grossmann, “The Case for Cloud Computing”,
IEEE IT Professional, vol. 11, no. 2, pp. 23–27,
2009.

[12] G. Pei and V. S. Anil Kumar, “Distributed
Approximation Algorithms for Maximum Link
Scheduling and Local Broadcasting in the Physical
Interference Model”, in Proc. IEEE INFOCOM
2013, pp. 1339–1347. Turin, Italy, April 14–19, 2013.

[13] C. Kuhlman, V. S. Anil Kumar, and S. Ravi,
“Controlling opinion propagation in online
networks”, Computer Networks, vol. 57, no. 10,
pp. 2121–2132, 2013.

[14] G. Pei, S. Parthasarathy, A. Srinivasan, and V.S. Anil
Kumar, “Approximation algorithms for throughput
maximization in wireless networks with delay
constraints”, in Proc. IEEE INFOCOM. Shanghai,
China, April 10–15, 2011.

[15] V. S. Anil Kumar, M. Marathe, and S. Parthasarathy,
“Cross-layer capacity estimation and throughput
maximization in wireless networks”. In Algorithms
for Next Generation Networks, pp. 67–98, 2010.

[16] L. Pierce and S. Tragoudas, “Threshold network
synthesis”, ACM Journal on JETC, vol.10, no. 2,
pp. 17–21, 2014.

[17] P. Wettin, A. Vidapalapati, A. Gangul, and
P. P. Pande, “Complex network-enabled robust
wireless network-on-chip architectures”, ACM
Journal on JETC, vol. 9, no. 3, pp. 24–30, 2013.

[18] R. Beckman, K. Channakeshava, F. Huang, J. Kim,
A. Marathe, M. Marathe, S. Saha, G. Pei, and
V. S. Anil Kumar, “Integrated Multi-Network Modeling
Environment for Spectrum Management”, IEEE
Journal on Selected Areas in Communication,
special issue on Network Science, vol. 31, no. 6,
pp. 1158–1168, 2013.

[19] C. Ottow, F. van Vliet, and P.-T. de Boer, and
A. Pras, “Impact of IPv6 on Network and Web
Application Penetration Testing”, in Proc. EUNICE
2012 (LNCS 7479), Budapest, Hungary, August
2012.

55

Iryna Pasternak, Yuriy Morozov

[20] P. Dourish, R. E. Grinter, J. Delgado de la Flor, and
M. Joseph, “Security in the wild: userstrategies for
managing security as an everyday, practical
problem,” Personal and Ubiquitous Computing
(ACM/Springer),, vol. 8, no. 6, pp. 391–401,
November 2004.

[21] R. J. Wirfs-Brock, “Refreshing patterns,” IEEE
Software, vol. 23, no. 3, pp. 45–47, May/June 2006.

МОДУЛЬНИЙ МЕРЕЖЕВИЙ ІНТЕРФЕЙС ДЛЯ
РОЗПОДІЛЕНИХ ІНФОРМАЦІЙНИХ

НАВІГАЦІЙНИХ СИСТЕМ

Ірина Пастернак, Юрій Морозов

Запропоновано модульний підхід, що забезпечує
уніфікацію шляхом розділення мережевого інтерфейсу
на універсальну і спеціальну частини в контексті
розподілених інформаційних навігаційних систем.
Розглянуто основні принципи такого підходу та його
программне застосування. Показано, що ефективність
модульної структури інтерфейсу розподілених
навігаційних систем, враховуючи час розробки та
швидкість обробки даних, залежить від методик, викори-

станих для їхнього застосування та інструментарію
об’єктно-орієнтованих технологій.

Iryna Pasternak – Assistant
Professor of Computer Engineering
Department, Institute of Computer
Technology, Automation and
Metrology, Lviv Polytechnic
National University, Ukraine.

Yuriy Morozov – Ph.D.,
Associate Professor of Computer
Engineering Department, Institute
of Computer Technology, Automation
and Metrology, Lviv Polytechnic
National University, Ukraine.

56

 HistoryItem_V1
 AddNumbers

 Range: From page 2 to page 6; only even numbered pages
 Font: Times-Roman 12.0 point
 Origin: top left
 Offset: horizontal 70.87 points, vertical 68.03 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 2
 TR
 1
 0
 789
 295
 0
 12.0000

 Even
 5
 2
 SubDoc

 CurrentAVDoc

 70.8661
 68.0315

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1
 6
 5
 3

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 6; only odd numbered pages
 Font: Times-Roman 12.0 point
 Origin: top right
 Offset: horizontal 70.87 points, vertical 68.03 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 3
 TR
 1
 0
 789
 295
 0
 12.0000

 Odd
 4
 3
 SubDoc

 CurrentAVDoc

 70.8661
 68.0315

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 2
 6
 4
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 175
 722
 364

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

