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In this paper we propose a formalization of ontology-based task execution modelling 

system. It is built using approach of algebraic systems theory. We show that proposed 
algebraic system based on multiple domains can be used for ontological models representation  
of tasks and knowledge elucidation, storage and processing 
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Introduction 
Design and implementation of intelligent systems based on the formalization and reuse of 

knowledge is a promising area of practical application of artificial intelligence in software systems. At the 
core of such systems is a formalized representation of knowledge about the subject area, for example in the 
form of ontology. Ontology definition made by Gruber [1] as a specification of a conceptualization leaves 
open the selection of formal system and language for building such a specification. Not completely 
resolved are the problems of analisys of the ontological knowledge representation method itself, the 
definition of its inherent limitations and advantages. In order to resolve those problems, formal models for 
various aspects of ontological modeling should be built and analysed. So the study of ontological 
modelling method using mathematical models of ontologies and ontological modelling is important 
research area. 

Analysis of recent research and publications 
The use of formal methods for the study of systems that use information and knowledge has a long 

history. Most researchers use formal methods, based on the algebraic approach, set theory and first-order 
predicate logic [2, 3, 4]. 

Codd [2] developed relational algebra based on first-order predicate logic and algebra of sets which 
was used to build the theoretical foundations of relational databases, including database query language 
SQL. 

In [3] a general algebraic approach to the representation of relational database is developed, 
including algebraic database model, is analyzed a symmetry and equivalence relations in databases using 
multisort algebras. The author creates a model of the relational database in the form of algebraic structure 
using multisort algebras. Author performs an algebraic modeling of operations of databases union and 
decomposition. 

In [4] an algebraic approach is used to modelling of concepts and concepts databases. Abstract data 
types are used to represent concepts and algebraic operations over data types are defined. 

In [5] is proposed an algebraic approach to the construction of models and model transformations 
are defined as algebraic operations. The authors investigated the possibility of automating the complex 
inference process using algebraic models. As a result,  an executable meta-language was created with 
purpose to identify, build, evaluate and transform models of complex systems. 

In [6] was proposed an approach to software systems construction using interpreted ontological 
models, the architecture and functioning of simulation system based on ontological models was described. 
However, the mathematical formalization of the proposed approach, including knowledge representation 
using ontologies and tasks models, relationships between them and the issues of practical implementation 
of modeling were not researched. 
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Purpose of the article 
At present, the main research in ontology modeling is focused on declarative ontologies - domain 

ontologies, and general ontologies [7]. Task ontologies and ontological models constructed on the basis of 
them are studied insufficiently. 

Historically, the tasks ontologies have been developed as a result of scientific analysis of tasks (task 
analysis). Methods of task analysis  are used to define and formalize all factors that affect or are used in the 
process of solving the problem by an expert. Such methods are widely used for designing interfaces of 
computer programs, in expert systems, decision support systems [8]. 

Task analysis is focussed on the analysis and specification of the components of common tasks and 
problems, determination of its structure and constraints. This allows the expert to better understand the 
problem, identify possible errors and omissions. Expert can simulate the process of problem solving and 
task execution and is able to evaluate the results of simulation in order to gain and pass the knowledge to 
other experts. 

The area of task analysis has experienced a significant change with the advent of ontologies. It was 
proposed to use task ontologies to formalize the concepts and relations for the any given task[9]. Unlike 
other types of ontologies, such as general or domain ontology, task ontology 

 is created for some class of tasks; 
 the concept of task goal is important and its formalization mandatory 
 the concept of action is intoduced[10] in the context of task execution; 
 task ontology modelling environment provides execution (or simulation) of actions; 
Tasks ontologies research area is closely related to conceptual modeling, because in the process of 

building of task ontology expert actually creates a formalized conceptual model for task[11]. An important 
aspect of both conceptual and ontological modeling is the interaction with domain expert who creates and 
validates an ontology. 

In the process of tasks ontology research were implemented simulation environments allowing users 
to create and execute ontological models for specific classes of tasks. The most advanced of these 
environments is CLEPE (Conceptual level programming environment) [7]. However, available research is 
focussed on studying tasks ontologies for different tasks separately. Also, the problem of task ontologies 
mathematical modelling and formal representation is not resolved. 
The goal of this paper is to build a formal model of knowledge representation in intelligent systems based 
on tasks ontologies. 

Main part. Mathematical model for knowledge representation 
The use of ontological models for software systems construction requires the development of 

mathematical groundwork and the corresponding formal models, which will be used for the formal 
representation and validation of methods used in intellectual modelling system. To construct a formal 
model approach we applied an algebra of systems [5], which defines the algebraic system by a combination 
of several algebraic domains. 

Let our application area have n sets of objects: 

 1, 2,... nA A A   

Objects from a single set are classified as instances of particular concept. Those sets are carrier sets 
for n multisort algebras. Particular exemplars belonging to those sets we will designate as 1,... na a .  

Concepts (entities) domain E. Based on each set iA  we will define an abstract data type iE   
( , , )iE Name Ex   

Where Name – type name,  - the signature of multisort algebra, Ex- definitional constraints of the 
type. The signature contains only the set of elements and does not contain operations and relations.  

Let’s designate particular types as iE  (any type, its name is yet not specified) or nameE  where name 
– type name, in case if in the context of presentation it is important to refer to specific type. Variables, 
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which are taking values of specific type we will write as nameX , or simply Name. Types iE  form a set of 
algebraic domains E, corresponding to concepts of application area. 

 1 2{ , ,..., ,}nE E E E  
Attributes domain At. Let’s define an algebraic attributes domain At on lists of attributes values 

in form of tuple (key, value). The element of tuple key specifies attribute’s id, and value – its value. 
According to [5] for this domain are defined merge, substitute, delete, interp operations. 

In practice helpful are functions defined on arguments from different domains, such as function of 
attribute’s value selection: 

( , )selvalF At key value  
Boolean domain  Cs. This domain includes expressions which are evaluating to Boolean values 

set {true, false}. Those expressions have operands belonging to different algebraic domains. Let’s interpret 
the elements of Boolean domain as constraints Cs. In Boolean domain are defined boolean operations 
{and, or, negation}, also interpretation operation interp, which is used for simplifying and calculating 
boolean expressions evaluation. An instance of boolean domain is a specific initialized constraint.  

Entities with attributes domain T. Let’s specify this domain on a set of tuples 
*, ,i j jE At Cs  . For each i exists only one j, which is a part of this domain element: 

1 : ,i ji j E At     

Each constraint *
j jCs Cs  is an expression with operands from domain jAt .  The operations 

specified on this domain’s elements are operations of meging and splitting {merge, split}. The operation of  
entities merging is defined as creation of new entitity having combined attributes and constraints from all 
parent entities.  The operation of entity splitting is reverse to merging. An instance of entity with attributes 
domain is a fact. 

Relations domain Rl. The carrier set of this domain is represented by a set of tuples: 
*

1, 2, ,{( ... , , )}r
i i k i i iT T T At Cs    

Each structure is a tuple, having cartesian product of algebraic types from domain T, and type from 
attributes domain At (which defines relation’s attributes), and a set of constraints Cs.  

Each constraint *
i iCs Cs  is an boolean expression with operands from domains 

1, 2, ,, ,..., , r
i i k i iAt At At At . 

In relation domain are defined operations of merging, splitting, substituting relations {merge, split, 
substitute}. The operations if merging and splitting are interpreted similarly to same name operations  from 
domain E. The substitute operation is understood as a reification of relation.  

Ontology is a tuple including domains of entities with attributes, relations and Boolean 
domain constraints describing constraints for entities and relations. 

*, ,On T Rl Cs   
Each relation R Rl  is defined on a set of roles 1 2{ , ,..., }nP P P :  

 1 2( , ,..., )nR P P P   

In a general case for each role kP  is specified an initialization function k
inF , which defines a subset  

of entities allowed to substitute a role:   

 :k k
in k inF P T T    

In a simplest case, when :| | 1k
ink T   for each role there is only one entity type which can initialize 

this role. In this case in relation we can substitute roles with corresponding entities from ontology: 

1 2( , ,..., )nR E E E  
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The entities from ontology form an hierarchical structure (taxonomy) using inheritance (is-a) 
relation isaR  

Binary relation isaR  is defined on an ordered pair of roles Child-Ancestor:  

 ( , )isa ch prR P P   

Inheritance relation is transitive, so if 1 2( , )isaR E E  and 2 3( , )isaR E E  then 1 3( , )isaR E E holds. 

Let’s create a function prF  which for every entity jE  defines an ordered list of its ancestors 

1 2( , ,..., )kE E E , so 1( , )isa i iR E E   and 1( , )isa jR E E hold. Also we will define a function 1( )pr jF E  which 

returns an immediate ancestor of jE  entity or empty set  . 

An important kind of relation is Whole-Part relation (has-parts): ( , )has wh ptR P P , where whP  - is the 

role of Whole, а ptP  - is a role of Parts. A subtype of this relation hasR  defines specific entities for Whole 

and sets of allowed entities – for Parts: 

 1 2( ,{ , ,..., } )n
has wh pt pt ptR E E E E     

For the sake of simplicity we will use such notation for such relation representation: 

 1 2( , ,...., )n
wh pt pt ptE E E E   

On the other hand relations and models can be also considered as  separate entities from ontology.  
In algebraic type system T  those entities are represented by data types which store metadata about those 
models and relations. 

An important part of relation definition in ontology are consistency constraints applied to entities in 
relation and relation itself. In our system those constraints are represented by set of boolean expressions 

,Rl iCs  for each relation type iRl , which should evaluate to true:    

 , , : ( )i i
Rl i Rl i Rlcs Cs ev cs true     

where ev() – is an evaluation function. 
In some cases constraints are also applied to attributes of entities. Let’s consider those constraints as 

consistency constraints for unary relations.  
Let’s defne function TypeParents() which for every type iT  will return an ordered list of it’s 

supertypes and is a transitive closure of inheritance relation.  

 1 2( ) ( , ..., )n
iTypeParents T T T T   

where 1iT   is a supertype for iT  
We will also define function TypeName(), which for every data type T returns its unique identifier 

(name, description) of this type. For example for data type MDT , corresponding to model: 

 ( ) " "MDTypeName T Model   
For instances t of every type T we will define function which return  its type:  

 ( )Type t T   
Let’s name the multiset of instances of T as ( )Population T . 

 ( ) { | ( ) }Population T t Type t T    

Let’s denote the multiset of instances of type iT  as  ît : 
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ˆ ˆ| : ( )
ˆ ( )
i i i i i

i i

t t t Type t T
t Population T
  


  

An abstract datatype which correspond to multiset of instances ît  we will denote as îT  
In general case every object o  can be identified as belonging to multiple types.  
Let’s define a function TypeId(), returning a set of types which can be associated with a given 

object. 

 1 2( ) { , ,..., }m
o o oTypeId o T T T   

In cases when a semantic interpretation of a given type is important we will show type name as an 
index. For example, let’s denote a model datatype as MDT , a particular model instance as -  MDt , and 

multiset of model instansies as - M̂Dt . 

We will specify a task ontology TSOn  which is a part of general ontology On and contains objects 
used for this particular task execution 

TSOn On  
Ontological model Md will be defined as three elements tuple: 

* *, ,TS TS TSMd On Ac Cs   

Where TSOn  – is a task ontology, *
TSAc - set of actions, *

TSCs - a set of additional constraints. 
Action Ac is an entity with attributes (algebraic domain T), which is interpreted as a command to 

some externale service or command to execute another model. Parameters are specified for this command. 
Those parameters arte obtained from attribute’s values of elements included in TSOn (or they are defined 
as constants). We will introduce an initialization function InstPar specified as a set of mappings between 
action attributes and attribute’s values of elements included in ontological model: 

, , , ,

, ,

: ( , ) ( , )

,

l i l i l j l k
l

l i l l j TS l

InstPar Ac pkey SelValue At key

Ac Md At On Md



  
 

In the table below are shown algebraic domains used in mathematical model 
Table.   Algebraic domains of model 

Domain Carrier set Operations 
Entities (n 
domains) – E 

{ | ( ) }i i ia Type a E  facts if specified types  

Attributes – At {( , )*}key value  {merge, substitute, delete, interp} 

Boolean domain 
Cs 

{true, false} {and, or, negate, interp} 

Entities with 
attributes –T 

*{( , , )}i j jE At Cs  {merge, split} 

Relations *
1, 2, ,{( ... , , )}r

i i k i i iT T T At Cs    {merge, split} 

Ontology *( , , )T Rl Cs  {merge, split} 

Ontological 
models 

* *{( , , )}TS TS TSOn Ac Cs   

 

The structure and working of the modelling system 
The modelling system, which implements the proposed approach consists of the following 

components: ( Fig. ) Information base contains facts about objects and events of the outside world required 
for executing tasks by the system. All facts are semantically interpreted, that is presented as objects of 
certain types defined in ontology . Facts in the information base are ordered by time, allowing to track the 
state of an information in arbitrary time moment or analyse effects of some change. The information base, 
ontology and model repository together form a knowledge base system. 
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Fig. The structure of modeling system 

Ontology contains a domain model presented as a taxonomy of classes. This creates the possibility 
of unambiguous interpretation of all objects from information base, identify common attributes and 
properties for them. In addition, the ontology includes relations, rules and constraints that are common for 
a given domain.  

When describing complex ontology rules and constraints references to models can be used including 
dynamic constraints, i.e. the value of which depends on the state of information base or the outside world. 

The system reacts to a defined range of events in the external world and handles this by creating new 
or modifying existing facts. In order to process those events, a suitable model shoul be developed. 
The important components of the modelling system are services which ensure the execution of models, 
their interactions, obtaining the required information from external sources. 

In this way the Model Execution Manager starts, and stops models, monitors the usage of resources. 
The Broker finds relevant models fot task at hand, initializes them, preparing for execution. Information 
provider  on model’s request looks for needed data in external sources and semantically interprets search 
results.   

Models perform operations according to their logic, and send requests to extermal services. For 
example, those services can be operational system services, enterprise information system services built 
according to SOA guidelines [12] or arbitrary web-services. 

Processimg knowledge in modelling system 
Ontological models and their relations form a network of type NMDT , which is defined as a set of 

model multisets of different model types M̂DT  and their relations R̂MDT . 

  ˆ ˆ{ , }NMD MD RMDT T T  
Differently from ontology entities, models don’t form a strict hierarchy, but form a dynamic network 

where relations and model themselves can change reflecting the process of learning, changes in external 
world or even in process of particular task execution. 

Each model can be in active or passive state. Accordingly, the set of fact- models can be split in two 
subsets of active and passive models: 
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ˆ ˆ( )
ˆ ˆ

ac ps
MD MD MD

ac ps
MD MD

Population T t t
t t

 

 
 

where  ˆ ˆ,ac ps
MD MDt t   are multisets of active or passive fact-models.  

Active model is a model initialized by information from specific context. Models goes active on 
command from other models or when specified events occur. Active models are used for executing current 
tasks in system or interpreting knowledge. If active fact-model is no longer needed (result obtained,   goal 
reached) then fact model goes into passive state and is archived. 

Model relation (interaction) RMDT  - is a data type which reflects an activation relation. It is used in 
making decision about model activation.   

Let’s consider the model activation process in more detail. Model activator initiates activation 
process when in order to execute its main task it needs to execute helper-tasks represented by other models. 
For example, if input data obtained by model from context are not fully defined, it activates other models 
to fill data gaps. This may require additional searches in databases or web, or even asking human expert. 
For each type of model relation i

RMDT  exists a class of tasks j
PRT  which should be executed in process of 

model interaction. Additionally for class of tasks j
PRT  exist a set of models ˆ j

MDT  which can be used for 
executing tasks of this class.  

During model interaction are executed sequentially the tasks of relevant models definition, optimal 
choice of a model-candidate from the set of relevant models and model-candidate initialization.  

The relevance function is a mapping of current context CONt  and the set of alternatives M̂Dt  into 
Boolean set {true, false} 

 ˆ: ( , ) ( , )rel CON MDF t t true false    
Relevance function allows to form a set of relevant models: 

  ˆ ˆre
MD MDt t   

 i.e. models re
MDt   for which holds 

   ( , )re
rel CON MDF t t true   

If the set of relevant models is empty, modeling system informs model-activator that required task 
cannot be executed.  

In process of optimal choice task execution in a set of relevant models is selected one model op
MDt . 

The usage of this model maximizes a selection function chF  taking in consideration selection criterea ĈRt  

and context CONt .  

  ˆ( , , ) maxop
ch MD CR CONF t t t    

 Initialization function inF  maps current context CONt  to a set of selected model’s attrubutes values –

VSLt .  

  :in CON VSLF t t   

In summary let’s define RMDT  as a set: 

   ,
ˆ{ , , , }RMD PR MD rel ch inT T T F F F  

Model type MDT  includes schema type SCMT   and realization type IMDT : 

   { , }MD SCM IMDT T T   



 8 

The schema of model specifies its structure, components, defines rules and constraints of model 
usage and also a list of possible interactions and operations. Schema is a part of model externally visible.  
It is used for interactions with model. 

The shema of model has slots ŜLMT , their relations R̂SMT , rules R̂UMT , constraints ĈSMT , and 

operations ÔPMT : 

ˆ ˆ ˆ ˆ ˆ{ , , , , }SCM RO RRO RUM CSM OPMT T T T T T  

Slot in model is an attribute - role. For each slot is defined function RGF  which specifies a set of 

types ˆ RG
CLT , which instances are allowed to initialize this slot: 

ˆ: RG
RG SLM CLF T T  

For each slot is defined rules and constraints within slot’s scope  – R̂USMT , ĈSSMT , operations on 

slot’s values ÔPSMT : 

ˆ ˆ ˆ ˆ{ , , , }RG
SLM CL RUSM CSSM OPSMT T T T T  

The relation of slots RESMT  is specified bu a set of slots it links ˆ resm
SLMT , and a set of ontology entities 

used for semantic relation interpretation – ˆ resm
CLT , the set of models used for operations with relation – 

ˆ resm
MDT . 

ˆ ˆ ˆ{ , , }resm resm resm
RESM SLM CL MDT T T T  

For each instance of relation, linked slots belong to model’s slots: 

ˆ ˆresm
SLM SLMt t  

Model relation corresponds to one of relation types specified in ontology On: 

( )RESM RESMTypeEn T E E   
Model, describing relation, belongs to a set of models in system: 

( )resm
MD MDt Population T  

Let BFCt  - to be a state of information base. We will define a type for a goal GLT   for which every its 
instance is a specification of a set of information base states where goal is achieved: 

 ˆGL
GL BFCt t   

For goal definition it is handy to define goal function which allows to check whether in particular 
state BFCt   goal Gl is achieved: 

 
|

( )
|
BFC GL

gl BFC
BFC GL

true t t
F t

false t t
 

    
  

Goal function can be specified, for example, as a ordered list or assertions ÂSRt  about information 
base facts which can be verified. 

ˆ( ) ( )gl BFC ASR BFCF t t t   

where ( )ASR BFCt t  – is an assertion about values of atrributes of facts and their relations inn state 

BFCt .  
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Each assertion ( )ASR BFCt t  is a function defined on Boolean set {true,false}: 

 ( ( )) { , }ASR BFCRange t t true false       
Where function Range(f) specifies the area of function definition f. 
So,  

ˆ( ) ( ) ( ) : ( )gl BFC ASR BFC ASR BFC ASR BFCF t true t t t t t t true         
Executable ontological models are intended for resolving specific tasks defined by their goals. For  

simplification of model search it is advisable to organize information about models as an ontology of goals  
OnGlOn , having their own entities and relations. In this ontology we will define model categiries 
according task classes resolved.  So, for example we can define classification models, algorithmic nodels, 
access control models etc. The information about fact-models is used by Model Execution Manager. The 
Broker is using goal ontology to find model suitable for current task execution. 

Conclusion 
Research and development of mathematical models of intellectual systems using ontologies and task 

models allows to understand theoretical aspects of those systems, elucidate their constraints, provide 
validation and verification for systems of ontological models.    
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