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The stochastic game model of the data clustering under the influence of noise is offered. 
Adaptive rerrurent method and algotithm of stochastic game solving are developed. Computer 
modelling of game of noisy data clustering is executed. The parameter influences on convergence of 
stochastic game method of the data clustering are studied. The analysis of received results is 
realised. 

Keywords – data clustering, stochastic game model, adaptive game method. 

Introduction 
The solving of problems of the intellectual analysis and visualisation of the data, pattern recognition and 

grouping, extraction of knowledge and information search, classification of objects can be executed by means of  
of the cluster analysis methods. Findings of groups of similar objects in sets are the purpose of the cluster 
analysis. Unlike the discriminant analysis where classes are obviously set, the cluster analysis carries out a 
definition of the cluster structures [1, 2]. 

The cluster analysis uses in chemistry, biology, medicine, sociology, pedagogics, psychology, philology, 
marketing, processing of signals, pattern recognition, scientific discipline of documentation, computer science, 
scientific work and other areas of human activity for a data structure in the form of classes for the purpose of 
their ordering and the group analysis [3–10]. 

Clustering is a division of set of objects into subsets depending on their similarity. The allocated subsets 
are called as clusters. Elements of one cluster have the general properties. Elements of different clusters 
considerably differ among themselves.  

The general scheme of data clustering is the such: 
1) Allocation of characteristics of objects; 
2) Definition of the metrics of objects; 
3) Division of set of objects on clusters; 
4) Interpretation of results clustering. 

In statements of the clustering problems the quantity of clusters can be set in advance or to be the 
unknown a priori [11].  

Let each object x X  from set of objects 1 2( , ,..., )LX x x x  is described by a vector of properties 
( [1], [2],..., [ ])x x x x m  which can be quantitative or qualitative characteristics of object.  

Similarity of two objects ix  also jx  is defined by the metrics of their affinity ( , )i jD x x  in space of 

characteristics. As the metrics use an Euclidean distance, a Manhatten distance, distance of Tchebyshev, 
discrepancy percent, factor of Pierce correlation, etc. [3].  

For division of set of objects on clusters use such methods [3, 4] more often: 
1) Hierarchical treelike clustering; 
2) A method of k-averages; 
3) A method of the nearest or most remote neighbour; 
4) A method of not weighed or weighed paired average; 
5) Methods indistinct clustering; 
6) Application of neural networks; 
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7) Genetic algorithms; 
8) A temper method. 

Generally a clustering objects it is possible to consider as a problem of optimum division of objects on 
groups. Minimisation of a root-mean-square error of allocation of clusters can be criterion of optimisation: 

2( )

1 1

min
jCN

j
i j

j i

x x
 

   , 

where jx  is the center of mass of cluster with number j , a point in space of characteristic vectors with an average 

for this purpose cluster value of characteristics; jC  is a quantity of elements of cluster with number j . 
Substantial interpretation generated clusters in which course find out factors or the reason of grouping of 

objects in clusters is the closing stage of the cluster analysis. Here it is necessary to consider that different cluster 
methods can generate different cluster solutions. Besides, the cluster method can find out the introduced 
structures of the data which actually are not present in the analyzed data. Therefore, it is necessary to select those 
cluster methods which give the most intelligent decisions in an investigated subject domain. For quality 
estimation of data clustering involve experts of corresponding subject domains. 

On the basis of results of the cluster analysis it is possible to carry out classification of objects, revealing 
of conceptual schemes of grouping of objects, check and formation of hypotheses concerning data structure 
models, compression given by replacement a cluster its typical element, revealing of novelty of the data which 
have not entered into one of clusters. 

A number of means to which popular software packages (Matlab, Fuzzy Clustering and Data Analysis 
Toolbox, Cluster Validity Analysis Platform) and commercial implementations (SPSS Statistics, STATISTICA) 
belong is developed for the solving of problems of the data clustering. Software of the data clustering give such 
possibilities: 1) methods of the data clustering (K-means, K-medoid, PAM, Hierarchical, SOM, FCMclust, 
GKclust, GGclust, etc.); 2) the functions of the analysis intended for estimation of fixed divisions on clusters  by 
methods, based on indexes (Dunn, Alternative Dunn, Xie and Beni's, Partition index, etc.); 3) functions of 
visualisation which carry out display of the data in space of smaller dimension (Sammon); 4) demonstration 
examples which realise algorithms for the real industrial data.  

Intended for the data clustering, as a rule, contains uncertainty elements in practical applications. It can be 
indistinctly set characteristics of the objects, the passed attributes of objects in databases, the noise signals, etc. 
In the conditions of uncertainty apply methods indistinct, adaptive clustering, genetic algorithms, neural 
networks with learning without the teacher [12–16].  

The data clustering is formulated as a competitive or co–operative problem of reference of object to this or 
that cluster. Problems of a competition and cooperation of objects are studied by the theory of games, and in the 
conditions of uncertainty – the theory of stochastic games [17]. Therefore actual from scientific, informative and 
practical points of view there are applications of methods of stochastic games for the data clustering in the 
conditions of uncertainty.  

Construction of game model of the data clustering with uncertainty elements is the purpose of this work. 
For purpose achievement it is necessary to solve such problems: to carry out a formulation of a game problem of 
the data clustering, to develop an adaptive game method and algorithm of a problem solving, to develop 
computer program model, to analyse and interpretation of the received results.  

Statement of a game problem 

Let the set 1 2{ , ,..., }LX x x x  is set by co-ordinates of points mx R  in m -dimensional parametrical 
space. Co-ordinates of points define the normalised characteristic vector of the objects intended for the data 
clustering. In this set it is necessary to allocate of N  clusters 

 1..
, 1.. , ( , ) {1.. }n n i jn N i j

Y n N Y X Y Y i j N
 

        behind criteria  
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where | |n nC Y  is a quantity of elements which are included in cluster nY ; 1R   is an Euclidean norm of a 
vector. 

Set distribution X  on clusters nY  ( 1..n N ) we will execute a method of stochastic game which is set by 

a tuplet ( , , | )i iI A i I   where I  is a set of players; | |L I  is a quantity of players; { (1),..., ( )}i i iA a a N  is a 
set of pure strategies of the player with number i  which define a choice of one of clusters; N  is a quantity of 
strategies of the player with number i ; 1:i A R   is a function of losses of the player with number i ; i

i I
A A


   

is a set of the combined strategies of players.  
The game essence consists in random moving of players from one cluster to another. For this purpose 

during time moments 1,2,...t   each player on the basis of the generator of random events irrespective of other 
players chooses pure strategy i ia A  which defines its occurrence in corresponding cluster. Taking into account 
(1), after realisation of the combined variant a A  players receive random losses ( )i a  with a priori unknown 
stochastic characteristics: 

 1i i j i j
t t ti

j It

a a x x i I
C

  


      ,                                             (2) 

where  i i j
t t t

j I

C a a


   is a current quantity of cluster elements which joins the player with number i  ; 

( ) {0,1}    is a display function of event; ~ (0, )Normal d  is normally distributed random variable which 
models uncertainty of system; d  is a dispersion of distribution.  

Efficiency of a course of game is defined by functions of average losses:  

1

1 t
i i
t t 






         i I  .                                                       (3) 

The game purpose consists in minimisation of system of functions of average losses (3) in time: 
lim mini

tt
      i I  .                                                         (4) 

So, on the basis of supervision of current losses { }i
n  each player i I  should learn to choose pure 

strategies { }i
ta  so that eventually 1,2,...t   to provide performance of system of criteria (4).  

Depending on a method of formation of sequences of strategies { }ita i I   the solving of a game problem 
will satisfy one of conditions of collective balance, for example, Nesh equilibrium or Pareto optimality.  

Method of the solving problem 
The solving of stochastic game (1) we will execute by means of adaptive recurrent transformations of 

vectors of the mixed strategy. 
Construction of a method of the stochastic game solving we will satisfy on the basis of stochastic 

approximation of a complementary slackness condition of the determined game, fair for the mixed strategies in a 
equilibrium point on Nesh [18].  

For this purpose we will define polylinear function of average losses of the determined game: 

;

( ) ( ) ( )
j

i i j j

a A j I a a

V p v a p a
  

  , 

where ( ) { ( )}i
tv a M a . 

Then the vector complementary slackness condition (CS, Complementary Slackness) will look like: 

CS= ( ) ( ) 0i
i

Ni i
p V p e V p



        Di , 
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where ( )i
i

p V p  is a gradient of function of average losses; (1 | 1.. )N
je j N   is the vector which all 

components are equal 1; Mp S  are the combined mixed strategies of players set on a convex unit simplex MS  
( LM N ). 

For the account of solutions in vertices of an unit simplex we will satisfy weighing of components of a 
complementary slackness condition elements of vectors of the mixed strategies: 

( )( ) 0idiag p CS


  Di ,                                                       (5) 

where )( ipdiag is the square diagonal matrix of an order N  constructed of elements of a vector ip .  

Considering that ( )[ ] { [ ( ) ] | }i
i

Ni i i i i i i i
t t t tp

diag p V e V E e a p p p     , with (5) on the basis of a method of 

stochastic approximation we will receive recurrent expression: 

 11 ( ( ) )
t

i N i i i i
t t t t t tp p e a p  

     Di ,                                          (6) 

where
1t

N
 

 is a projector on unit N -dimensional a simplex NS  [19]; 0t  , 0t   is monotonously decreasing 

sequences of positive quantities; ( )i
te a is an unit vector which specifies in a choice of pure strategy i i i

ta a A  . 
Parameters t  and t  define conditions of convergence of stochastic game and can be set so:  

t t    , t t     ,                                                               (7) 
where 0  ; 0  ; 0  ; 0  .  

Convergence of strategies (6) to optimum values with probability 1 and in the root-mean-square is defined 
by parities of parameters t  and t  which should satisfy base conditions of stochastic approximation [20]. 

Projecting on expanded an t -simplex 
1t

NS 
 provides performance of the condition [ ] , 1..i

t tp j j N   

necessary for completeness of the statistical information on chosen pure strategy, and parameter, 0t   
1,2,...t   is used as an additional element of management by convergence of a recurrent method. 

The choice of pure strategy i
ta  is carried out by players on the basis of dynamic random distributions (6): 

1
( ) arg min ( ( )) , 1..

k
i i i i
t t tk j

a A k k p a j k N


        
   

  i I  ,                             (8) 

where [0, 1]  is a valid random number with uniform distribution. 
Stochastic game begins from not learnt vectors of the mixed strategies with values of elements 

0 ( ) 1/ip j N  where 1..j N . During following moments of time dynamics of vectors of the mixed strategies is 
defined by a markovian recurrent method (6) – (8).  

At the moment of time t  each player on the basis of the mixed strategy i
tp  chooses pure strategy i

na  for 

what by the time of time 1t   receives current loss i
t  then calculates the mixed strategy 1

i
tp   according to (6). 

Thanks to dynamic reorganisation of the mixed strategies on the basis of processing of current losses, the 
method (6) – (8) provides an adaptive choice of pure strategies in time.  

Quality game of the data clustering is estimated: 
1) function of average losses:  

1

1 L
i

t t
iL 

   ,                                                                   (9) 

where | |L I  is a cardinal number of set of players; 
2) average norm of the mixed strategy of players: 

1 1

1 t L
i

t
i

p
tL 

  

   .                                                              (10) 
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Algorithm of the stochastic game solving 

1. To set initial values of parameters:  
0t   – it is the initial moment of time; 
| |L I  – it is a quantity of players; 

1 2{ , ,..., }LX x x x  – it is a set of the parameters intended for clustering; 

m  – it is a quantity of measurements of parameters mx R ; 
N  – it is a quantity of pure strategies of players (quantity clusters nY , 1..n N ); 

{ (1), (2),..., ( )}i i i iA a a a N ,  ( )ia j j , 1..i L , 1..j N  – these are vectors of pure strategies of players; 

0 (1/ ,...,1/ )ip N N , 1..i L  –  these are the initial mixed strategies of players; 
0   – it is a parameter of a step of training;  
(0,1]   – it is an order of a step of training; 

  – it is a parameter an  -simplex;  
0   - it is an order of speed of expansion an  -simplex;  
0d   – it is a dispersion of noises;  

maxt   – it is a maximum quantity of steps of a method. 

2. To choose variants of actions i i
ta A ,  1..i L  according to (8). 

3. To receive values of current losses i
t , 1..i L  according to (2). Current values of Gaussian white noise 

are estimated so: 

 
12

,
1

6t j t
j

d 


 
  

 
 ,  

where [0,1]  is a valid random number with the uniform law of distribution. 
4. To calculate value of parameters t  and t  according to (7). 

5. To calculate elements of vectors of the mixed strategies i
tp , 1..i L  according to (6). 

6. To calculate the characteristics of quality clustering t  (9), t  (10). 
7. To set the following moment of time : 1t t  . 
8. If maxt t  then go to a step 2, differently – the end.  

Results of computer modelling 
The decision of stochastic game of the data clustering we will execute by means of a game method (6) – 

(8) with parameters: 2m  , 2N  , (1,2)iA  , 1  , 0.999 / N  , 0.01  , 2  , 5
max 10t  .  

Let within base set 1 2Y Y X   it is visualised two nonempty subsets 1 2Y Y X  . We will consider such 
three variants of the organisation of set of the points intended for the data clustering. 

Variant 1. Subsets are not crossed: 1 2Y Y  . The distance between subsets exceeds diameters of 

subsets: 1 2 1( , ) ( )S Y Y D Y , 1 2 2( , ) ( )S Y Y D Y , where 
1 1 2 2

1 2 1 2,
( , ) min

y Y y Y
S Y Y y y

 
  , 

1 2
1 2,

( ) max
z z Z

D Z z z


  .  

These conditions are satisfied with set {{(1,3),(3,1),(3,3)},{(7,7), (7,9),(9,7)}}X  . Subsets 

1 {(1,3), (3,1),(3,3)}Y   and 2 {(7,7),(7,9),(9,7)}Y   are not crossed. Application of a method (6) – (8) 
provides the stochastic game solving in pure strategies. For this variant of the data the game decision is 
the such: 1 {(1,3), (3,1),(3,3)}Y  , 2 {(7,7),(7,9),(9,7)}Y  . 

On Fig. 1 in logarithmic scale schedules of functions of average losses of players t  and average norm of 
the mixed strategy t  which characterise convergence of stochastic game of the data clustering are represented.  
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Fig. 1. Characteristics of convergence of stochastic game 

The game method (6) – (8) provides minimisation of function of average losses in time. Function of 
average norm of the mixed strategies aspires to logarithmic zero that illustrates the game solution in pure 
strategies.  
 The order of speed of convergence of a game method is defined by a proportion of parameters  and  . 
Base conditions of stochastic approximation [20] should satisfy value of these parameters.  
 Dependence of average quantity of steps t  of game learning on parameter   is resulted on Fig. 2. Value 
t  is averaged on exp 100k  realisations of random processes. The moment of a stop of game is defined by a 

condition 0.99t   of approach of average norm of the mixed strategies to 1 and correct reference of elements 
of set X  to one of clusters 1Y  or 2Y  (how these are visualised clusters in set X ). Results are received for value 
of a noise dispersion 0d  .  

 
 Fig. 2. Influence of parameter  on convergence of game 

 For a solved problem growth of value of parameter   from 0 to 0.7  does not lead to considerable 
deterioration of convergence of stochastic game. Considerable growth of average quantity of steps of game takes 
place at 0.7  .  

The investigated stability of stochastic game at influence of the white noise. Influence of a noise 
dispersion d  on value of average quantity of steps t  of the data clustering game is represented on Fig. 3. 
Results are received for values of parameters 0.3   and 2  .  

 
Fig. 3. Influence of a dispersion d  on convergence of game 
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Value of a dispersion [0;50]d  does not render essential influence on the problem solving of  the data 
clustering by means of a game method (6) – (8). Growth of intensity of noises ( [0;50]d  ) leads to considerable 
growth of average quantity of steps of the game necessary for correct reference of elements of set X  to one of 
clusters 1Y  or 2Y at level of training of game 0.99t  . The established borders of change of a dispersion depend 
on absolute values of current losses of players.  

At distance reduction 1 2( , )S Y Y  between subsets 1Y  and 2Y  (when conditions of a variant 1 are violated) 
their limiting elements can be carried both to a subset 1Y  and to a subset 2Y . 

Variant 2. Subsets are crossed: 1 2Y Y Y   . In the general subset there are the points y Y  
placed on identical distance from subsets 1Y Y  and 2Y Y : 1 2| ( , ) ( , ) |s y Y Y s y Y Y     , where 

( , ) min
z Z

s y Z y z


  . 

These conditions are satisfied with set {{ (1,3),(3,1), (5,5)}X  , {(5,5), (7,9),(9,7)}} . The point 
(5,5) Y  is on identical distance from subsets 1 { (1,3), (3,1)}Y Y   and 2 {(7,9),(9,7)}Y Y   and with 
identical probability can be carried both to cluster 1Y  and to cluster 2Y . For the set initial data the method (6) 
– (8) provides the stochastic game solving in pure strategies. The such are possible solutions:  

1) 1 {(1,3), (3,1),(5,5)}Y  , 2 {(7,9),(9,7)}Y  ; 
2) 1 {(1,3),(3,1)}Y  , 2 {(5,5),(7,9),(9,7)}Y  . 
Variant 3. In set X  are not visualised subsets 1Y  and 2Y : 1 2X Y Y  .  
Let {(4,6),(5,5),(6,4)}X  . This variant is a partial case of a variant 2. The set X  can be divided on 

clusters according to criteria (4). At 2N   possible decisions there are such:  
1) 1 {(4,6), (5,5)}Y  , 2 {(6,4)}Y  ; 
2) 1 {(4,6)}Y  , 2 {(5,5),(6,4)}Y  .  
In borderline cases, for example, when the 0 | | 2X   method (6) – (8) provides the game problem 

solving of the data clustering in the mixed strategies. On Fig. 4 characteristics of convergence of stochastic game 
of division of base set {(4,6),(6,4)}X   on 2N   clusters are represented. Game parameters are the such: 

0.3  , 2  , 0d  .  

    
Fig. 4. Characteristics of convergence of stochastic game 2 2  

Apparently on Fig. 4, function of average norm of the mixed strategies t  does not reach value of 
logarithmic zero that testifies to the game solving in the mixed strategies. The such are possible solutions:  

1) 1 {(4,6), (6,4)}Y  , 2Y  ; 
2) 1Y  , 2 {(4,6),(6,4)}Y  ; 
3) 1 {(4,6)}Y  , 2 {(6,4)}Y  ; 
4) 1 {(6,4)}Y  , 2 {(4,6)}Y  . 
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Growth of capacity of set X  and corresponding growth of quantity of players leads to reduction of speed 
of convergence of stochastic game that is shown in growth of quantity of the steps necessary for the data 
clustering.  

On Fig. 5 the schedule of average quantity of steps of stochastic game learning from quantity of the input  
data is represented. Results are received for such values of parameters of a game method: 0.3  , 2  , 

0d  , 2N  . Intended for the data clustering is received randomly by means of the normal law of distribution 
of co-ordinates of points on a plane. It is generated two areas of a concentration of points with parameters of 
normal distribution ( {(5,5)}, (9))Normal E d  and ( {(10,10)}, (9))Normal E d . The moment t  of end of game is 
defined from a condition 0.99t  . The received results are averaged on exp 100k   experiments.  

 
Fig. 5. Dependence of average quantity of steps of game on quantity of clustering points  

By results of experiments it is visible that with increase in quantity of the points intended for the data 
clustering, the quantity of the steps necessary for training of stochastic game of ability to divide the data on 
clusters increases. 

Achievement of characteristics of convergence of stochastic game comprehensible to practical 
applications is defined by thin adjustment of parameters of a game method within the limits of base parities 
which are given by the theory of stochastic approximation [20].  

Conclusions 
In this article the new method of the data clustering, based on results of the theory of stochastic games is 

offered. The developed and investigated game method (6) – (8) provides the problem solving of the noise data 
clustering. For this purpose each point of set of the data is considered as the separate player with possibility of 
learning and adaptation to system uncertainty. Pure strategy of players is the choice of one of the fixed quantity 
clusters. After choice end of clusters calculation of corresponding losses behind criteria of minimisation of total 
distance between points of clusters, strategy of players created by a free choice occurs all players. The received 
losses are used by players for reorganisation of dynamic vectors of the mixed strategies taken as a principle of 
the random mechanism of generating of pure strategies of players. The method of reorganisation of the mixed 
strategy (6) constructed on the basis of stochastic approximation provides minimisation of functions of average 
losses on unit simplexes.  

The problem solving of the data clustering is carried out during the decision of stochastic game in real 
time on the basis of gathering of the current information and its adaptive processing.  

The developed program model confirms convergence of an adaptive game method (6) – (8) during the 
problem solving of the data clustering. Efficiency of a game method is estimated by means of characteristic 
functions of average losses and average norm of the mixed strategies. Convergence of a game method depends 
on dimension of stochastic game, intensity of noises and parities of parameters of a game method. At growth of 
quantity of players and intensity of noises speed and efficiency game of  the data clustering decrease. Reliability 
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of the received results proves to be true repeatability of values of the calculated characteristics of stochastic 
game for different sequences of random variables. 

The offered game method (6) – (8) of the data clustering belongs to a class of methods which are based on 
processing of reactions of environment on action of agents, and has rather low, sedate speed of convergence that 
is connected with aprioristic uncertainty of system. Information gathering is carried out in the course of learning 
by adaptive reorganisation of vectors of the mixed strategy proportionally to values of current losses. This lack is 
overcome by high speed of modern computer aids and possibility of paralleling a game problem.  

Unresolved in this work there was a question of independent definition of quantity of clusters during the   
stochastic game solving of the noise data clustering.  
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