
 1 

UDC 004.9 

Natalya Shakhovska 
Lviv Polytechnic National University 

Information systems and networks department 

DATASPACE ARCHITECTURE AND MANAGE ITS COMPONENTS 
CLASS PROJECTION  

© Natalya Shakhovska., 2013 
Constructed architecture data space. Specifics debug operation data space as a complex system. 

Keywords: space data translator requests metalanguage 
Побудовано архітектуру простору даних. Описано особливості налагодження 

функціонування простору даних як складної системи. 
Ключові слова: простір даних, транслятор запитів, метамова 
Big data is very popular in last year, because prognoses information count in 2015 may be 1024. The 

companies made decisions by transaction data from relation databases. By the way, without this data we 
have nontraditional unstructured or semi-structured data such as web-server logs, social networks, e-mail 
servers, photos. They can be used for useful information getting. That’s why we must work with several 
formats of data [3]. 

Data space is block vector. It consists of the set of information products of subject area. Those 
products are structured on three blocks: structured, semi-structured and unstructured data. We have the set of 
operation and predicates on this blocks and its elements. 

In thesis there is projected dataspace architecture as information technologies for working with big 
data. 

1. Data space architecture 
Dataspace architecture consists of several levels and has such levels as data level, manage level and 

metadescribe level (Fig . 1).  

 
Fig. 1. Dataspace architecture 

The modules structure of dataspace is described on Fig. 2.  



 2 

Module for work
with metadata

Data catalogue

Profile

Query

Data sources

Intelligance
agent

Module for text
transformation
in semantic net

ії

Consolidated
data loader

Consolidated
datawarehouse

Parameters
query

datawarehouse

Модуль
очистки
даних

Data
uncertainty
elemenation

module Quality
determination

module

Значення
функції якості

Data source
management

module
Dictionary

Module for
data

monitoring

Module for query
transformation

Quality  function
parameters

management
module

SQL dialect
translator

Module
estimates the

execution
time

Data structure for
consolidated

datawarehouse
making module

Module for
user

permission
determination

Module for
working with
data sources

 
Fig. 2. Dataspace structure 

Data level consists of information products of dataspace. Data level on Fig. 2 described as cloud. 
Manage level consists of modules for dataspace organization and manage [1,2]: 
 Module for user permission determination (by user authorized procedure), 
 Query transformation module (by interpretation method), 
 Module for working with metadata (by find operation as query to metadata), 
 Sources access by type module (by standard data exchange protocols usage); 
 Module for text transformation in semantic net (by the semi-structured data analysis method),  
 Intelligent agent (based on the formal description of intelligent agent determine the structure of 

the data source, the algorithm of the intelligent agent) 
 Data structure for consolidated datawarehouse making module (based on the method of 

construction of consolidated data repository schemes and work smart agent determine the 
structure of the data source), 

 Consolidated data loader (based operations consolidation, data consolidation method), 
 Module purification data (based on advanced operators cut, coagulation operator, method of 

forming a system of norms and criteria, method of analysis, filtering and converting input data), 
 Data uncertainty elimination module (based on the method of application of classification rules 

and modified operator eliminate uncertainty in the network structure of the consolidated data. 
The method of construction schemes consolidated data repository and work smart agent 
determine the structure of the data source), 

 Quality determination module, 
 Quality  function parameters management module (based methods control elements data space 

based on the function of the quality and levels of trust), 
 Data source management module (на основі методики керування елементами простору 

даних на основі значення функції якості та рівнів довіри), 
 Module for data monitoring, 
 Module estimates the execution time (based on the standard of fixing runtime)SQL dialect 

translator (by the SQL description). 



 3 

Level control models of platform is maintenance DS. 
The meta descriptions level containing all the basic information about the data sources and methods to 

access them. Also there are defined methods of data processing: for structured sources - selection, grouping, 
etc., for semi-structured and unstructured - definition of structure or search by keyword. 

In addition, the dataspace also provides data storage for storing user profiles and temporary storage 
request parameters. 

2. Technological aspects 
For realization of data integration from different sources we used SQL Server Integration Services, 

SSIS. SSIS has a flexible and scalable architecture that provides effective data integration in today's business 
environment. 

SSIS consists of the support tasks thread kernel and kernel support for the data stream. The support 
tasks thread kernel is oriented on operations.  The flow of data exists in the context of the total flow 
problems (fig. 3). 

 
Fig.3. SSIS integration schema 

The core of SSIS is the pipeline data conversion. The architecture of the pipeline supports buffering, 
that allowing the conveyor to quickly work with the manipulation of the data sets once they are loaded into 
memory. The approach is to perform all phases of ETL-process of converting data in one operation without 
intermediate storage. Although the specific requirements for the conversion of operations or conservation 
may be an obstacle in the implementation of this approach. 

SSIS if possible even avoid copying data in memory. This is fundamentally different from traditional 
ETL-tools that often require intermediate storage at almost every stage of processing and data integration. 
SSIS transforms all data types (structured, unstructured, XML, etc.) before loading into their buffers into a 
relational structure. 

Service Integration SQL Server 2008 is optimized for connections via ADO.NET (previous versions 
were optimized for OLE DB or ODBC). ADO.NET using simplifies system integration and support of third 
parties. Integration Services SQL Server 2005 used OLE DB to perform important tasks such as search 
operations (lookups), but now for all tasks associated with data access, you can use ADO NET. 

As the scale of integration solutions often productivity increases only to a certain limit, and then goes 
to a level that is very difficult to overcome. Integration Services SQL Server 2008 removes this limitation by 
sharing streams (threads) set of components, which increases the degree of concurrency and reduces the 
frequency lock, it enhances productivity in large-scale systems with a high degree of parallelization based on 
multiprocessor and multicore hardware platforms. 

Search is one of the most common operations in the integration solution. Integration Services SQL 
Server 2008 accelerates the search operation and effectively implement them in large tables. There is loading 
full cache from any source, cache size can not exceed 4GB, even in 32-bit operating system. Using partial 



 4 

cache service integration SQL Server 2008 pre-load data required for the search. Partial cache supports 
OLEDB, ADO.NET and ODBC for database search, and tracks hit and misses in the search process. 

SSIS can extract (and unload) data from various sources, including OLEDB, controlled sources 
(ADO.NET), ODBC, flat files, Excel and XML, with a special set of components called adapters. SSIS can 
also be used for custom adapters. It means that they are created by yourself or other manufacturers for their 
needs. This can include inherited logic upload data directly to the data source, which, in turn, without 
additional steps can be implemented in a data stream SSIS. SSIS includes a set of data conversion, with 
which you can do with all the data manipulations that are needed to build consolidated data repository. 

3. Структура класу керування компонентами ПД 
Let us describe the structure of class management components of PD (Fig. 4). 

 
Fig .4. DS components manage class structure 

 ctx  a reference to the object that allows a component to obtain proprietary information about 
users and transaction data that a user works with the component; 

 ds  reference to the pool of database connections; 
 name, title, description, jndi, port  component parameters accessible via Remote-interface 

methods; 



 5 

 serverHome  link to Home-interface component Server; 
 setEntityContext / unsetEntityContext - methods which establish ctx. Invoked only container; 
 ejbActivate / ejbPassivate  methods that control life cycle component. Invoked only container; 
 ejbRemove  a method that is called before the destruction of the component on the server side 

(implementing a database query to remove this component from the base); 
 getConnection  a method that cause for connection pool connections. Its more as a 

convenience, and the EJB specification does not in any way; 
 ejbCreate  a method that implements a create-methods with Home-interface. It implement 

database queries to create the component and set the parameters component; 
 ejbPostCreate  methods are called after ejbCreate; 
  ejbFind  implement method of search techniques is searched components in the database; 
  get / set  methods of implementing get / set methods defined in the Remote-interface; 
 toString  defined for greater compatibility with infrastructure JAVA. 
Intelligence agent metamodel is described on Fig. 5. 

 
Fig. 6. Intelligence agent metamodel diagram 

The root element of the metamodel is itself diagram intelligent agent [1] StateMachine. 
StateMachineHasStates ratio means that the agent is in the states. BaseState - base type for the state. The 
chart can accommodate three types of states: initial state InitialState, State intermediate state and final state 
FinalState. Any intermediate state can have two actions: EntryAction - action to be executed immediately at 
the entrance to this state, ExitAction - action to be executed upon exit from the state. The initial and final 
states have the single action. For the initial state of this action InitialActivity. It will be executed when you 
run the agent. To the end of this action FinalActivity. It will be performed at the end of intelligent agent. 



 6 

Attitude Transition means a transition from one state to another. 
Each transition has an event name Trigger, while the emergence of which is next. Tape Guard 

delivers a covenant enforcement is necessary to complete the transition. In the case of the availability and 
performance of necessary conditions, the proposed operation will Activity. Notation-tape, which 
automatically generates and submits a complete description of the transition in a format Trigger [Guard] / 
Action. 

The main class for working with data sources is the class Model (specification is shown in Figure 7). 
Designed for requirements [4]. 

 
Fig. 7. Class Model specification 

This class has such methods and properties as: 
 Connection – link on data source connection; 
 Description; 
 FileName; 
 MetaModelName – data source type; 
 Models – список пов’язаних джерел; 
 Name – source name; 
 Entities; 
 Relations; 
 Load – the method for data structure load in data catalogue and data dictionary; 
 Modify – the method for modify of elements in  catalogue and dictionary; 
 RemoveModel – the method for removing information about data source from catalogue. 
EntityCollection class is presented on Fig. 8. 

 
Fig. 8. Class EntityCollection specification 

Class EntityCollection has such methods as: 
 GetEntity – result of this method is element from entity collection by name; 
 GetEntityCount – method for entities count in current model;  
 Load – method for entity collection load from current database model; 
 RemoveEntity – method for entity removing from collection. 
Fig. 9. represents the class Entity. 



 7 

 
Fig. 9. Class Entity representation 

Class Entity consists of following methods and properties: 
 Attributes; 
 Constraints; 
 Count – кількість екземплярів сутності, що може бути створене в моделях; 
 Description; 
 Name; 
 EntityDrawType – pictogram for entity representation; 
 Entities – the model’s entities collection, which consists of current entity; 
 EntityType; 
 Operations – list of operation about entity; 
 Values – list of  attribute values of entity; 
 GetAllRelations – the method, result which is the list of all entity relations; 
 GetInRelations – the method, result which is the list of all entity get in relations; 
 GetOutRelations – the method, result which is the list of all entity get out relations; 
 Modify – the method for entity changing in database; 
 SaveToDataBase – the method for entity saving in database. 

Class Relation is given on Fig. 10. It consists of following properties: 

 
Fig. 10. Class Relation specification 

 Constraints; 
 Description; 
 EndEntity – link on end entity; 



 8 

 EndEntityMax – the maximum count of end entity examples; 
 EndEntitytMin – the minimum count of end entity examples; 
 Name; 
 Relations – relations collection of current entity; 
 StartEntity – link on start entity; 
 StartEntityMax – the maximum count of start entity examples; 
 StartEntityMin – the minimum count of start entity examples; 
 Type – relation type. 
The method SaveToDataBase saves the relation in data catalogue. 
The class RelationCollection describes the entities collection (Fig.11). 

 
Fig. 11. Class RelationCollection specification 

Class RelationCollection has following methods: 
 GetRelation –result of this method is element of entity collection by name; 
 Load – the method for entity load from current data source; 
 RemoveRelation – the method for entity removing from collection and data catalogue. 
The concept of "Attribute" describes a class Attribute. Specifications class is shown in Fig. 12 

properties and methods of the class are: 

 
Fig. 12.  Специфікація класу Attribute 

 Default – default value; 
 Description – the attribute description; 
 Name – the attribute name; 
 Type – the attribute type. It may be referring to the domain of valid values, or a link to some 

substance; 
 SaveToDataBase – the method, that is responsible for maintaining the attribute in the data 

directory. 
A collection of attributes defined entity class AttributeCollection. Description of the class shown in 

Figure 13. 

 
Рис. 13. Специфікація класу AttributeCollection 

Class AttributeCollection given by the following methods: 



 9 

  GetAttribute - a method that returns the collection of attributes to its name; 
  Load - method responsible for loading collection attributes the current nature of the source; 
  RemoveAttribute - method responsible for removing the attribute from the collection and data 

directory. 
Class specification is shown in Fig. 14, describes the concept of "limit". 

 
Fig. 14. Class Constraint specification 

This class has following properties: 
 ErrorMessage – error message on constraint; 
 AttributeName – name of attribute; 
 Sign – constraint signature; 
 Value – value in right part of constraint. 
The  SaveToDataBase method saves information about constraint in database (data catalogue). 
 Constraint collection for entities and relations is presented by ConstraintCollection class. This class 

description is presented on Fig.15. 

 
Fig. 15. Class ConstraintCollection specification 

The methods of  ConstraintCollection class are: 
 Load – the method for constraint loading from collection; 
 RemoveConstraint – the method for constraint removing from collection and dataspace. 

7. Language elements description 
For translator building we must describe elements of query language to dataspace. We used 

Backus/Naur Form, BNF. 
<letter>::=a|b|c|d|e|f|g|h|і|j|k|l|n|m|o|p|q|r|s|t|u|v|w|x|y|z|A|B|C|D|E|F|G|H|І|J|K|L|N|M|O|P|Q|R|S|T|U|V|W|X|Y|Z 
<keyword> ::= (<keyword>) |<letter> | < keyword> 
<number>   ::= 0|1|2|3|4|5|6|7|8|9 
<object>     ::= <data catalogue element> 
<par>          ::= <the synonym of data catalogue element > 
<param>     ::= <keyword>[{<keyword>|<number>}] 
<num>        ::= <number>[{<number>}] 
<expr>        ::= <operand> [{<op> <operand>}] 
<operand>  ::=» («<expr>»)» | <num> | <param> [«[«<expr>»]»] 
<op>           ::= <grteq> 
<іnv>          ::= <logіcalop> | «*» | «/» 
<type>        ::= «SUM» | «COUNT» | «AVG» 
<logіcalop>::= «<» | «>» | «>=» | «<=» | «=» | «<>» | [<op>] 
<whereop> ::= «where» «(» <object> [«:» <par>] {«,»<object> [«:» <par>] }«)» 
<whoop>   ::= «who» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 
<howop>   ::= «how» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 
<Seop>      ::= «Se» «(»<object>[«:»<par>] [«Agg»<type>] {«,» <object> [«:» <par>]  [«Agg» <type>] }«)» 
<whatop>  ::= «what» «(» <object> [«:» <par>] [«,»<object> [«:» <par>] ]«)» 
<whichop>::= «which» «(» <object> [«:» <par>] [«,»<object> [«:» <par>] ]«)» 



 10 

<Semantop>::= «Semant» «(» <object> [«,» <object> ]«)» 
<Consop>    ::= «Cons» «(»<object> [«:» { <par> <operator> <param>}] «)» 
<profileop> ::= «where» «(» <object> [«:» <num>] {«,»<object> [«:» <num>] }«)» 
<Unionop>  ::= «Union» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 
<Unionop>  ::= «Union» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 
<Intersop>   ::= «Inters» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 
< Differop> ::= «Differ» «(» <object> [«:» <par>]  {«,»<object> [«:» <par>] } «)» 

8. Interface realization 
Let us project interface metamodel for user query interpretation (Fig. 16). Entities 

InterfaceHasMethods, InterfaceHasProperties, InterfaceHasEvents meen, that interface has Methods, 
Properties and Events.  

 
Fig. 16. Interface metamodel for user query interpretation  

For developing the portal as an architectural pattern there is used pattern Model-View-Controller 
(MVC). 

Model-View-Controller (Model-View-Controller, MVC) is architectural pattern (Fig. 17), which is 
used in the design and development of software. Splits system into three parts: data model and data view. It 
is used to separate data (model) from the user interface (view) so that the user interface changes minimally 
affect the operation of the data, and changes in the data model could be conducted without changing the user 
interface. 

The purpose of the template is flexible design software, which should facilitate further changes or 
expansion programs, and provide an opportunity for reuse of individual components of the program. Also 
use this template in large systems leads them in a certain order and makes clearer by reducing their 
complexity. 

 
Рис. 17. Архітектура програми реалізованої з використання з використанням шаблону MVC 
The architectural pattern Model-View-Controller (MVC) divides the program into three parts. In the 

triad of responsibilities Component Model (Model) is a data storage and software interface to them. View 
(View) is responsible for the presentation of these data to the user. Controller (Controller) manages 
components, receiving signals as a response to user actions, and reporting changes-component model. 

Model encapsulates core data and basic functionality of their treatment. Also component model does 
not depend on the process input or output. Component output view can have several interconnected domains, 
such as various tables and form fields, in which information is displayed. The functions of the controller is 
monitoring the developments resulting from user actions (change of the mouse, pressing buttons or entering 
data in a text field). 



 11 

Registered events are shown in different requests that are sent to the component models or objects 
responsible for displaying data. Separation of models from data presentation allows independent use 
different components to display. Thus, if the user through controller makes a change in the data model, the 
information provided by one or more visual components will be automatically corrected according to the 
changes that have occurred. 

At the level Model used ORM (Object-relational mapping), including technology Entity Framework. 
At this level creates a database model that allows you to work with it as with a set of entities, as well as 
avoiding explicit use of SQL. All these things will perform ORM. 

Controller is a class that contains event handlers and other business logic. 
Conclusions 

1. In this paper there is projected dataspace architecture and instrumentation tools for practical 
realization. 

2. There are chased program tools for variant data integration realization. 
3. The main classes’ specification is described. 
4. There are described language tools and user interface realization. 

 
1. Шаховська Н. Б. Програмне та алгоритмічне забезпечення сховищ та просторів даних: 
монографія [Текст] / Н.Б. Шаховська; Міністерство освіти і науки України, Національний 
університет «Львівська політехніка».- Львів: Видавництво Львівської політехніки, 2010.- 194 с. 2. 
Шаховська Н.Б. Методи опрацювання консолідованих даних за допомогою просторів даних / Н.Б. 
Шаховська // Проблеми програмування / Національна академія наук України, Інститут програмних 
систем НАН України, 2011, № 4. – С. 72-84. 3. Матов О. Я. Сучасні технології інтеграції 
інформаційних ресурсів / О. Я. Матов, І. О. Храмова // Реєстрація, зберігання і обробка даних.- 
2009.- Т. 11, № 1. – С. 33-42. 4. The Open Archives Initiative Protocol for Metadata Harvesting Protocol 
Version 2.0 of 2002-06-14. – [Електронний ресурс]. – [Режим доступу] http://www.openarchives.org 
/OAI/2.0/openarchivesprotocol.htm 


