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Abstract. The paper concerns the results of the quantitative 
study of dynamics for phosphates concentrations in the  
Small Carpathians rivers watersheds in Earthen Slovakia by 
using methods of nonlinear analysis and forecasting, chaos 
theory and dynamical systems. The conclusions can be 
viewed from the perspective of carrying out new 
algorithms for analysis and forecasting of the dynamics and 
evolution of anthropogenic water management landscape. 
Chaotic behaviour of the phosphates concentration time 
series in the watersheds of the Small Carpathians is studied. 
It is shown that low-D chaos exists in the time series under 
investigation. 
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Introduction 

In modern theory of the hydro-ecological systems, 
water resources and environmental protection, the problem 
of quantitative treating of pollution dynamics is also one of 
the most important and fundamental problems, in 
particular, in applied ecology and urban ecology [1–18]. 
Let us remind [1–9] that most of the models are currently 
used to assess (as well as forecast) the state of the 
environment pollution by the deterministic models or their 
simplification, based on simple statistical regressions. The 
success of these models, however, is limited by their 
inability to describe the nonlinear characteristics of the 
pollutant concentration behaviour and lack of 
understanding of the involved physical and chemical 

processes. Especially serious problem occurred during the 
study of dynamics of the hydro-ecological systems.  
Although the use of chaos theory methods establishes 
certain fundamental limitation on the long-term predictions, 
however, as it has been shown in a series of our papers (see  
[1–22]), these methods can be successfully applied to a 
short-or medium-term forecasting.   

These studies show that chaos theory methodology 
can be applied and a short-range forecast by the non-
linear prediction method can be satisfactory. It opens 
very attractive perspectives for the use of the same 
methods in studying dynamics of the pollution of other 
hydro-and ecological systems. Earlier the pollutions 
variations dynamics of nitrates concentration in the river 
water reservoir in Earthen Slovakia was studied by using 
a chaos theory [9]. Here a non-linear behaviour of the 
phosphates concentration in time series in the 
watersheds of the Small Carpathians is studied. All 
calculations are performed with using “Geomath” & 
“Quantum Chaos” PC codes [9, 16, 17, 23–42]. 

 
Method of testing of chaos in time series  

As the initial data we use the results of empirical 
observations made on six watersheds (Fig. 1.) in the region  
of the Small Carpathians, carried out by co-workers of the 
Institute of Hydrology of the Slovak Academy of Sciences 
[2]. Fig. 2 shows temporal changes in the concentrations of 
phosphates in the catchment areas. In Fig. 3 we list the 
Fourier spectrum of the concentration of phosphates in the 
water catchment of Vydrica (C-Most) for the period of 
1991–1993. The X-axis - frequency, the axis Y – energy. 
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Fig. 1. Observation sites in the Small Carpathians [2] 

 

 
Fig. 2. Temporal changes in the concentrations  

of phosphates in some water catchments  
of the Small Carpathians (Slovakia) [2] 

 

 
Fig. 3. The  Fourier spectrum of the concentration  

of phosphates in the water catchment area  
of Ondava (Stropkov)  

for the period of 1.6.1991–2.12.1993 
 

The Fourier spectrum looks the same as in the case of a 
random process, so there is the possibility of using 
methods of chaos theory.  

Let us consider scalar measurements: s(n)=s(t0+ 
+ n∆t) = s(n), where t0 is start time, ∆t – a time step, and n – 
a number of measurements. The key task is to reconstruct 
phase space using the information contained in s(n). 
Such reconstruction results in a set of d-dimensional 
y(n)-vectors for each scalar measurement. The main idea 

is the direct use of variable lags s(n+τ), where τ is some 
integer to be defined, which determines the coordinate 
system where a structure of orbits in phase space is 
restored. Using a set of time lags to get a vector in d 
dimensions,y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)], 
the required coordinates are provided. In a nonlinear 
system, s(n + jτ) are some unknown nonlinear 
combination of the actual physical variables. The 
dimension d is the embedding dimension, dE. 

The choice of a proper time lag is important for 
subsequent reconstruction of phase space.  If  τ is too small, 
then the coordinates s(n + jτ),  s(n +(j +1)τ)  are so close to 
each other in numerical value that they cannot be 
distinguished from each other. If τ is too large, then s(n+jτ),  
s(n+(j+1)τ) are completely independent of each other in a 
statistical sense. If τ is too small or too large, then the 
correlation dimension of attractor can be under-or 
overestimated. One needs to choose some intermediate 
position between the above listed cases. The first approach 
is to compute the linear autocorrelation function CL(δ) and 
determine such time lag in which CL(δ) is the fastest when 
passing through 0. This gives a good hint of choice for τ at 
which s(n+jτ) and s(n+(j +1)τ) are linearly independent. It’s 
better to use the approach of nonlinear concept of 
independence, e.g. of average mutual information. The 
average mutual information I of two measurements ai and 
bk is symmetric and non-negative, and equals to 0 if only 
the systems are independent. The average mutual 
information between any values ai from system A and bk 
from B is the average over all possible measurements of 
IAB(ai, bk). In ref. [3] it is suggested to choose such value of 
τ where the first minimum of I(τ) occurs. 

The goal of the embedding dimension determination is 
to reconstruct Euclidean space Rd large enough so that the set 
of points dA can be unfolded without ambiguity. The 
embedding dimension, dE, must be greater, or at least equal 
to the dimension of attractor, dA, i.e. dE > dA. In other words, 
we can choose a fortiori large dimension dE, e.g. 10 or 15. 
The correlation integral analysis is one of the widely used 
techniques to investigate chaos in time series. The analysis 
uses the correlation integral, C(r), to distinguish between 
chaotic and stochastic systems. According to [4], integral 
C(r) is calculated based on the algorithm.  If the time series is 
characterized by an attractor, the correlation integral C(r) is 
related to the radius r as  

0

log ( )lim
logr

N

C rd
r→

→∞

= , 

where d is a correlation exponent. If the correlation exponent 
attains saturation with an increase in the embedding 
dimension, then the system is generally considered to exhibit 
chaotic dynamics (see refs. [4, 16, 17]). 
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Fig. 4 lists the dependence of the correlation dimension 
(axis Y) on the embedding dimension (axis X) for the 
concentration of phosphates in the watershed of Ondava 
(Stropkov) for the period of 1991–1993. There is a 
corresponding curve, the analysis of which shows that 
saturation value for d2  concentrations in the watershed 
of Vydrica (C.Mist) for the studied period of 1991–1993 
amounts to 6.3 and was achieved by embedding 
dimension ds, at 18. The same result is obtained on the 
basis of false nearest neighboring points (Fig. 4). The 
dimension of the attractor in this case was defined as the 
embedding dimension, in which the number of false 
nearest neighboring points was less than 3 %. 

 

 
Fig. 4. The dependence of the correlation dimension (axis Y) 
on the embedding dimension (axis X) for he concentration of 

phosphates in the watershed of Vydrica (C.Miost) for the 
studied period of 1991–1993 

 
It is known that the limited predictability of chaos is 

quantified by local and global Lyapunov exponents. The 
Lyapunov exponents are related to the eigenvalues of 
the linearized dynamics across the attractor. Large 
positive values determine some average prediction limit. 
Since the Lyapunov exponents are defined as asymptotic 
average rates, they are independent of the initial 
conditions, and hence the choice of trajectory, and they 
do comprise an invariant measure of the attractor. An 
estimate of this measure is a sum of positive Lyapunov 
exponents. The estimate of the attractor dimension is 
provided by the conjecture dL and the Lyapunov 
exponents are taken in descending order. To compute 
them, method of linear fitted maps [1, 2] is used. The 
sum of positive Lyapunov exponents determines the 
Kolmogorov entropy, which is inversely proportional to 
the limit of predictability (Prmax). 

 
Results and conclussions  

In Table 1 we list the values of the time delay (τ), 
depending on the different values of the autocorrelation 
function (CL) and the first minimum of mutual 
information (Imin1) for the concentration of phosphates in 
the watersheds of the Small Carpathians. 

Table 1 
The values of time delay (τ), depending on different 
values of autocorrelation function (CL) and the first 
min of mutual information (Imin1) for  phosphates 

concentration  in the studied watersheds 
River (Site) CL = 0 CL = 

0,1 
CL =0,5 Imin1 

Vydrica 
(C.Most) 

– 288 57 24 

Vydrica 
(Spariska) 

– 289 55 22 

Blatina 
(Pezinok) 

– 316 66 21 

Gidra (Main) – 274 53 19 
Gidra (Pila) – 267 52 22 

Pama (Majdan) – 314 63 20 
 
Table 2 summarizes the results of the numerical 

reconstruction of the attractors, as well as average limit 
of predictability (Prmax) and Gottwald-Melbourne 
parameter K [5] for the phosphates concentrations in the 
watersheds of studied region. 

Table 2 
Time lag (τ), correlation dimension (d2), 

embedding dimension (dE), the Kaplan-Yorke 
dimension (dL), average limit of predictability (Prmax) 
and parameter K for the phosphates concentrations 

in the watersheds of the Small Carpathians 
 

River (Site) τ d2 dE dL Prmax K 
Vydrica (C.Most) 21 6,3 7 5,1 11 0,7 
Vydrica (Spariska) 20 6,7 7 5,8 12 0,6 
Blatina (Pezinok) 20 5,9 6 6,1 13 0,6 

Gidra (Main) 17 6,1 7 6,8 14 0,7 
Gidra (Pila) 18 6,8 7 6,4 11 0,7 

Pama  Majdan) 19 5,2 6 5,8 11 0,6 
 

As it was indicated, the sum of positive Lyapunov 
exponents λi determines the Kolmogorov entropy, which is 
inversely proportional to the limit of predictability (Prmax).  
Let us remind that since the conversion rate of the sphere into 
an ellipsoid along different axes is determined by the λi, it is 
clear that the smaller the amount of positive dimensions, the 
more stable is a dynamic system. Consequently, it increases 
its predictability.  

On the other hand, the conclusions can be viewed from 
the perspective of new algorithms for the analysis and 
forecasting of the dynamics and evolution of anthropogenic 
water management landscape. Therefore in this paper we 
present the results of studying the dynamics of variations of 
phosphates concentrations in the rivers water reservoirs in 
Earthen Slovakia) systems in the definite region by using 
non-linear prediction approaches and chaos theory methods. 
Chaotic behaviour in the phosphates concentration time 



Alexander Glushkov, Valery Khokhlov, Mykola Serbov et al. 114 

series in a number of the the watersheds of the Small 
Carpathians (Slovakia). We have shown that low—middle-
dimensional chaos elements exist in the time series under 
investigation and quite sufficient predictability can be  
obtained in the forecasting of the pollution concentrations 
dynamics. 
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