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In this paper the processes of admixture convective diffusion in two-phase structures with
periodically located thin channels are investigated with taking into account a natural decay
of migrating substance. With the help of application of appropriate integral transforms
separately in the contacting domains, a solution of the contact initial boundary value prob-
lem of convective diffusion of decaying substance is obtained. The correlations between
these integral transforms are found using the non-ideal contact conditions imposed for the
concentration function. Expressions for decaying particle flows through arbitrary cross-
section of the body are found and investigated, and their numerical analysis is carried out
in the middle of both domains — the thin channel and basic material. It is shown that
the decay intensity of the migrating substance especially affects the flow distribution in
the domain of basic material.
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1. Introduction

Forecasting the processes that occur in our environment, many engineering calculations need a math-
ematical description of the processes of diffusion, filtration, etc. in complex media, including space-
regular ones. Such media include, for example, the concrete of linked pores structure, soils, which can
be regarded as a regular two-phase structure containing periodically located thin channels in which the
transfer of particles going on by both diffusive and convective mechanisms. Herewith, the migrating
admixture can decay as a result of either chemical reactions or radioactive decay. Since the construc-
tion of exact solutions of this type of problems even for simple geometric areas cause difficulties, there
usually used approximate analytic [1,2| or numerical [3,4] solutions.

To solve the problems of diffusion in such media, a method has been suggested, which is based on
the use of integral transforms for the spatial variables applied separately in the contacting domains [5].
In [6,7], this method has been generalized to the case when in sublayers of the one type of periodic
structure both diffusive and convective transports are taken into account, while in sublayers of the
other type, only the diffusion mechanism of mass transfer is allowed for. Boundary conditions of the
first kind on the concentration which takes different values on the “top” surface of different structural
elements of the body are considered as well as mixed boundary conditions.

In this paper, for a two-phase layer of regular structure, the non-stationary cases of admixture
diffusion processes with taking into account both the convective mass transfer mechanism in one of the
phases and the decay of the migrating admixture are investigated. Expressions for the concentrations
of decaying substance are written down as well as expressions for the diffusion flow through arbitrary
cross-section of the body are obtained, a numerical analysis is carried out.
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18 Chernukha O. Yu., Dmytruk V. A., Goncharuk V. Ye.

2. Subject of inquiry and formulation of the problem

Let decaying substance of one chemical type is migrating in a layer of the thickness g, which consists
of periodically located phases of two kinds. The surfaces separating these phases are normal to the
layer boundaries (Fig. 1, a) (the Ox axis is normal to the body surface; the Oy axis is normal to the
lateral phase boundaries). The phases whose diffusion coefficient is D; have the width 2L and the
phases whose diffusion coefficient is Dy have the width 2[; herewith, in the domains with the diffusion
coefficient D1, the convective mass transport is taken into account with the coefficient of convective
velocity v, which is known and constant. This structure has a family of planes of symmetry (y =
=4n(L+1), n=0,1,2,...) which divide the contacting phases into two equal parts. Therefore, we
can conventionally separate off an element of the body (Fig. 1, b) on whose vertical surfaces the mass
flow in the direction of the Oy axis is equal to zero.
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Fig. 1. Regular structure of the body, where admixture substance is migrating (a); a chosen element of such
structure (b).

In the nonstationary case, the concentration of decaying admixture ¢i(z,y,t) in the domain Q; =
=]0; zo[x]0; L[ is defined from the equation of convective diffusion:

0 0? 0? 0
il _Dl |: a 01:| - v ° _)\617 xvy c le (1)

o o2 T e Ve
where ) is the coefficient of decay intensity of the migrating substance [c™!].
In the domain Q9 = [0; 2] X [L; L + 1] the concentration of decaying admixture particles co(x,y,t)
satisfies the diffusion equation

802 N Dg [62@ 8262

der _p, |L2 0 Q. 2
ot 8x2+6y2} Acz, @y €8 2)

In the initial time, we assume the admixture in the body is absent:

Cl(xayat)|t:0 = 02(‘T’y’t)|t:0 = 0. (3)

At the upper surface of the layer z = 0, the admixture concentration values are maintained to be
constant and at the lower surface the concentrations are equal to zero:

(1)

1
Cl($ayat)|q;:0:CO ( )

=const, co(x,y,t)| o = 002 = const;
Cl($,y,t)| T=x0 = CQ(ﬂf,y,t” TrT=x0 = O (4)
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Simulation of mass flows of decaying substance in layer with periodically located thin channels 19

At the lateral surfaces of the chosen element y = 0, y = L + [, the horizontal components of the
flow are equal to zero, namely

Ocy (z,y,t) 0 dea(z,y,t)
dy 0 Ay

y=0

= 0. (5)

y=L+l

On the contact interface y = L, we impose the condition of nonideal contact for the concentration
function in the form [8]:

aCl (.’IJ, Y, t)

Oca(z,y,t
nlcl(xvyvt) ‘y:L - 77262(%21775) ’y:Lv Dl ay D27) (6)

y=L ay y=L ’

where 71 and 12 (171 # 12) are the coefficients of the concentration dependence of the chemical potentials
in each domain.

3. Construction of the solution of the formulated problem

We seek a solution of the contact initial boundary value problem (1)—(6) of the mass transfer with the
use of integral transforms for spatial variables separately in the contacting domains [5-8|. In order
to do this, we have denoted the function dc;/0y on the boundary of the domain €4 and dca/dy on
the boundary of 3, taking into account the second contact condition (6), which means that at the
interface y = L the mass flows are equal to each other and, in their turn, are equal to some function
g(x,t), ie.

Oco(x,y,t)

= p, 22D, (7)

D acl (:Ca Y, t)
1] —

oy

Then, we can perform finite integral cos-transform with respect to the variable y in the do-
main Q; [10: y — yx = kn/L, ci(x,y,t) — ¢i(x,k,t), and the cos-transform with a shift in the
domain Qo [11]: y — y; = jn/l, ca(x,y,t) — ¢2(x, j, t). With respect to the variable z, in the domain
Qy we apply the following integral transform [12]

zo

c1(n, k,t) = /El(x,k,t)e”D“ sin(x,x)dx, (8)
0
2 [o¢]
é(x, k,t) = —e'P* 261 (n, k,t) sin(z,z), (9)
T
n=1
where vp = v/2D;, z, = nw/zp, and in the domain 2y we apply finite integral Fourier sin-

transform [10]: © — z, = mn/x0, é2(x, j,t) — c2(m, j,1).
As a result, we obtain a solution of the problem (1)—(6) in the form [13]:

t
c1(n, k,t) = ¢ [D1(antyi+vh )+ t/ Dlakco Ty + (—1)k§n(t’)] e D1 (@R tyitvd )+AL Y gy (10)
0
t
Eg(m,j,t) [DQ x2 +y] +)\t/ DQCL]CO P gm(t/)i| 6[D2(m$n+y]2)+>\]t/dt/- (11)
0

Note, that for the function g(z,t) we have relatively

gn(t) = /g(:c,t)e_”Dm sin(zpx)dx,  Gm(t) :/g(x,t) sin(zy,x)dz. (12)
0 0
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20 Chernukha O. Yu., Dmytruk V. A., Goncharuk V. Ye.

Remark that inverse integral transforms to (12) are the following

g(z,t) = e"P* Zgn(t) sin(zpx), g(x,t) 300 Z Jm Sin (T, x) . (13)

n=1

In the expressions (10) and (11), the functions g, (') and §,,, (') remain still undetermined. We seek
these functions using both the first contact condition (6) of the jump of the concentration function at
the interface of the domains €; and €25 and the transform (13). To do this, perform the corresponding
inverse integral transforms and substitute the obtained expressions into the first condition (6). As a
result, we get the following integral equation:

t

e ~ / -~ v2 4o (t—t)
/meva ZSin(ﬂcn:c) ([chél)$n + gn(t )} e [Pr(beei) e +
0

L

n=1

2 .- ’
+ Zda(t) ;(_1)%—[Dl(v%+m%+y;%)+k]<t—t >> dt’ =

t
[e%} . “’m t/ _Ip chn‘Fk (t—t")
:/?72 Z:lsm(xmx) ([DQC(OQ)xm_ Y l( )} e [D2 ] B
0o m=

(#) Y e Palahtl) A0 | gy (14)
7j=1

Beside this, we need to find the correlation between the functions g,(t') and g,,(t'). It appeared

that taking into account the decay of migrating substance does not influence this correlation. Thus we
have 7]

i 2 & i
m(t/) = x_O Z An,mgn(t/) or n xO Z B, mgm 7 (15)
n=1 m=1
where the coefficients A,, ,, and By, ,, are determined in the following way
2upT? nm [(—1)"Tmevp®o — 1]
Anm = 22 2 2 )
0 {v%—i——Q(n—m)Z}{v%—k—z(n—i—m)?}
xg xg
Qupm? nm [(—=1)"MevD%0 1]
Bnm = 22 2 2
0 {U2D+—2(n—m)2}{v%+—2(n+m)2}
Zo Zo

Having solved the equation (14), we obtain

—%ch(l) n—i— D cO Z T BrmEnm (t — 1)

gn(t/) = ) (16)

L™ (O e >+ 7 3 By (£ — ) A By e (B R0
772L "Eol m=1 ’ ’
where By, (t— 1) = exp {— [Daa2, — Dy (v3 +22)] (t =)}, Op(v,z) is the elliptic theta func-

0 /
tion [14], @y, (t —t) = e*sz?n(t*t’){]L 2y e Davitt >}.
j=1
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Finally we obtain equations for the concentration of decaying admixture substance in the domain €2¢

. o0 (
_tvpe| (sinhvp (o —x) | 2 : o Tn Dy (o2 1a2 )t
r(r.t) = e [CO oot 25 (o) | - e D el

t

v / {gn@')e“’e& (vhed) (=) (1 +2) (~1)" cos () D<>>} dt’” )
k=1

0
and in the domain 5
@ g=At g—Daa2 t

— (2) 1_£ _3 = : 0
o) = (1-2) - = Zsmmmx)[ v

o — Tm
m=1

t

/gm(t’)e[D”E"H‘] (=) (1 +2 i(—l)j cos (y; (y — L)) eDQsz(tt,)> dt'] . (18)
j=1

0

_l’_

~| —

Note, that in order to determine g, (t'), we have used the correlation (15) with the expression (16).

4. Mass flows of the decaying substance

Obtained analytical solutions of the contact initial boundary value problem of the convective diffusion
in regular structures under boundary conditions of the first kind make it possible to find nonstationary
mass flows of decaying particles for this problem trough arbitrary surfaces x = x, and y = y,, which
are determined by the formulae [7]

in the domain €

Oci(x,y,t Oci(x,y,t
J»S:)(y,t) =-D 1% +ver(x,y,t) ; Jg)( ) = — Dl% : (19)
in the domain 9
Oc x,y,t dc x,y,t
1.0 = - 0,20y — - pfelnd) (20
T=Tx y Y=Y«

Substitute the corresponding expressions (17) and (18) for the concentrations ¢;(z,y,t) into the
relations (19), (20). Then we obtain
in the domain €4
the mass flow J{2 (y,t) through the surface x = z,

= e Mevp [(U - DlUD)C(()l) sinhvp (w0 — )

0
JSC) (y,t) = — D1£ + vey +

sinh (UD.%'())

T=Tx
[e. 9]

1ycosvp(xg — x 2 .
+ Dlch(() )ﬁ[)xo) + - nzl { (v — Dy vp)sin (xpxy) — D12y cOS(TpTx) X

)t+

X
1
|
e
2
8
3
|
S
—
<
SLY
+
8
S
Sl

t
0
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(oo

in particular, the mass flow Jé}v) (y,t) through the lower surface x = x

J(();) (y’ t) _ e—AtevDa;o [ 1UDCO D1 Z n+1 X

Sinh(’l)on -
t
/ M o= Di(vh+ad)(t— t)} %
0

’ (1 23 (1) cos () e‘D”’z(H/)> dt/” |

x [_ 0 Tn_emDi(vhren)t

S
LY
+
8
zm
Sl

the mass flow J,E;) (z,t) through the surface y = y.

—e M sz E sin(zy,x) ¥
Y=yx

t
0

In the domain €:
the mass flow J2 (y,t) through the surface x = z,

861

(1)
* ,t _D
J Yy (‘T ) 1 8y

862

(2)(ya ) = - D2 aIE

=z, 20

= &0(2) + 3D icos (Tmy) 0(2)6 )‘te*Dﬂgnt+
- 0 70 2 mxk 0

t

1 ~ Doa2,+)] —Doy?(t—t'
-I—E/gm(t) —[Daaf, A1) (1—}—22 Tcos(yj(y—L)) e 2y (¢ ”)dt'};

0

in particular, the mass flow JO(? (y,t) through the lower surface x = z

D 9 )
Ton (1) = x_jcéz) + x_ODQ Z(—l)mﬂ{c(()?)e/\tez)gx%ﬁ_f_
m=1

t

+— / Gun(t")e P27 +A1<”><1+2Z Y cos (y; (y — L)) e Dw?“—t’))dt'};

0 J=1

the mass flow J,Ez) (z,t) through the surface y = y.

2) dcy _ 4Dy — .
I (e t)=-D ] "
y(x,t)=—Dy — ay |, = Tro mZ:lsm(x x)X
¢ o
X /fjm( e Pint AN N 1)+ gin (y; (g — L)) e P20 ay. (22)
0 j=1

Thus, we have obtained the mass flow expressions through any surface of the body.
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5. Numerical analysis of decaying mass flows through a cross-section of the body

In this section, we explore decaying particle flow graphic distributions through the vertical cross-
sections of the body: JL? (&,7) in the middle of the domain €; at ¢, =0.05 and JL? (&,7) in the middle
of the domain Q3 at (, =0.55. Numerical calculations are performed according to the formulae (21)
and (22) respectively, in dimensionless variables [8]:

§= (k/Dl)l/Qxa (= (k/Dl)l/zy’ T = ki, (23)

where k is the coefficient of the dimension [c~!] [5]. Calculations are accurate to ¢ = 10~7. Herewith,

—~

the following settings are taken as basic: A= k/A = 0.1, & = (k/D1)"?2¢ = 10, A = (k/D;)"/?L =
= 0.1, v = (k/D))Y2l = 0.9, d = Dy/Dy = 0.01, m /2 = 0.1, /el = 0.1, v= 02, = 5.
Figs. 2-7 illustrate the distribution of the functions Jiz) (&, 7) depending on different values of the

problem parameters. Fig. 2 illustrates the ‘]:C) (&, 7) distributions at different instants of dimensionless
time 7. In Fig. 2, a, the curves 1-3 correspond to the values 7 = 1;5;50, and in Fig. 2, b, the curves
1-5 correspond to 7 = 1; 5; 10; 30; 50 for the convective velocity v=0.2.

Figs. 3-4 show the J:C) (&, 7) distributions depending on the coefficient of convective velocity in the
domain €. Fig.3 demonstrates the distribution of decaying admixture flows in thin channels, and
Fig. 4 shows it in the domain of basic material. Figs. a are given for the small values of convective veloc-
ity, and Figs. b are for the large ones. Here, the curves 1-5 correspond to V= 0.01;0.02;0.03;0.04; 0.05
in Fig. ¢ and V= 0.1;0.2;0.3;0.4; 0.5 in Fig. b. '

Fig. 5 illustrates the behavior of the function ‘]:C) (&, 7) depending on the value of the coefficient of de-

cay intensity of the migrating substance f)\\ Here, the curves 1-5 correspond to f)\\: 0.01,0.1,0.2,0.5, 1.
Figs. a are given for decaying impurity flow distributions in the domain €2;, and Fig. b are for the
domain €.

(0 (2}
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2,0E+00 2.0E-03
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ﬁ
2
1.5E+00 1,5E-03 3

5,0E-04 —

D G I V/ SRR\
' N

-5,0E-01 0,0E+00 -

Fig. 2. Decaying particle flows Jié) (&,7) in the middle of 4 (a) and flows J*(? (&,7) in the middle of 25 (b) at

different instants of dimensionless time 7 for large values of convective velocity v.

Fig. 6 shows the effect of the ratio of the coefficients of the concentration dependence of the chemical
potentials 71 /72, that determines the magnitude of the jump of the admixture concentration at the
interface. Here, the curves 1-5 correspond to the values 71 /n2 = 0.17;0.2;0.25;0.27;0.3. Fig.7 shows
the behavior of the function ‘]:C) (&, 7) depending on different values of the dimensionless diffusion
coefficient d = Ds/D;. Here, the curves 1-5 correspond to the values d = 0.5,0.6,0.7,0.8,0.9 in
Fig.7,a and d = 0.1;0.2;0.3;0.4; 0.5 in Fig. 7, b.

Note that in the middle of the domain of thin channels €21, the value of the admixture flow changes
its sign, which means that the resulting flow changes its direction, increasing by times in the lower part
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Fig. 3. Charts of decaying particle flows Jiz) (&,7) in the middle of the thin channel depending on small (a)

and large (b) values of the convective velocity .
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Fig. 4. Decaying particle flow Ji? (&, 7) distribution in the middle of 23 depending on small (a) and large (b)

values of the convective velocity .
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Fig. 5. Flow Ji? (&, 7) distribution of the decaying admixture in the domain 27 (a) and the flow J:? (&, 7)
distribution in the domain Q9 (b) for different values of the coefficient of decay intensity of the migrating

substance /):

of the body (Figs. 5, a,3, a). In the domain Q9, where the decaying particles are transferred by diffusion
mechanism only, the flow distributions are symmetric relative to the layer middle (Figs. 2, b-7,b), also
increasing in time until they put into the steady state (curves 4-5, Fig.5).

The consideration of the convective component in thin channels leads to a substantial redistribution
of decaying mass over the most part of the migration interval. With the increase of values of the
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Fig. 6. Decaying particles flows J*(? (&,7) in the middle of € (a) and flows Ji? (&,7) in the middle of Qg (b)
depending on the ratio of the coefficients of the concentration dependence of the chemical potentials 71 /7.
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Fig. 7. Decaying particle flows Ji? (&,7) in the middle of ; (a) and flows Ji? (&,7) in the middle of Q5 (b)
depending on the diffusion coefficient d.

convective velocity, there is observed a significant decrease in the admixture flow through the middle
of the thin channel. Thus, for large values of the convective velocity, the 5-times increase of the velocity
leads to the 4-times decrease of the flow (curves 1, 5 in Fig.4). In the domaine of basic material, the
twice increase of convective velocity in thin channels causes the flow intensity decrease approximately
by half (curves 2, 5 in Fig. 4, b).

The parameter of the decay intensity for the migrating substance ,)\\ significantly influences the
magnitude of decaying admixture flows Ji? (&, 7) through vertical cross-sections of the domain €, and
JL? (&,7) of the domain Q. Herewith, the greater the value of the coefficient of the decay intensity of
the migrating substance ,)\\ is, the smaller the resulting flow ‘]:C) (&, 7) value is (Fig. 5).

Other coeflicients of the problem also significantly affect the behavior of the function ‘]:C) &, 7).
Such parameters of the problem as the ratio of diffusion coefficients d = Dy/D; and the ratio of the
coefficients of mass source powers céz) / c(()l) on the surface of domains €27 and {2y significantly affect
the magnitude of the decaying admixture flow ‘]:C) (&, 7). Herewith, with the increase of d, the value
| i (&, 7)| decreases (Fig. 7). The admixture flow in thin channel reaches its peaks at small values of
d right from the surface £ = 0 where the source of decaying admixture mass is acting. Regarding the
dependance of Ji? (&, 7) on the mass source power on the surface £ = 0, then the more value of the

(2)

admixture concentration ¢, in the domain 2y is, then the less the value of the function |J.¢(§,7)] in
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the domain 27 is. In the domain 29, the opposite pattern is observed: with the increase of c(()2) / c(ol)
the value of \Ji? (&,7)| also increases.

Note that among all the parameters of the problem, the ratio of the coefficients of the concentration
dependence of the chemical potentials 1y /72, which determines the jump of the concentration function
at the interface, has the most effect on the function of decaying admixture flow in thin channels. A
small change in the value of this parameter leads to significant changes in the flow JL? (&, 1) distribution
not only quantitatively but also qualitatively. Thus, with increasing values of 71 /2, the resulting flow
changes its direction right from the surface, where there is a source of the admixture mass supply
(curves 3-5, Fig. 6, a). With further increase in the values of 71 /12, we observe the appearance of the
second local maximum of the function JSC) (&, 7) approximately in the middle of the layer, and the
appearance of the third local maximum near the lower boundary surface £ = &, of the layer (curves
1-5, Fig. 6, a). In the domain €9 this parameter affects the flow only quantitatively — for larger values

of n1/m2 larger absolute values of Jg) (&) correspond (Fig. 6, b).

6. Modelling averaged decaying admixture concentration in the layer of regularly lo-
cated thin channels

We can introduce the function of the total concentration of decaying substance averaged with respect
to the variable y as follows:

L+l

L

1

(c(z,y,1) /01 x,y,t)dy + ] ca(x,y,t)dy. (24)
0

L

By substitution of the expressions (20), (21) for the concentration ¢;(z,y,t) in the domain 2y and
co(z,y,t) in Q9 into the correlation (24), we obtain

_ 1 =\t jvpz (1)ShUD((L‘0—(L‘) () 2L =Xt vpx = :
<c(:c,y,t)>—L—+l<Le e"Prc, W+l 1—56—0 +x—oe e'r Zsm(:ﬂnx)x

n=1

(1)
_ % Tn 7D1(v%+:r t i/~ >\t/ 7D1(UD+{L‘ )(t t’)dt
[ 2 et

v /
2l — 1 1

- — sin(x,x) —c(()2)e_)‘te_D2m%lt + —/gm(t’)e[D”gn*)‘](tt/)dt’ . (25)
Ty = T l )

If we introduce the parameter a = [/L, we will rewrite (25) in the form
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where
D+ 2 Dol B (- 7)
ga(t) = - o
" n o —Dy E2n2a? 1y 4 / Dy (vh a3, ) (t=t') ’
B (0. P S 0 ) Ay e
0" m=1

Z Ap i (¢

here Ry} = ﬁcth (Q,Z)né) + w%gl (1-9).

Let [ tend to 0 with o« = const. Then we have to determine
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Since in the equation (26) g9, (¢') = lim 139 = 2 lim Z Anm go (1), then we seek lim 3§ only.
=0 01-0,,21 =0

Thus, we have

—%ch(()) nt = D2c0 meBnmEnm(t—t)

m=1

o0 )
D k2n%a? 4
oI (1423 e P ETEN) 4 2,
2 k=1 o

N .
lim —g; = lim
=0 =0

where S, , = Z D, (t —t') Apn Brme Dy (vh+al ) (t—t')

Having obtamed the limit at [ — 0, we can obtain
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Using (27), we have respectively
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5 @)

t

o0

_ - : €0 M _—Doa2t —[DaaZ AN (t=) 0 (4 gt/ 98

i Sy [ [easicngia] o
= 0

Note that if it is the parameter @ = L/l that is introduced, and L is let tend to 0 with & =const,
then we will obtain the same formula (28).

For example, in Fig. 8 we give typical admixture concentration distributions of decaying substance,
which is averaged over the width of the selected element of the body, and they are calculated according
to the formula (25). Here are shown averaged concentration distributions calculated for different values
of convective velocity v= 0.1,0.2,0.3;0.4 (curves la-4a) and v=0.1, 0.2, 0.3; 0.4 (curves 1b-5b) for
the basic values of the problem parameters.

1
o(&,1))/ !
0,2

0,08

0 2,5 5

Fig. 8. Dependence of the function of averaged concentration on small (curves a) and large (curves b) values
of the convective velocity .

Note that the behaviour and values of the function of the total concentration of decaying substance
averaged over the width of the selected element of the body are affected the most by the coefficient of
convective velocity, herewith for small values of v, the function (¢(¢,7)) is monotonically decreasing,
(curves la-3a, Fig. 8); with the increase of the magnitude of values v the averaged concentration
values increase over the whole interval, and the function (c(&, 7)) becomes convex (curve 4a, Fig. 8).
Further increase in the coefficient of convective velocity leads to a decrease in the decaying admixture
concentration averaged over the width of the selected element of the body, but the greatest decline
is observed in the middle of the layer, herewith a local maximum of (¢(§, 7)) appears near the lower

surface of the body (curve 1b, Fig. 8).

7. Conclusions

In this work the flows of decaying admixture through arbitrary cross-sections of the body of a regular
structure at periodic location of thin channels of fast movement of decaying admixture particles are
investigated. The formulae of these flows are obtained on the basis of exact analytical solutions of
the contact initial boundary value problem of convective diffusion of a decaying substance, in which
there are taken into account the convective mechanism of substance transfer by thin channels. These
solutions are obtained using the method of integral transformations with respect to the spatial variables
separately in each of the contacting domains. The correlations between these integral transformations
are obtained using contact conditions; the Volterra integral equation of the first kind is obtained to
determine the mass flow at the interface. It is shown that the decay of the migrating substance does
not affect the flow rate through the interface of the contacting domains which compose the body.
However, it significantly affects the quantitative flow distribution inside of the contacting domains.
This is particularly true to the domain of basic material, where the twice decrease of the magnitude of
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the coefficient of decay intensity of the migrating substance leads to the same decline of the admixture
flow intensity.

Note also that the applied method of constructing exact solutions of the contact initial boundary
value problem of the nonstationary convective diffusion of decaying substance does not use conditions
on the size of the contacting domains, that means it can be applied to bodies with commensurate
sizes of the contacting domains, as well as in the case when the width of the domain where mass
transfer occurs both diffusive and convective mechanisms is much larger or smaller than the width of
the domain in which the decaying admixture diffusion only is allowed for.
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Komn'toTepHe mogentoBaHHSA NOTOKIB po3nagHOI pe4oBMHM B wapi 3
nepiogn4Ho po3TalLOBaHUMMN TOHKNUMUW KaHasamMwu

Yepnyxa O. 101, Imurpyk B. A.12, Tonuapyk B. €.1+2

L Tenwmp mamemamumnmozo modearosarms IIIIIMM im. . C. Hidempueavwa HAH Yxpainu
eya. Jotwc./lydaesa 15, 79005, Jlveis, Yxpaina
2 Haygonanrvnuti ynisepcumem “JIvsiscora nosimerwira”

eya. C.Bandepu, 12, 79013, Jlveis, Yxpaina

B poborti gocitiazkeHo mporiecu KOHBEKTUBHOT iy 3il JJOMIIIIKOBOT PEYOBUHY Y JIBODAZHUX
CTPYKTypax 3 IePioJIMYHO PO3TAIIOBAHNMY TOHKUMU KaHAJAMU 3 yPaXyBaHHAM HATYPaJIb-
HOT'O PO3IaJLy MIrpyrdol pedyoBUHHU. 3a JOMOMOIOK BiIIOBIHUX IHTErpajbHUX IEPEeTBO-
PEHBb OKpPEMO B KOHTAKTYIOUNX 00JIACTIX OTPUMAHO PO3B 30K KOHTAKTHO-KpatoBUX 33,181
KOHBEKTHUBHOT Juy3il po3naiHol pedoBUHE. 3B’SI30K MiXK IIUME iHTErpaJbHIME TIePETBO-
PEHHSIMU 3HAMIEHUN 3 BUKOPUCTAHHAM HeilealbHIX KOHTAKTHUX YMOB, CPOPMYILOBAHNIX
Ha (YHKIO KOHIEHTpallil. 3HaliJleHO Ta JIOC/IPKEeHO BUPA3M JJIsi IIOTOKIB PO3IaHUX
YaCTUHOK Yepe3 JIOBLIbHI Iepepi3u Tija Ta IIPOBEJICHO IXHIill YMCJIOBUI aHaJ I3 B cepeanHi
TOHKHUX KaHAJIB Ta OCHOBHOTO MarepiaJy. [lokazaHo, Mo iHTEHCUBHICTDH PO3ITaIy MIrpyIo-
901 PEYOBUHU OCODJIMBO BIUIMBAE HA PO3IOJLINA MOTOKIB B 00JIaCTI OCHOBHOIO MaTepiaJry.

Kntouosi cnosa: dugysis, xousexuyia, po3nad domMiwku, Pe2ysapha CmpyKmypa, mok-
Kutll Kanaa, nomix mMacu
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