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The paper presents a complex variable approach for obtaining of the integral formulae
and integral equations for plane thermoelectroelasticity of an anisotropic bimaterial with
thermally insulated interface. Obtained relations do not contain domain integrals and
incorporate only physical boundary functions such as temperature, heat flux, extended
displacement and traction, which are the main advances of these relations.
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1. Introduction

Ferroelectric materials are widely used in modern technologies, especially precise devices, due to the
highest values of electro-mechanical coupling among other piezoelectric materials. In turn, all ferro-
electric materials are pyroelectric ones [1], thus, polarized when heated or cooled. This behavior should
be definitely accounted for in the design of smart devices containing ferroelectric parts, which are not
maintained at the constant temperature. The presence of different defects (e.g. cracks or inclusions)
can additionally cause high stress and electric displacement intensity under the applied thermal load,
especially, when the pyroelectric material is not homogeneous, or consists of homogeneous parts bonded
together.

The study of anisotropic and piezoelectric bimaterial solids is widely covered in the scientific litera-
ture. Pan and Amadei |2| developed a single domain boundary element approach for fracture analysis
of anisotropic bimaterials. Tian and Gabbert [3] studied cracks near the interface of piezoelectric and
magnetoelectroelastic bimaterials. Ou and Chen [4] studied near-tip stress fields near interfacial cracks.

However, the problems for thermoelectroelastic bimaterials with imperfect interface are more chal-
lenging. There are fewer publications concerning these problems. Wang and Pan [5| derived the 2D
Green’s function for a thermoelastic anisotropic bimaterial with imperfect interface. Qin [6] derived
2D Green’s functions and developed a boundary element technique for defective thermomagnetoelec-
troelastic bimaterial solids.

Therefore, this paper utilizes authors’ novel complex variable approach [7,8] for obtaining of the
Somigliana type integral formulae and integral equations for an anisotropic thermoelectroelastic bima-
terial with thermally insulated interface in a strict and straightforward manner.

2. Governing equations of thermoelectroelasticity. Extended Stroh formalism

In a fixed rectangular system of coordinates Ox1xsxs under the assumption that all fields depend only
on in-plane coordinates x1 and x2, the balance equations for stress, electric displacement and heat flux,
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and constitutive laws can be written in the following compact form [6,7:
Gijj+fi=0, hiy—fa=0 (i=1,.,4;j=12); (1)

Gij = Cijkmtpm — Bij0, hi= —kij0; (i,k=1,.,4; jm=1,2) (2)
with
=i, U=, fi=fi fa=—q Gy =0y, 645=Dyj; Bij =Bij» Baj = —Xy;
C’ijkm = Clijkm, Cijam = €mij C’4jkm = €jkm, Cujam = —Kjm (i,k=1,2,3;5,m =1,2),

where 035 is the stress tensor; h; is the heat flux; D; is the electric displacement; f; is the body force vec-
tor; g is the free charge volume density; f is the distributed heat source density; u; is the displacement;
@ is the electric potential; 6 is the temperature change with respect to the reference temperature; Cjj,
are elastic moduli; k;; are heat conduction coefficients; 8;; = CijkmQim + €mijAm (4,7, k,m =1,..,3)
are thermal moduli (thermal stress coefficients); a;; are thermal expansion coeflicients; e;;;, are piezo-
electric constants; k;; are dielectric constants; x; = —e€jxmarm + KijA; are pyroelectric coefficients;
and \; are pyroelectric constants. Tensors Cjjrm, kij, kij and 3;; are assumed to be symmetric. Here
and further, the Einstein summation convention is used. A comma at subscript denotes differentiation
with respect to a coordinate indexed after the comma, i.e. u;; = Ou;/0x;.

According to the extended Stroh formalism [6], the general homogeneous (i.e. for fl =0and f, =0)
solution of Egs. (1), (2) can be expressed in terms of complex analytic functions as follows

0 =2Re {g/ (Zt)}, Y = thlm {g' (Zt)}, h1 = —19,2, h2 = 7971, kt = \/k‘llk‘gg - k%Q;

u=2Re{Af (z,) +cg(2)}, =2Re{Bf (2,) +dg(2)}; Gi1 = —Pi2, Giz = Pin; (4)
% = T1 4 Pia; Za = T1 + Paw2; £ (2) = [F1 (21), Fa (22), F3 (23), Fy (24)] 7,

where ¢ (z;) and F, (z,) are complex analytic functions with respect to their arguments; complex
matrix, vector and scalar constants included in Eq. (4) depend only on the properties of the material
and are derived based on the Stroh eigenvalue problem [6].

Stroh orthogonality conditions 6] allow obtaining the following relations between the Stroh complex
functions and vectors of extended displacement and stress function [7]:

f(z)=BTa+ATe - BTd — AT@!, @ =2Re{cg ()}, @' =2Re{dg(z)}. (5)

Based on Eq. (4) one can derive the following relation between the function ¢’ (2;) and temperature
and heat flux function:

g ()= (9 +¢%> . (©)

3. Derivation of the integral formulae for the Stroh complex functions for a bimaterial

Consider a plane problem of thermoelectroelasticity for two half-spaces zo > 0 and z9 < 0 (actually
only the cross-sections (half-planes) S; and Ss normal to the axis x3 are studied as depicted in Fig. 1),
which are bonded along the plane xo = 0 such that the following conditions are satisfied for thermal
fields (thermally insulated interface)

9D (21, x) = 9P (21, 29) =0 Vz; € (—o0;00) (7)

xo=0 xro=0
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and electric and mechanical fields (perfect electromechanical contact)

a® (2, 22) = a® (21, 29) , @W (21, 29) = @@ (21, 19) Vi € (—00;00). (8)

x9=0 x2=0 x9=0 x9=0

Each of the half-spaces contains a system of cylindrical voids which are referred as corresponding holes
in the 2D half-planes S; and Sy that are bounded by plane contours I'y = Uj Fgl) and I'y = Uj F§2)
respectively (Fig. 1).

sz

Material 1

Fig. 1. The sketch of the problem.

For derivation of the integral formulae for the Stroh complex functions for bonded half-spaces one
can use the Cauchy integral formula [9] which relates values of an arbitrary analytic function ¢ (7) at
the boundary 0S of the domain S with its value ¢ (z) inside this domain:

i/wf)mz{@(z) Vz e S, o)

271 T—z 0 Vz ¢ S,
oS

where 7,z € C are complex variables, which define the position of the source and field points, re-
spectively. Herewith, if the domain S is infinite, it is assumed that the function ¢ (z) vanishes at
z — 0.

3.1. Heat conduction

Due to the linearity of the problem of heat conduction one can present its solution as a superposition
of the homogeneous solution given by the functions gjso (zﬁl)) and gooo (zﬁz)) (which should definitely
satisfy the boundary conditions (7)) and the perturbed solution caused by the presence of the contours
I'y and I's, and certain boundary conditions set on them. Denoting the Cauchy integrals of the complex

(4)

temperature functions g}(z; ') as

ONPRO 7 ()Y 7=(1)
i . g;: T, dr, (i ; 9; \T dr,
dO0) - [HrI oy [ Al (10
Ty Tt A r; T A

and the improper integrals over the infinite path —oco < 21 < 00 as

; 009. r1)dz
n) = [ e (1)

Tl — 24
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based on Egs. (6) and (9), satisfying the contact conditions (7) one obtains the following integral
formulae for the functions ¢, (zt(z)):

1 1

71 (27) = ghoo (=) + 2—7”.%(1) (=) + ymt () vIm (V) > 0; (12)
1 1

95 (%) = ghoo (47) + 2—7”.61152) (#7) - yme (#7) ¥Im (=) >0, (13)

and a system of equations for determination of the improper integrals (11) through the Cauchy integrals
(10):

1

@ (") + gm() =0 (m (V) > 0), (4
1

0 (27) = gpe(=”) =0 (Im (7)) <0). (15)

The superscripts 1 or 2 denote corresponding half-space, which the temperature complex function
belongs to. A positive orientation of the contour is selected under the condition that as we traverse
the path following the positive orientation the domain occupied by the solid must always be on the
left.

Solving Eqs. (14) and (15) for the unknowns (11) one can obtain that

pe(=") = —2qV ("), (16)

pe(27) = 247 (=7)). (17)

Substituting Eq. (16) into Eq. (12), and Eq. (17) into Eq. (13), one obtains the following integral
(i)

formulae for the temperature functions g (zt ), which do not contain improper integrals along the
infinite bimaterial interface:

1 _
6 (+4") = ioe (=) + o= [ (") @ (V)] vim () > 0 (18)
1 i
6(+47) = Ghoo (27) + 5= [0 (+7) — 2 ()] vIm () <. (19)
According to [8], integral formulae (10) can be reduced to the following line integrals of the first
kind ©
qt@ (zlfj)) = —1 nQ(SA) e nl,(S)H(s)ds + - A In (Tt(i)(s) — zt@> hn(s)ds,
2 T(Z)(S) . Z(J) Qk(z)
P T t v (20)
_(§) .
0,0y _ 1 [n2(s) —pm(s) : (i) ()
g (2) = ——/ — ~—0(s)ds — —= [ In (77 (s) — 2,7 ) hn(s)ds.
2Fi Tt()(S) _Zt(J) th()ri ( >

Based on Eq. (20), one can write explicit expressions for integral formulae (18) and (19) through
the boundary values of the temperature # and the normal component h, of a heat flux vector. By
means of the Sokhotskii-Plemelj formula and Eqs. (18), (19), (20) one can easily obtain boundary
integral equations for a temperature field in a bimaterial with thermally insulated interface.

According to Eq. (4), for derivation of the integral formulae for extended displacement and stress

(4) (4)

it is necessary to calculate the anti-derivative of the functions g/(z;") and p, (zgj )):

a(=) = [ o)a:l? 1)
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[e.e]

Pt(zgi)) = /pt (zlfi))dzti) = - / In (:cl - zgi))ﬁ(i) (:cl)d:cl. (22)

According to Egs. (16)—(19), one obtains

P(z") = 2@ ("),

) ) (23)
91 (=) = oo () + 5= [ () = QP ()] (vIm (7) > 0);
P() =200 (7).

) ) (24)
92 (") = g2 () + 3 [ (+7) - QP (+7)] (vIm (57) <),

where according to Egs. (20) and (21),

&) = [ () d: =
== / (ng(s) - p,gi)nl(s)> In (Tt(i)(S) — z) 0(s)ds — ﬁ /f* (Tt(i)(S) — z> hn(s)ds,
. top

7

e / 7 (7065) = =) (),

(ng(s) - ﬁy)nl(s)> In (?t(i)(s) — z) (s)ds +

T

and f*(z) = z(Inz — 1) is the anti-derivative of a logarithmic function.

3.2. Thermoelectroelasticity of a bimaterial

For obtaining the integral formulae of thermoelectroelasticity one should write the Cauchy integral
formula (9) for the Stroh complex vector functions £(1) (z£1)) and £ (zg)), which are analytic in
the domains 57 and Ss, respectively. Since the Cauchy integral formula defines the analytic function
that vanishes at the infinity, the complete solution of the problem can be presented as a sum of the
perturbed solution defined by the Cauchy formula and a homogeneous solution given by the functions

féé) (zil)) and féf) (z,(f)), which satisfy interface boundary conditions (8). Consequently, one obtains

1) n
) (LMY _ (1) (D) 1 dr @) (1 _drr e :
B )+2m l\‘/<ﬂgl)z(1)>f (r )+/<x1—z£1) S 20
1 — 0o

*

dT;El) (1) (1) 7 dml (1) .
P, VT T % o P17 2B
dr® £ () i dxy £ (1) )
o (") = [ 5t =0 (Imzﬁ > 0) , (28)
2 T — g oz
(2) i
22N _ e(2) (.2 1 drs 2)((2) dxy 9 ,
£ (2Y) = £2) (24 )+2—m. {/<T(2)Z(2)>f( N(m) - / <m>f( )(961)] ; (29)
Iy * * oo 1 *
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[e.e]

dﬂgl) (1) (1) dry o)
) ) | — @) =0 o
P, VT2 T A8 Zoo 1T EB
_dn? N\ (=) — [_dn g (21) =0 (m= <o) (31)
riZ) — 522) ) 1= 2}32) o ’ |
I >

where (F(z,)) = diag [Fi(21), F2 (22) , F3 (23) , F1 (24)]; and 29 =21 + pP s (a=1,..,4).
Accounting for Eqgs. (5) and (8), the integrals over the infinite bimaterial interface included in
Egs. (26)—(31) can be rewritten as,

T £6) (1) dxy T ) T G0 ra (AT Rel[d;gj(z1)] + BT Re|cjg;j(z1)] ) dz
/ o = Ajm(z) +Bjp(z) -2 / . o , (32)
e T % . T1— 2
where the following notations are used
(j) o / c,b(xl)d:cl (]) _ / ﬁ(:cl)dxl
m|(z = —, plz = _— (33)
<ﬁ> } 361—2}3]) (5> } $1—Zéj)

After integration of the last term in the right-hand side of Eq. (32) and accounting for Eqgs. (6),
and (22), Eq. (32) is rewritten as,

[l (0) BT () +

B Ir1 — Zﬁ
7 T / T / (2) (34)
+2 / (A; Re [djgj (z1)] + B, Re [cjgj (z1)]) In (21 — 2 )dzy =
AT (D) L BT (,0) (¥
=A; m(zﬁ ) + B; p(zﬁ ) — )‘th(ZB ),
where the complex vector constants A; are defined by the following equations
Aj = Af Re[d;] + B} Re[c;]. (35)

Denoting the Cauchy integrals of the Stroh complex functions as

(4) —(5) S
i dry ; ; _ dry . ;
q;j (Zg(a)) - /< ) () > f(J)(ﬂE])), qj (Zz(a)) - /< ) () > f(J)(Tij)), (36)
r r

(J —(J
T — 2 T —Z
g vt A ;T A

based on Egs. (26)—(31), (33), and (34) one can obtain that

4
1
£ (zil)) = féé) (zﬁl)) + Gy |:q1(z£1)) + BZIIB (A?m(zél)) + B?p(zé%) — <Pt(z£1))> )\1} ; (37)

ATm(z") +BIp(=\") = —a(=)) + 2P (=))); (38)
ATm(={") + BIp(z}") = @2(={") + AP () (39)
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4
1
£ (=) = £2) (o)) + 5 az (=) - ;IB (Agm( Y +B; p(%?)) + <Pt(z»(<2))> Az|; (40)

ATm(={) + BTp (=) = —ar(z7) + MR (D) (41)
Agm(zé )) + B, p(zéz)) = QQU(Zéz)) + >\2Pt(Zé )), (42)

where Iy = diag[1,0,0,0], I = diag [0, 1,0, 0], Is = diag [0, 0, 1,0], and I, = diag [0, 0,0, 1].
Egs. (38), (39), (41), and (42) allow to express the improper integrals (33) over the infinite bima-
terial interface through the integrals over the finite contours I';:

m (Z/gl)) = (AiB;' - AsBy ') (BIT.Yl (Zél)) -B; 'y (Zél)» ;

p (o)) = (BiA = BoA) " (A1 (57) - A Tye () »

Y1 (z?) =—q (Zg)) + M B ( Egl)) ;

va(3) = (37) +2am ()

m (=) = (A:B7' = ABTY) T (ByTys (=) - B Tya () )

p () = (BaA - miAr) T (857 (o) - ATy (7)) »
(

y3 (2;32)> =q2 2[32)> + APy (2;32)> ;

Y4 (fo)> =—q (zg )) + AP (zg )) .

Substituting Eqgs. (43), (44) into Egs. (37) and (40) one can obtain the integral formulae for the
Stroh complex functions for a bimaterial, which do not contain improper integrals over the infinite
path (bimaterial interface):

4
@ () + 31 (6 ) + & () +
p=1 (45)
VIm zil) > 0;

£ ) = ¢ 0 (z0) + —

1 _
£ (o) = £ (=17 tom |4 Zlﬁ( Ve (27) + G }32))> -
(46)
+ (P >)> (6Pa-6Px+ A1) | vImz >0
where o T _ T &
GV = — AT (A;B;' — AB; ) BT+ BT (BiA;' —BoAy ) AT
Gy = - |AT (ABT! - AsB;!) BT+ BT (BiAT - BoAsY) AT (47)
G = — AT (A\B;' = AB; 1) BT+ BY (BiA; - BoAy ) T AT
G = — |AT (AB;' — A,B;Y) B, T+ BY (BiA; — ByA; ) AT
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According to [7], based on Egs. (4), (5), (6) the Cauchy integrals (36) can be expressed through
the physical boundary functions as

. . . - no(s) — Sf)n S ~
i) = [ im0 ) it - [ (PP
* B

Ly j
- / <1n (Tij)(s) - z/(;))> (Ajna(s) — pjnl(s))ﬂ(s)ds - / <f* (Tij)(s) - zg))> ;i (s)ds;
Ly Ly
: (48)
o (2 _0) )\ AT na(s) = mi(s) \ oo
q; (,2:ﬁ ) = <ln (77 (s) — 2 )> Ajt(s)ds — o) o) B, u(s)ds—
T (s) — 2
Ly Ly
- / <ln (ﬂgj)(s) — zg))> (Ajna(s) — pjni(s))0(s)ds — / <f* (ﬂgj)(s) — zg))> f;hy(s)ds,
Ly Ty
where t; = gi;n; is the extended traction vector, and
1 . .
Wy = ) (A;F Im [d;] + B;r Im[c]), p;= A;r Re {pgj)dj} + B;r Re [pgj)cj} . (49)

t

According to Egs. (25) and (48), expressions (45) and (46) for the Stroh complex functions are the
integral formulae relating the latter at the internal points of the thermoelectroelastic bimaterial with
the boundary values of the temperature 6, the heat flux h,, the extended displacement vector a and
the traction vector t at the contours I';. Consequently, Eqs. (4), (45), (46), and (48) allow to derive
the Somigliana type integral formula for a thermoelectroelastic bimaterial

2Re [A1f0 (Z0(8)) + 101 (Z0(€)] (€ € 81),
a(e) = (50)

2Re [A® (77(€)) + 0200(Z7(€))] (v € 52).

Based on Egs. (4), (45), (46), and (48) one can also derive the integral formula for the extended
stress tensor at the arbitrary internal point of a thermoelectroelastic bimaterial:

2Re [By (8 — a8 ) £/(27(6)) + (05 — d1,01") 1 (27(9)) | (€ € ),
7i(8) = (2) (2) (2) (2) (51
2Re |:B2 <52j — 015D+ >f,(Z* (E)) +d2 (52j — 015, )9& (Zt (E))] (€€ S).

By means of the Sokhotskii-Plemelj formula based on Egs. (50), (51) one can easily obtain boundary
integral equations for displacement and stress fields in a bimaterial with thermally insulated interface.

4. Conclusions

The extended Stroh formalism combined with the complex variable approach produce a powerful tool
for solution of 2D problems of thermoelectroelasticity. For instance, the application of the Cauchy
integral formula allows obtaining boundary integral equations for bimaterial solids, which identically
account for the given boundary conditions at the material interface. The integral formulae for the
Stroh complex functions, and, consequently, the integral representations of the temperature, extended
stress and displacement fields, are obtained in a straightforward manner without any preliminary
assumptions. The kernels of the integral equations can be derived in the closed form. Besides, obtained
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integral formulae do not contain domain integrals, which are the main advances comparing to existing
ones, which are derived by means of the reciprocity techniques.
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