
MATHEMATICAL MODELING AND COMPUTING, Vol. 1, No. 1, pp. 109–119 (2014)
Mathematical

M
odeling

Computing

Damping characteristics of three-layer beam-damper under harmonic
loading

Zhuk Y.A.

Taras Shevchenko National University of Kyiv

64 Volodymyrska str., 01601, Kyiv, Ukraine

(Received 1 April 2014)

Thermomechanical behavior of inhomogeneous viscoplastic structures under cyclic load-
ing is investigated for the problem of harmonic bending and dissipative heating of a three
layer beam. Two problem statements are used. One is based on the generalized ther-
momechanically consistent flow theory (complete problem statement) and the other one
is the approximate scleronomic model implementation (approximate problem statement).
Aluminium alloy and steel are chosen as the materials of layers. Comparison of the results
obtained for complete and approximate problem statements is performed. Comparative
estimation of beam loss coefficients for different configurations is also performed.
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1. Introduction

The forced-vibration analysis of structures and their elements occupies an important place in the
mechanics of deformable systems. This research area attracts great interest because of the need of
deeper theoretical analysis (especially of nonlinear systems) and purely practical requirements in vari-
ous fields of engineering. Under intensive loading, there are several factors that determine the behavior
of multilayer structures. Among them are nonlinearity of material properties, the heterogeneity of the
stress-strain state (which is due to the layered structure), and the coupling of the mechanical and
thermal fields. In particular, intensive loading may cause plastic deformation of elements of damp-
ing systems [1,2], building structures [3,4], test specimens in low-cycle fatigue tests [5,6], etc. This
may result in elevated temperatures due to dissipative heating. In turn, the heating may change the
strength characteristics of the structure, deteriorate its performance, and, under adverse conditions,
even cause the failure. The heterogeneity of the stress-strain state is an additional complicating factor
of the problem [7,8].

The present work is devoted to investigation of energy absorption and dissipation aspects of the
problem considered for multi-layer structures. The main aim is to determine the part of energy that can
be safely absorbed/dissipated by a three layer beam. One of the basic issues for such investigation is
determination of energy dissipation characteristics. The usual procedure lies in obtaining such energy
quantities as stored and dissipated energies and loss coefficient for the case of cyclic loading.

Amount of structural members subjected to cyclic loading is vast. There are different technological
objects, elements of power equipment, dampers etc. [1,2] among these structural elements. Some of
them can deform inelastically [9]. It can cause significant heating due to the internal dissipation
of mechanical energy and changing of functional characteristics of elements under long term cyclic
loading. Investigation of this class of objects and processes demands the implementation of material
models that take into account properly both mechanical and thermal aspects of member state. On
the author’s opinion, generalized flow theories are most promising from this point of view. Within
the framework of these theories, thermodynamics of irreversible processes is used to derive the correct
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system of constitutive equations and heat conduction equation (see, for example, [10–14]). The refined
thermodynamically consistent model of coupled thermo-viscoplastic material behavior was elaborated
on the base of Bodner-Partom model in the works [11,15,16]. This model describes isotropic and
anisotropic hardening by means of one scalar and one tensor internal variables.

For the particular case of cyclic (harmonic) loading, the approximate scleronomic model of coupled
thermomechanical behavior of elastic-viscoplastic bodies was elaborated in papers [15–18]. This model
was formulated in terms of amplitudes of mechanical field variables, averaged over the period temper-
ature and complex mechanical moduli (see also [19,20]). In the present paper original “complete” and
approximate models are applied to investigate coupled thermomechanical behavior of structurally inho-
mogeneous viscoplastic bodies under harmonic loading. Quasi-static vibration and dissipative heating
of a three layer beam subjected to harmonic bending are under consideration. Set of mechanical field
variables and heating temperatures obtained as a result of implementation of both model are compared.
Some aspects of storage and dissipation of energy under cyclic bending, that have particular interest
for vibration damping, are investigated as well.

2. Problem statement

The problem of vibration and heat dissipation of a three layer viscoplastic beam |x| 6 a, |y| 6 b
under kinematic harmonic bending applied on its ends is studied for the plane stress state (Fig. 1).
It is assumed that the inner and outer layers are fabricated from different viscoplastic materials.
Ideal thermal and mechanical contact is assumed on the boundaries between layers. In accordance
with [15,16,18] the problem statement consists of Cauchy’s relations

ε =
1

2

[

∇u+ (∇u)T
]

, (1)

equation of quasi-static equilibrium (2), energy balance equation (3), constitutive equations of material
behavior, initial and thermomechanical conditions on the outer boundary (4)–(6)

Fig. 1. Three layer beam-damper lay-up.

∇ · σ = 0 in V, (2)

cV θ̇ + 3αθKV

(

tr ε̇− 3αθ̇
)

−D′ − k∆θ = r, (3)

θ (0) = θ0, (4)

ux = ±ε̂y sinωt, σxy = 0, |x| = a; σyy = σxy = 0, |y| = b, (5)
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−k∇θ = γ (θ − θ0) , |x| = a, |y| = b. (6)

It is assumed that viscoplastic behavior of materials is described by the Bodner-Partom’s model (see,
for example [11,12]). Generalization and thermodynamic analysis of it were performed by Senchenkov
and Zhuk [15] and Senchenkov, Zhuk et al. [16]. It was accepted for this model that total strain is a
sum of elastic, inelastic and thermal parts

ε = εe + εp + εθ, (7)

εθ = I

θ
∫

θ0

α
(

θ′
)

dθ′. (8)

The model also incorporates the Hooke’s law for elastic strain (9), the flow law (10) and the evolution
equation for parameters of isotropic and anisotropic hardening (11), (12)

s = 2G (e− εp) , trσ = 3KV tr
(

ε− εθ
)

, (9)

ε̇p =
D0√
J2

exp

[

−1

2

(

Z2

3J2

)n]

s; Z = K +D, (10)

K̇ = m1 (K1 −K) Ẇp −AKK1

(

K −K2

K1

)rK

, (11)

β̇ = m2 (D1u− β) Ẇp −ADK1

[

(β : β)1/2

K1

]rD

V (12)

where
J2 = s : s/2, Ẇ p = σ : ε̇p, u = s/ (s : s)1/2 ,

V = β/ (β : β)1/2 , D = β : u.

The following notations were used in Eqns (1)–(12): u is the displacement vector; ε and σ are the
tensors of total strain and stress; εe, εp and εθ are the elastic, inelastic and thermal components
of strain tensor respectively; e and s are the deviators of strain and stress tensors; K and β are the
parameters of isotropic and anisotropic hardening correspondingly; θ is the temperature; G and KV are
the shear and bulk moduli respectively; D′ is the rate of energy dissipation; k is the heat conductivity
coefficient; cV is the specific heat capacity for constant volume; α is the thermal expansion coefficient; r
is the power of thermal sources; γ is the heat transfer coefficient; θ0 is the temperature of environment.
The constants D0, D1, K0, K1, K2, m1, m2, AK , AD, rK , rD and n are the model parameters. In
accordance with the model formulation, coefficients D0, D1, K1, m1, m2, rK and rD are temperature
independent while K0, K2, AK , AD, KV and G that depend on temperature. In Eqns (1)–(12) I

denotes the unit tensor of appropriate rank; a : b is a convolution of tensors a and b; tra is a trace of
the tensor a; ˙(·) = ∂ ( · ) /∂t and ∆ is Laplacian operator.

Numerical integration of problem (1)–(12) is significantly complicated by the necessity of taking
into account the total prehistory of deformation in the case of multiple cycle loading.

3. Thermodynamic analysis of model

The formulation of the coupled thermo-viscoplasticity problem demands the model of material be-
haviour to be consistent with thermodynamics of irreversible processes. In this section the thermody-
namic analysis of the Bodner-Partom model will be performed.
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The Helmholtz energy ψ is taken as a thermodynamic potential

ψ = U − ηθ, ψ = ψ (ε, θ, αk) (13)

where U is the internal energy; η is the entropy; αk is the set of internal variables.
The energy equation takes the form

U̇− σ : ε̇+ div h = r (14)

where h is the heat flux.
Taking into account Eqn (14), the second law of thermodynamics in Planck form reduces to the

dissipative inequality
σ : ε̇ = ψ̇ − ηθ̇ > 0. (15)

Employing the standard thermodynamic procedure, the defining equations may be established on the
base of Eqns (14) and (15), taking into account Eqn (8)

σ =
∂ψ

∂ε
, η = −∂ψ

∂θ
, Ak =

∂ψ

∂αk
, k = 1, N. (16)

Here, Ak are the thermodynamic forces conjugated with the variables (thermodynamic displacements)
αk. The dissipative inequality then takes the form

σ : ε̇p −Akα̇k = D′
> 0, (17)

According to Eqn (17), D′ is the difference between the plastic power and the rate of variation of
hidden stored energy Ẇs

Ẇs = Akα̇k. (18)

It follows from Eqn (17) that only a part of the plastic work is converted into heat. The portion of
it that is phenomenologically related to hardening is stored in the material. This energy is associated
with the additional stored energy due to the dislocation kinetics and also with the changes in the
surface energy of the pores.

The following evolution equations for the internal variables should be added to Eqn (16)

α̇k = αk (ε, θ, αj) , k, j = 1, N. (19)

Let us assume that the body occupies the region V bounded by surface S with the external normal n.
Taking account of Eqns (13), (16) and (17), Eqn (14) transforms into

θη̇ = divh+D′ + r, in V. (20)

In order to obtain the Bodner-Partom model from the general model, we determine the appropriate
form of Eqn (13) and (19). In the generalized models the thermodynamic forces Ak are associated
with the hardening parameters. In particular, for the Bodner-Partom model Ak are equivalent to the
set {K, β}. The conjugate internal variables are denoted by δ and α.

According to Senchenkov and Zhuk [15] and Senchenkov, Zhuk et al. [16], the following expression
can be written for the free energy

ψ = G (e− εp) : (e− εp) +
1

2
KV [tr (ε− εp)− 3 εp]2 +

m1K
2
1δ

2

2c
+

+
m2D

2
1 (α : α)

2d
−

θ
∫

θ0

dx

θ
∫

θ0

cV (y)

y
dy. (21)
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Here cV (θ) is the isochoric specific heat; c and d are the dimensionless constants.
As it follows from Eqns (11), (12), and (19), the evolution equations for the thermodynamic forces

are specified in the mechanical model, whereas the equations for thermodynamic displacements are
employed in the thermodynamic analysis. Obviously, these equations must be consistent. Determining
the thermodynamic forces from Eqn (16) by means of Eqn (21) and then differentiating both sides of
the resulting equations with respect to the time, we find that

K̇ =
d

dt

(

∂ψ

∂δ

)

=
m1K

2
1

c
δ̇,

β̇ =
d

dt

(

∂ψ

∂α

)

=
m2D

2
1

d
α̇. (22)

It is readily evident that substitution of the evolution equations obtained by Senchenkov, Zhuk et
al. [16]

δ̇ = c (1−K/K1) Ẇp/K1 − cAKK (K1m1)
−1 [(K −K2) /K1]

rK , (23)

α̇ = d (u− β/D1) Ẇp/D1 − dAD

(

D2
1m2

)−1
[

(β : β)1/2 /K1

]rD
β/ (β : β)1/2 (24)

into Eqn (22) yields Eqns (11) and (12). Taking into account of Eqns (17) and (23), (24), one can find
the following expression for the dissipation rate

D′ =σ : ε̇p− β : α̇−K δ̇ = Ẇp − Ẇs, (25)

Ẇs = Ẇsβ + ẆsK =β : α̇+K δ̇. (26)

In Eqn (26), the accumulation rate of stored energy Ẇs is divided into parts associated with the
anisotropic Ẇsβ and isotropic ẆsK hardening.

The analysis of Eqns (11), (12), (25) and (26) shows that the coefficients c and d in Eqns (21), (23)
and (24) do not appear in the equations of the mechanical model described in Sect. 2. However, they
are thermodynamically significant: they determine the portion of the plastic work converted into heat.

Equation (9) for σ and the equation for η are found by differentiating the free energy in Eqn
(21) according to Eqn (16). To eliminate cumbersome computations for the entropy, we assume that
thermo-mechanical characteristics of the material and coefficients in Eqn (21) do not depend on the
temperature. After simple transformations, we write Eqn (20) in the form

cV 0 θ̇ + 3α0θKV

(

tr ε̇− 3α0θ̇
)

−D′ − k∆θ = r, (27)

where cV 0 and α0 are the specific heat and linear thermal expansion coefficients respectively at the
reference temperature θ = θ0; the dissipative function D′ is determined by Eqns (23)–(25).

The formulation of the coupled problem derived here is valid for arbitrary deformation processes
in materials satisfying the Bodner-Partom equations.

4. Approximate scleronomic model of coupled thermomechanical behavior of viscoplas-
tic bodies

To avoid the complication mentioned, the approximate scleronomic model was developed. It incor-
porates the complex characteristics concept, and was initially elaborated for the particular case of
proportional harmonic loading.

It is assumed that for the harmonic excitation of material element

e (t) = e′ (t) cos ω t− e′′ (t) sin ω t,
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the corresponding response is also close to harmonic law

s (t) = s′ (t) cos ω t− s′′ (t) sin ω t. (28)

As a result, the complex amplitudes of total and plastic strain deviators ẽ = e′ + ie′′ and ε̃p = εp ′ +
+ iεp ′′ as well as the amplitude of stress deviator s̃ = s′ + is′′ are related by means of complex shear
modulus G̃N , G̃N = G′

N + iG′′
N and plasticity coefficient κ̃N , κ̃N = κ

′
N − iκ′′

N in each cycle as follows

s̃ = 2G̃N ẽ; ε̃p = κ̃N ẽ, N = 1, 2, . . . (29)

where G̃ and κ̃ are the functions of tensor of strain amplitude intensity e0, frequency ω and temperature
θ, N is the cycle number. In the general case G̃ = G̃ (e0, ω, θ), κ̃ = κ̃ (e0, ω, θ), where e0 = e′ : e′ +
+e′′ : e′′.

The imaginary parts of characteristics are determined from the condition of equality of dissipated
energies over the period

G′′
N =

〈

D′
〉

N
ω e20, κ

′′
N = G′′

N/G, (30)

and real parts are obtained from the condition of equivalence of generalized cyclic diagrams σaN =
= σaN (e0, ω) and εpaN = εpaN (e0, ω), that relates amplitudes of the equivalent plastic strain εpaN and
stress σaN in the N th cycle

G′
N (e0, ω) =

[

σ2aN (e0, ω)

4e20
−G′′

N
2
(e0, ω)

]1/2

, κ
′
N (e0, ω) =

[

εpaN
2
(e0, ω)

e20
− κ

′′
N

2
(e0, ω)

]1/2

, (31)

where 〈 · 〉 = 1

T

NT
∫

(N−1)T

( · ) dt, T =
2π

ω
.

Dissipation and cyclic diagrams are calculated by means of direct numerical integration of the
Bodner-Partom model equations for the case of torsion of a hollow thin-walled cylinder.

Averaging energy equation (3) over the period of vibration and neglecting thermoelastic effects one
can obtain

cV ˙〈θ〉 − k∆〈θ〉 −
〈

D′
〉

N
= 0, (32)

where 〈θ〉 is the averaged temperature.
Averaged dissipation function is determined as

〈

D′
〉

N
=

〈

Ẇp

〉

N
.

The equation of quasi-static equilibrium takes the form

∇ · σ̃ = 0 (33)

The following mechanical boundary conditions (5) and thermal boundary and initial conditions (6),
(4) should be added to Eqns (29)–(33)

ũx = ∓iε̂y, σ̃xy = 0, |x| = a; σ̃yy = σ̃xy = 0, |y| = b, (34)

−k∇〈θ〉 = γ (〈θ〉 − θ0) , |x| = a, |y| = b, (35)

〈θ〉 = θ0, t = 0 (36)

where ε̂ is loading parameter.
The approximate scleronomic model of transient thermomechanical response of viscoplastic solids

is given by Eqns (29)–(33). The approximate problem statement for thermomechanical behavior of
viscoplastic solids consists of the equations mentioned along with the Eqns (32), (33) and conditions
(34)–(36).
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5. Material properties and solution technique

Aluminium alloy and steel were chosen as the materials of layers. Their mechanical properties and
generalized model constants are given in Table 1. Stabilized complex moduli (N → ∞) of approximate
model for both materials are plotted in Fig. 2. Curves 1 and 2 show the dependence of G′/G vs strain
intensity for aluminium alloy and steel respectively. Similar dependencies for G′′/G are depicted by
curves 3 and 4.

Table 1. Mechanical properties and generalized mo-
del constants used.

Parameter Aluminium alloy Steel

ρ,kg/m3 2640 7820

cρ, J/kg· ◦K 921.0 485.9

E · 10−5, MPa 0.816 2.12

ν 0.34 0.30

k, W/m·◦K 90.00 30.98

α · 10−6, 1/◦K 23.0 12.0

n 2.06 1.00

D0, s−1 104 104

D1, MPa 80 0

K0, MPa 323.6 3145

K1, MPa 647.4 4000

K2, MPa 35 0

m1, MPa−1 0.182 0.300

m2, MPa−1 3.7 0.0 Fig. 2. Stabilized complex moduli of approximate
model for aluminium alloy and steel.

The technique of numerical solution for the complete problem statement is designed as double
iterative process. The first (internal) process is formed by numerical integration of evolution equations.
The second iterative process is related to the quasi-static equilibrium equation and heat conduction
equation integration. The implicit Euler’s method is used for the integration of evolution equations. A
simple integration technique is employed for solution of non-linear transcendental system of equations,
which arises at each time step. The Steffensen-Eytken’s technique is used to accelerate the process
convergence. The initial iteration is calculated by means of square extrapolation of values from three
previous time steps. The equilibrium and heat conductivity problems are solved by means of FEM.
Quadrilateral eight-node elements with four Gauss points are used. The plastic strain is incorporated
into fictive mass forces and is not varied under variation procedure. Time step correction technique
is applied. Rates of convergence of internal and external iterative processes are used as a criterion of
step changing. The solution convergence is estimated by the values of maximum stress and plastic
strain. The technique developed in [16–18] is used to find the solution of approximate problem. The
main difference from the technique incorporated for solving the rigorous problem lies in the absence
of internal iterative process designed for the evolution equation integration [7]. There is only external
iterative process for each time step [17].

6. Numerical results

There were two main aims of calculations performed. The first one is the determination of basic re-
gularities of coupled thermomechanical processes in inhomogeneous viscoplastic bodies. The second
one is the estimation of applicability of the approximate technique derived to solution of class of
problems mentioned. The geometry of beam was chosen as follows: a = 0.15 m, b = 0.15 · 10−1 m,
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b1 = b3 = 0.3 · 10−2 m, b2 = 0.24 · 10−1 m, where bi, i = 1, 2, 3 are the layer thicknesses. Two possible
configurations were studied. The first one has the composition aluminium-steel-aluminium (ASA) and
the second one has the opposite SAS composition. The excitation frequency is 1Hz.

Comparison of results was performed for the following set of thermomechanical characteristics:
1) ranges of the equivalent stress and plastic strain σa1,2, ε

a
1,2 at the points x = 0.3 · 10−1 m,

y = 0.146 · 10−1 m (corresponds to subscript 1) and x = 0.3 · 10−1 m, y = 0.1 · 10−1 m (corresponds to
subscript 2) that belong to the 1st and 2nd layers respectively; 2) the plastic power D̄′ averaged over
the volume of the body; 3) the maximum over the period values of averaged over the volume stored
energy We and heating temperature the 〈θ〉 at the point x = 0.0 m, y = 0.15 ·10−1 m. The expressions
for these quantities for the rigorous model are given by

[

σxxaN
εpxxaN

]

=
1

2

{

max
TN

[

σxx (t)
εpxx (t)

]

−min
TN

[

σxx (t)
εpxx (t)

]}

,

D̄′ =
1

V T

∫

V

NT
∫

(N−1)T

s : ε̇pdt dV , (37)

W̄e =
1

V
max
TN

∫

V

[

1

18KV
(tr σ)2 +

1

4G
s : s

]

dV.

The same quantities in the case of approximate model should be calculated as follows:

σxxaN = |σ̃xxN |, εpxxaN =
∣

∣ε̃pxxN
∣

∣,

D̄′ =
ω

2V

∫

V

Im
(

s̃N : ε̃
p∗
N

)

dV , (38)

W̄e =
1

V

∫

V

[

1

18KV
(tr |σ̃N |)2 + 1

4G
s̃N : s̃∗N

]

dV,

where N denotes the number of cycle and complex conjugate is marked with asterisk.

Fig. 3. Temperature evolution in time at the point with coordinates x = 0.0 m, y = 0.15 · 10−1 m.

Good agreement between two approaches should be emphasized. The following errors of the ap-
proximate solution were detected: 2% for stored energy, 3% for dissipated energy, 2% for equivalent
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a b

Fig. 4. Comparison of through the thickness distributions of the equivalent stress (a) and equivalent strain
as well as steady temperature distribution over the cross-section y = 0 (b) provided by the complete and
approximate problem statements for the ASA beam configuration.

stress, 8% for equivalent plastic strain and 3% for heating temperature at the stage of stabilized pro-
cess. Maximum errors were detected at the starting cycles. They can be explained by larger errors in
complex characteristics values at the beginning due to unclosed hysteresis loops.

Good agreement of the results mentioned provides possibility for approximate model application
for investigation of the temperature evolution and stabilization process. The results of calculation are
depicted in Fig. 3 for heat transfer coefficient γ = 20 W/m2 ◦K. Good agreement of results both in
time and spatial coordinates should be emphasized.

Typical results of strain-stress state investigation for configurations ASA are shown in Fig. 4. The
lines 1 and 2 depict equivalent stress range distribution over cross-section y = 0 for the complete
and approximate problem statements respectively. Curves 3 and 4 have the same meaning for the
equivalent plastic strain range distribution. They almost coincide for the chosen scale.

Good agreement between stored and dissipated energy values for complete and approximate problem
statements provides a reason for applying the approximate technique to estimate the element damping
properties. The following energy characteristics were considered for comparison of damping abilities
of ASA and SAS beam compositions: D̄′, W̄e and loss coefficient

ψL =

2π

∫

V

D̄′ (x) dV

ω

∫

V

max
T
W̄ (x) dV

.

Results for the 7th cycle (steady vibrations regime) are presented in Tables 2 and 3. Indexes denote
the number of layer.

Table 2. Energy characteristics of the beam-damper for the 7th cycle.

Composition ψL D̄′, MPa/s W̄e, MPa
ASA 5.04 4.65 0.922

SAS 8.02 4.76 0.593
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Table 3. Energy characteristics of the damper layers for the 7th cycle.

Composition ψL 1,3 ψL 2
D̄′

1,3, D̄′
2, W̄e 1,3, W̄e 2,

MPa/s MPa/s MPa MPa

ASA 9.85 4.01 0.672 3.30 0.07 0.82

SAS 11.53 3.76 1.779 1.19 0.15 0.32

7. Conclusions

There is a good agreement between the solutions provided by the complete and approximate prob-
lem statements. The configuration SAS is characterized by a higher loss coefficient. It means that
composition with thick enough internal layer of “soft” material covered by thin layers of a “hard” one
is more suitable for damping of forced vibration for loading under consideration. Both complete and
approximate models can be applied for solving the vibration and heat dissipation problem for inhomo-
geneous structures such as multi-layer beam-dampers. But it should be emphasized that in the case
of harmonic loading, integration of the approximate statement demands two orders less time than the
complete one.
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Демпфiруючi характеристики тришарової балки-демпфера при
гармонiчному навантаженнi

ЖукЯ.О.

Київський нацiональний унiверситет iменi Тараса Шевченка

вул. Володимирська, 64, 01601, Київ, Україна

Дослiджується термомеханiчна поведiнка неоднорiдних в’язкопластичних елементiв
конструкцiй при циклiчному навантаженнi на прикладi задачi про гармонiчний згин
та дисипативний розiгрiв тришарової балки. Використано двi постановки задачi.
Одна ґрунтується на узагальненiй термодинамiчно узгодженiй моделi непружної течiї
(повна постановка задачi), а iнша формулюється з використанням наближеної скле-
рономної моделi поведiнки матерiалу (наближена постановка задачi). Алюмiнiєвий
сплав та сталь вибранi в якостi матерiалiв шарiв. Проведено порiвняння результа-
тiв, отриманих в рамках повної та наближеної постановок. Дано порiвняльну оцiнку
коефiцiєнту втрат для рiзних конфiгурацiй балки.

Ключовi слова: термомеханiчна зв’язанiсть, балка-демпфер, коефiцiєнт втрат
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