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Three facts of reticences (passing over in silence, an absence of comments) in the procedures
of mathematical modeling of elastic materials are described and commented. The first fact
consists in a reticence of one of the first steps in the mentioned above procedure — an
assumption that the kinematics of deformation is described by the linear approximation of
motion of material continuum, namely by gradients of deformation. In the paper, a novel
nonlinear approach to this procedure is offered. The second and third facts are associated
with constitutive relations. The second fact consists in the absence of necessary comments
relative to determination of smallness of strains and gradients of displacements (absence of
comments relative to a criterion of applicability of the linear model) because the criterion
|ui,k| ≪ 1 is sufficiently abstract. It is shown that there exists a based on the nonlinear
Cauchy relations approximate procedure of determination of threshold values of strains
and gradients of deformations starting with which a nonlinearity of process appears. The
third fact consists in the absence of comments relative to essential differences between
the nonlinear constitutive equations, which are written for the ordered pairs “Lagrange
stress tensor – Cauchy-Green strain tensor” and “Kirchhoff stress tensor – gradients of
displacements”. It is shown on an example of the shear stress and the Murnaghan model
of nonlinear elastic deformation that deviation from the corresponding straight lines of
linear deformation for different pairs differs in many times in the range of small strains
and small gradients of displacements. The general estimate of facts of reticences looks
positive, because for one part of scientists-mechanicians the reticences form the comfort
feeling of monolithic character of the classical theory of elasticity, whereas for another part
the reticences form a space for development of the theory of elasticity.
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1. The first reticence in the mathematical modeling of elastic materials

1.1. The classical description of kinematics of deformation in mechanics of materials

The classical mathematical model of deformation as a transition of a body (piece of material) from
the undeformed state to the deformed state is based on the continuum representation of this body in
the form of some geometrical domain, the density in each point-particle of its material is given as the
continuous function of coordinates. The foundations of based on this model theory are stated to a
greater or lesser extent in many well-known in solid mechanics books [1–14]. Most abstractedly, the
kinematic aspects of deformation of body are stated in the Truesdell and Noll works [12–14].

The primary notion is the body D. The motion of body −→x = −→χ κ(
−→
X, t) is described as a mapping

χκ of the reference configuration −→κ (D) on the actual configuration χ(D, t) (a mapping of the point
X ≡ (X1,X2,X3) of the body in the reference configuration on the point x ≡ (x1, x2, x3) of the

body in the actual configuration). In coordinates, the expression −→x = −→χ κ(
−→
X, t) has a form xm =
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= (χκ)m(X1,X2,X3, t). The mapping χκ is called the deformation of body D relative to the reference
configuration. Here traditionally the Cartesian coordinate system OX1X2X3 is introduced, and the

point-particle M of the body is characterized by the radius-vector
−−→
OM =

−→
R = (X1,X2,X3). If the

point-particle M in the undeformed state passes after deformation into the point M∗, which is defined

by the radius-vector
−−−→
OM∗ = −→r = (x1, x2, x3), then the quantity

−−→
OM −

−−−→
OM∗ =

−→
R −−→r = −→u (x1, x2, x3) (1)

is called the vector of displacement of the point-particle M .

A measure of deformation is introduced as follows: first the point N with the radius-vector
−−→
ON =

=
−→
R +∆

−→
R = (X1 +∆X1,X2 +∆X2,X3 +∆X3) and corresponding to its point N∗ with the radius-

vector
−−−→
ON∗ = −→r +∆−→r = (x1 +∆x1, x2 +∆x2, x3 +∆x3) are considered; then it follows from (1)

−→
R +∆

−→
R =

−−−→
ON∗ = −→r +∆−→r +−→u (x1 +∆x1, x2 +∆x2, x3 +∆x3); (2)

further the function −→u (x1 + ∆x1, x2 + ∆x2, x3 + ∆x3) is represented by the Taylor series in the
neighborhood of the point (x1, x2, x3)

um(x1 +∆x1, x2 +∆x2, x3 +∆x3) =

∞
∑

n=0

∂num
(∂x1)n1(∂x1)n2(∂x1)n3

(∆x1)
n1(∆x2)

n2(∆x3)
n3 , (3)

where n1 + n2 + n3 = n ; in the representation (3), the linear approximation is saved

um(x1 +∆x1, x2 +∆x2, x3 +∆x3) = um(x1, x2, x3) +
∂um
∂xk

∆xk. (4)

As a result, the formula (3) takes the form

dXm

−→
Em = dxm

−→e m + um,kdxk
−→e m, (5)

where
−→
Em,

−→e m are the orts of Cartesian coordinates OX1X2X3, Ox1x2x3, respectively. The introduced
by the formula (5) measure of deformation has a geometrical sense of changing the lengths of the
vector-radiuses of the point-particle under deformation of the body. It is used in the classical theory
of deformation (both linear and nonlinear) and looks natural under condition that the approximations
of the nonlinear displacement from (3) following after the linear one are already not essential.

Remark 1. Let us draw an attention to that despite some classical books on nonlinear mechanics
mention the fact of introduction of the measure of deformation as the linear approximation of displace-
ment in the form of nonlinear function even there this fact is not commented. For example, Truesdell
[12, chapter IX, section 1] only mentioned that “it seems to be useful to introduce displacements in
continuum mechanics, if only both displacements and their gradients are small in some sense”.

The next step in constructing the geometrical part (kinematics) of the model of deformation of material
as some continuum consists in introduction of the strain tensor. Toward this end, the change of
squared lengths of radius-vectors of the point-particle under deformation is considered. As a result,
the expression is obtained

(dXm)2 ≡ (dL)2 =
(

dxm+
∂um
∂xk

dxk

)(

dxm+
∂um
∂xi

dxi

)

=
(

(dl)2 ≡ (dxm)2
)

+
(

2
∂ui
∂xk

+
∂un
∂xk

∂un
∂xi

)

dxkdxi,

that further is represented in the form (dL)2 − (dl)2 =
[

2(∂ui/∂xk) + (∂un/∂xk)(∂un/∂xi)
]

dxkdxi,

and then the expression
[

2(∂ui/∂xk)+ (∂un/∂xk)(∂un/∂xi)
]

dxkdxi is divided on symmetric and anti-
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symmetric parts

εik = (1/2)
[ ∂ui
∂xk

+
∂uk
∂xi

+
∂un
∂xk

∂un
∂xi

)]

, ωk = (1/2)
[ ∂ui
∂xk

− ∂uk
∂xi

]

. (6)

Finally, εik is called the Cauchy-Green strain tensor, and in the case of the linear model the formula
(6) is simplified

εik = (1/2)
( ∂ui
∂xk

+
∂uk
∂xi

)

. (7)

Remark 2. Lur’e [8, chapter 2, section 1, subsection 1.1] mentioned: “There are any necessity to use
in the linear theory of elasticity the listed measures of deformation; while the deformation of massive
and weakly deforming bodies being considered, then this theory is based on the quite acceptable
assumption on an essential smallness of elements of the matrix of tensor ∇−→u : |∂uk/∂ai| ≪ 1. By
that, the successive neglecting of squares and products of tensor components as compared with their
first degrees”.

Remark 3. Relationships (7) are called very frequently in the linear theory of elasticity the Cauchy
relations. In the nonlinear approach, when deformation can be finite, the representation (6) is assumed
to be sufficient.

Remark 4. In many cases, it seems more convenient to describe the strain tensor (6) by its first
algebraic invariants (basis invariants)

I1 = giεik = ε11 + ε22 + ε33,

I2 = εikεki = (ε11)
2 + (ε22)

2 + (ε33)
2 + 2(ε12)

2 ++2(ε23)
2 + 2(ε31)

2,

I3 = εikεnkεin = (ε11)
3 + (ε22)

3 + (ε33)
3 + 3ε11(ε12)

2 + 3ε11(ε31)
2 (8)

+ 3ε22(ε12)
2 + 3ε33(ε23)

2 + 3ε33(ε31)
2 + 6ε12ε23ε31.

Thus, the first reticence in the mathematical modeling of materials can be thought as a tacit introduc-
tion of linear approximation in description of kinematics of deformation and an absence of comments
of the ignoring the nonlinear description of the measure of nonlinear deformation.

1.2. A few words on the nonlinear description of the measure of nonlinear deformation

Consider again the representation of displacement in the form of Taylor series (3) and save not two (as
it is made in the classical theory of elasticity), but three first terms

um(x1 +∆x1, x2 +∆x2, x3 +∆x3) =
−→u m(x1, x2, x3) +

∂um
∂xk

∆xk +
∂2um
∂xk∂xi

∆xk∆xk. (9)

When the approximate representation (9) being substituted into (2), then

dXm

−→
Em = dxm−→e m + um,kdxk

−→e m +
∂2um
∂xk∂xi

dxkdxk
−→e m. (10)

The introduced by formula (10) measure of deformation saves the geometrical sense of changing the
lengths of radius-vectors of the point-particle under deformation of the body. Further, to define the
strain tensor, it is necessary to analyze the expression

(dL)2 − (dl)2 = (dXm)2 − (dxm)2 =
(

2
∂ui
∂xk

+
∂um
∂xk

∂um
∂xi

)

dxkdxi+

+
( ∂2un
∂xk∂xi

+ 2
∂um
∂xn

∂2um
∂xk∂xi

)

dxndxkdxi +
∂2um
∂xk∂xi

∂2um
∂xn∂xp

dxkdxidxndxp. (11)
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The right hand side in (11) contains three summands: the first summand is used in the classical
theory of elasticity to determine the strain tensor εik and rotation tensor ωik (tensors of the second
rank), the second and third ones can be a basis to determine the new tensors εikn = (∂2un/∂xk∂xi) +
+ 2(∂um/∂xn)(∂

2um/∂xk∂xi) and εiknp = (∂2um/∂xk∂xi)(∂
2um/∂xn∂xp), which characterize the fi-

nite deformations (tensors of the third and fourth ranks). The formula (11) can be commented in the
following way.

Comment 1. The successive complication (only on one following term) of the measure of deformation
(9) does not complicate the classical nonlinear strain and rotation tensors (tensors of the second rank).

Comment 2. The presented in description of elastic deformation (10) new tensors of the third and
fourth ranks were not known earlier in the classical nonlinear theory of elasticity. But such a kind of
tensors was arose in the microstructural models of deformation of materials. For example, the nonlinear
model of simple microhyperelastic bodies [15,16] includes the third rank tensor called there the tensor
of the first moments of stresses. This tensor is involved into equations of moments of momentum,
which in this case are already not so simple as in the classical theory of elasticity (they are already not
degenerated in the condition of symmetry of the stress tensor).

Comment 3. Tensors εik, εikn, εiknp are symmetric by some indexes

εik = εki, εikn = εkin, εiknp = εkipn. (12)

Thus, formula (11) testifies that the kinematic picture of deformation within the framework of novel
representation of the measure of deformation (10) is characterized by three tensors εik, εikn, εiknp.

This procedure can be continued up to obtaining, for example, the novel nonlinear wave equations
within the framework of abovementioned approach. But here only the fact of reticence of possibility
of similar approaches is important.

2. Next two reticences in the mathematical modeling of materials

These reticences are associated with constitutive equations in the nonlinear model of elastic deforma-
tion. As it is well-known [1–12], the form of representation of constitutive equations depends on a
choice of ordered pairs “kinetic parameters – kinematic parameters”. Further, two pairs will be con-
sidered: the pair “Lagrange stress tensor – Cauchy-Green strain tensor” and the pair “Kirchhoff stress
tensor – gradients of displacements”.

2.1. To the motion and constitutive equations in the nonlinear theory of elasticity

The general approach in constructing the motion equations of elastic medium consists in using the
balance equations (mass, linear momentum, momentum of momentum, energy). In contrast to the
kinematic part of classical theory of elasticity, this part is related to the kinetics of motion and needs
of introduction of kinetic parameters (forces and stresses).

In conditions of absence of factors of changing the mass and momentum of momentums, it is
sufficient to analyze only the equations of balance of linear momentum. The local representation of
these equations has the standard for the classical theory of elasticity form

σik,k + Fi = ρüi or tki,k + Fi = ρüi, (13)

where σik is the symmetric Lagrange stress tensor, tik is the non-symmetric Kirchhoff stress tensor, Fi

are components of the resultant external force vector.
Usually, equations (13) are written through the displacements. In this case, the postulation of

constitutive equations (relations between stresses and strains) is needed.
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It is well-known [5] that two approaches to constructing the constitutive equations exist in the clas-
sical theory of elasticity. Both are based on the fundamental property of elastic material of reversibility
of a process of deformation after unloading (taking-down the loading that caused the deformation).
This property is observed in two coupled phenomena: in the full restorability of the body shape after
unloading and the full loss energy by the body stored during the deformation after unloading. The
shown two phenomena underlie two approaches to constructing the constitutive equations [5].

The first approach derives from Cauchy. It consists in formulation of one-to-one relationships
between stress and strain tensors. If the zeroth stresses correspond to the zeroth strains, then the
initial shape of body restores fully after unloading. If before the loading the initial stresses and some
initial shape existed, then after unloading the condition of one-to-one depentanizer provides the same
stresses and the same shape.

The second approach derives from Green. It consists in representation of potential (internal) energy
of elastic deformation in the form of a function of the strain tensor under condition that the components
of this tensor define fully the state of body by deformation. In this case, the internal energy is equal to
zero under zeroth strains, that is, the elastic body losses fully its energy stored when being deformed.

Let us restrict an analysis to the case of isotropy of elastic properties of deformed body. Then,
within the first approach, the constitutive equations can be represented in some general form [3,5]

σik = ψ0(I1, I2, I3)δik + ψ1(I1, I2, I3)εik + ψ2(I1, I2, I3)(εik)
2. (14)

Here the functions ψ0, ψ1, ψ2 as the functions of basic invariants are also the invariants. They can be
assumed to be the moduli of elastic deformations and must be determined by experimental way (that
is, first they are defined analytically and then are matched with experimental data).

In the linear model of elastic behavior, relations (14) are simplified essentially and have the name
of the Hooke law

σik = λεmmδik + µεik. (15)

In the scientific practice, the functions are used, which are sufficiently simple in an analytical rep-
resentation. To describe the second approach, let us recall that the division of elastic materials on
hyperelastic, elastic, and hypoelastic ones exist, and consider further the case of hyperelastic materi-
als [17]. They are defined as such for which the infinite times differentiable elastic potential W (εik)
exists, and for which the constitutive equations can be written by the formula

σik = (∂W/∂εik). (16)

There are sufficiently small group of concrete representations of elastic potentials, two of which can be
thought as having some general form: the Signorini potential

W =W (IA1 , I
A
2 ) = h2(I

A
1 − 3) + h1(I

A
2 − 3) + h3(I

A
1 − 3)2 (17)

( h1, h2, h3 are the Signorini elastic constants, IA
1
, IA

2
are the invariants of Almansi strain tensor) and

the Murnaghan potential

W =W (I1, I2, I3) = (1/2)λ(I1)
2 + µI1 + (1/3)A(I1)

3 +BI1I2 + (1/3)CI3 (18)

( λ, µ are the Lame elastic constants, A,B,C are the Murnaghan elastic constants).

2.2. On the Murnaghan potential

Let us stop further on the Murnaghan potential (18) and write it through the components of nonlinear
Cauchy-Green strain tensor εik

W =W (εik) = (1/2)λ(εmm)2 + µ(εik)
2 + (1/3)Aεikεimεkm +B(εik)

2εmm + (1/3)C(εmm)3. (19)
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Remark 5. The formula (19) shows more clearly that this potential is a polynomial with the constant
coefficients by the squared and cubed strain tensor components. It follows also from representation (19)
that this potential involves only the second and third degrees of the strain tensor components.

Remark 6. The elastic constants are determined for many engineering materials [17–20]. The values
of constants ρ, λ, µ, A, B, C for some characteristic metallic materials are shown in the Table 1.

Table 1.

materials ρ · 103kg/m3 λ · 1010Pa µ · 1010Pa A · 1011Pa B · 1011Pa C · 1011Pa

aluminum 2.70 5.20 2.70 −0.65 −2.05 −3.70
bruss LC 8.50 10.5 3.70 −4.05 +17.0 +2.40
copper 8.93 10.7 4.80 −2.8 −1.72 −2.40

molybdenum 10.2 15.7 11.0 −0.26 −2.83 +3.72
steel Hecla37 7.82 11.1 8.21 −4.45 −2.82 −7.16

tungsten 18.9 7.50 7.30 −1.08 −1.43 −9.08

Remark 7. The Murnaghan constants are negative for all the shown above metallic materials ex-
cluding brass and molybdenum. If to consider the one-dimensional deformation, then the Murnaghan
potential takes the form

W =W (ε11) = (1/2)(λ + 2µ)(ε11)
2 + (1/3)(A + 3B + C)(ε11)

3 (20)

and the stress (Lagrange) is determined by the formula σ11 = (dW/dε11) = (λ+2µ)(ε11) + (A+3B+
+C)(ε11)

2 . It follows from this formula that in the case of one-dimensional deformation of the shown
above metallic materials the expression A + 3B + C is negative A + 3B + C < 0 and the curve of
dependence σ ∼ ε lies from below of the straight line σ11 = (λ+ 2µ)ε11 that corresponds to the linear
law of deformation. It is said then that expression (20) describes the soft nonlinearity of deformation.
The brass is characterized by A+ 3B +C = (−0.31 + 1.7 + 2.4)1012 > 0 and the curve of dependence
σ ∼ ε lies from above of the straight line σ11 = (λ + 2µ)ε11, therefore it should be referred to the
materials with the hard nonlinearity of deformation.

The represented above features of the Murnaghan potential in description of nonlinearity turns out
to be important in many concrete problems of nonlinear mechanics. So, we focus on the Murnaghan
potential in view of its specific position in the nonlinear elasticity — it is the most developed and
applicable in the potential’s family.

2.3. The motion equations in displacements

The nonlinear motion equations in displacements are found as some generalization of the classic Lame
equations [3,8,10,11,17]. In the first approach, the representation (10) is substituted into the balance
equation (9)

[ψ0(I1, I2, I3)],kδik + [ψ1(I1, I2, I3)],kεik+

+ [ψ1(I1, I2, I3)],kεik,k + [ψ2(I1, I2, I3)],kεinεnk + ψ2(I1, I2, I3)(εinεnk),k + Fi = ρüi →

→
(

∂ψ0

∂I1
I1,k +

∂ψ0

∂I2
I2,k +

∂ψ0

∂I3
I3,k

)

δik +
(∂ψ0

∂I1
I1,k +

∂ψ1

∂I2
I2,k +

∂ψ1

∂I3
I3,k

)

εik+

+ [ψ1(I1, I2, I3)],kεik,k +

(

∂ψ2

∂I1
I1,k +

∂ψ2

∂I2
I2,k +

∂ψ2

∂I3
I3,k

)

εinεnk + ψ2(I1, I2, I3)(εinεnk),k + Fi =

= ρüi (21)
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and then for the known functions ψ0, ψ1, ψ2 the derivatives ψ0,m, ψ1,m, ψ2,m and derivatives of invariants
are determined. As a result, for all the known representations, equations (17) can be divided on two
parts — the linear one

[

(λ + µ)uk,ki + µui,kk + Fi − ρüi
]

(corresponding to the linear Hooke law and
Lame equations) and nonlinear one Ni(un,m, un,mp, un,mpq, . . .)(depending on products of displacements
gradients and their derivatives with the order of nonlinearity two and more

(λ+ µ)uk,ki + µui,kk + Fi − ρüi = Ni(un,m, un,mp, un,mpq, . . .). (22)

In the second approach, the components of stress tensor are also substituted into the balance equation.
But first these components must be determined from the known potential by the formulas σik =
= (∂W/∂εik) or tik = (∂W/∂uki). In the first case, the nonlinear symmetric Lagrange stress tensor
has a standard form (only one component is shown below, the structure of dependence for the rest
components is similar to the first one)

σ11 = (λ+ 2µ)ε11 + λ(ε22 + ε33) +A
[

(ε11)
2 + (1/3)(ε12ε12 + ε13ε13)

]

(23)

+B
[

3(ε11)
2 + 2ε11(ε22 + ε33)

]

+ C((ε11 + ε22 + ε33)).

The second case (the non-symmetric Kirchhoff stress tensor) will be analyzed more in depth in the
next subsection. Note here that the potential should be written through the displacements gradients.
As a result, it is found already the exponential function of the higher degrees (the second order of
nonlinearity is transformed into the sixth one, the third order — into the ninth and so on).

2.4. On representation of stresses and strains through the displacements gradients

Consider now the announced in the subtitle representation for the case of Murnaghan potential. This
potential is found the exponential function of the displacements gradient from the 2nd to the 6th
orders. Just such a way was chosen in the nonlinear acoustics [17,21,22]. There, the longitudinal and
transverse plane sound waves were studied. To derive the corresponding nonlinear wave equations in
terms of displacements, the summands of the 2nd and 3rd orders were saved in the potential, whereas
the summands of the 5th- 6th orders were neglected

W = (1/2)
[

(λ+ 2µ)(u1,1)
2 +

(

(u2,1)
2 + (u3,1)

2
)]

+ (24)

+
[

µ+ (1/2)λ + (1/3)A +B + (1/3)C
]

(u1,1)
3 + (1/2)(λ +B)u1,1

(

(u2,1)
2 + (u3,1)

2
)

,

where the usual for analysis of the plane waves assumption on propagation of waves along the axis
Ox1 was accepted uk = uk(x1, t).

The components of nonlinear Kirchhoff stress tensor had the form (further, only 3 of 9 are shown)

t11 = (λ+ 2µ)u1,1 + (3/2)
[

(λ+ 2µ) + 2(A+ 3B +C)
]

(u1,1)
2+

+ (1/2)
[

(λ+ 2µ) + (1/2)A +B
][

(u2,1)
2 + (u3,1)

2
]

,

t12 = µu2,1 + (1/2)
[

λ+ 2µ+ (1/2)A +B
]

u1,1u2,1, (25)

t12 = µu2,1 + (1/2)
[

λ+ 2µ+ (1/2)A +B
]

u1,1u2,1,

While the relations (25) being substituted into the motion equations tik,i+Fi = ρüi, then the quadrat-
ically nonlinear wave equations can be obtained for three polarized plane waves

ρü1 − (λ+ 2µ)u1,11 = N1u1,11u1,1 +N2

(

u2,11u2,1 + u3,11u3,1
)

, (26)

ρü2 − µu2,11 = N2

(

u2,11u1,1 + u1,11u2,1
)

, (27)

ρü3 − µu2,11 = N2

(

u3,11u1,1 + u1,11u3,1
)

, (28)

N1 = 3
[

(λ+ 2µ) + 2
(

A+ 3B + C
)]

, N2 = (λ+ 2µ) + (1/2)A +B. (29)
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Remark 8. The intuitively rational decision to neglect in potential (24) the summands of the order
more than third one results in including into the stress tensor and wave equations the nonlinear
summands only the second order. Therefore, the fields of stresses and strains are described similarly
with exactness to the gradients of displacements of the third order (the third order is neglected).

Comment 4. The question should be taken into account the third-fifth orders in the stress tensor
and in wave equations, whereas only the second order is taken into account in the strain tensor, is
still open. Taking into account of the third order (cubic nonlinearity) showed [17,22] that the plane
transverse waves are modeled better, because in this case the phenomena of nonlinear interaction
and self-generation of these waves is described. So, the waves might be studied within the approach of
higher approximations. But here the collision arises between description of strains within the quadratic
approximation and stresses in the cubic approximation.

2.5. The second reticence (the first reticence around the constitutive equations)

Let us consider now the first reticence relative to the constitutive equations. It is concentrated on the
question which strains can be considered as the small ones and which gradients of displacements can
be considered as the small ones. Most often in the theory of elasticity, the smallness of gradients is
mentioned and the classical inequality |ui,k| ≪ 1 is written. But this inequality is not commented more
definitely for the real materials. It means in the theory of elasticity that strains and gradients correlate
fully, that is an equality of small strain to some concrete value results automatically in an equality of
gradient to the same value. The primary fact here is the relation between strains and gradients (7),
which is known also as the nonlinear Cauchy relations

εik = (1/2)
[

(∂ui)/(∂xk) + (∂uk/∂xi) + (∂un/∂xk)(∂un/∂xi)
)]

.

To comment this situation, let us consider the simple case of elastic deformation uk = uk(x1, t),
mentioned above in connection with the plane waves. The formula (7) is simplified to ε11 = u1,1 +
+ (1/2)

[

(u1,1)
2 + (u2,1)

2 + (u3,1)
2
]

. This formula permits to establish the simple approximate link
between ε11 and u1,1 = u2,1 = u3,1 = υ. Choose the most unfavorable variant of values u1,1, u2,1, u3,1
and rewrite (7) in the form (υ)2 − (2/3)υ − (2/3)ε11 = 0. Then υ = (1/9)

(

1−√
1− 6ε11

)

.
This formula shows that the following difference between υ and ε11 exists (in percents): ε11 =

= 4 · 10−2 → 11.4%, ε11 = 3 · 10−2 → 8.6%, ε11 = 2 · 10−2 → 5.8%, ε11 = 1 · 10−2 → 3.0%,
ε11 = 5 · 10−3 → 1.5%, ε11 = 3 · 10−3 → 0.9%, ε11 = 1 · 10−3 → 0.3%, ε11 = 5 · 10−4 → 0.15%,
ε11 = 1 · 10−4 → 0.03%.

Thus, the threshold value for a small strain can be approximately determined in dependence on
understanding what is a small difference between a small strain and a small gradient of displacement:
when this difference is about 1 percent, then the threshold value for small strain is about 3 · 10−3 ;
when this difference is about 0,1 percent, then the threshold value for small strain is about 3 · 10−4.

Comment 5. The shown approximate estimate has only the geometrical character and does not
depend on properties of elastic material.

Comment 6. A knowledge of the threshold value for a small strains permits to decide: we are within
the range of small strains or not, but it cannot give the answer: the model of elastic deformation must
be nonlinear or not.

2.6. The third reticence (the second reticence relative to the constitutive equations)

To find this answer (mentioned above) in Comment 6, restrict further the analysis to only the Kirchhoff
shear stress t12 (25)

t12 = µu2,1 + (1/2)
[

λ+ 2µ + (1/2)A +B
]

u1,1u2,1 (30)
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and the Lagrange shear stress σ12, which under the analogous assumptions can be written in the form

σ12 = 2µε21 + 2(A + 2B)ε11ε21. (31)

Comment 7. The constitutive equations (29) “Lagrange shear stress – Cauchy-Green shear strain”
and (25) “Kirchhoff shear stress – displacement shear gradient” are at least not identical. They must
be represented geometrically by different nonlinear curves for one and the same material.
This forms the new reticence relative to constitutive equations for nonlinear models of elastic defor-
mation. Consider the difference between the mentioned above curves for some particular case and
choose three engineering materials from the Table 1: aluminum, copper, steel. Assume also the most
unfavorable variants of values ε11 = ε21 = ε, u1,1 = u2,1 = υ and consider corresponding formulas

σ12 = 2µε+ 2(A+ 2B)(ε)2, (32)

t12 = µυ +
[

λ+ 2µ+ (1/2)(A + 2B)
]

(υ)2. (33)

Further, restrict analysis to the range of values of ε and υ below of the threshold value ε = υ = 3 · 103,
where values of ε and υ are identical with exactness of one percent, and determine for the chosen three
materials the deflection (in percents) from the straight lines σ12 = 2µε and t12 = µυ.
Aluminum:

ε = 0.03; 0.02; 0.01; 0.005; 0.001; 0.00057 → (% =)51.8; 34.5; 17.25; 8.63; 1.73; 1.00;

υ = 0.03; 0.02; 0.01; 0.005; 0.0048; 0.0046 → (% =)6.59; 4.40; 2.20; 1.10; 1.06; 1.00; (34)

Copper:

ε = 0.03; 0.02; 0.01; 0.005; 0.001; 0.00077 → (% =)38.0; 26.0; 13.0; 6.50; 1.30; 1.00;

υ = 0.03; 0.02; 0.01; 0.008; 0.007; 0.0065 → (% =)4.60; 3.07; 1.54; 1.23; 1.08; 1.00; (35)

Steel:

ε = 0.03; 0.02; 0.01; 0.005; 0.001; 0.00082 → (% =)36.9; 24.6; 12.3; 6.15; 1.23; 1.00;

υ = 0.03; 0.02; 0.01; 0.005; 0.001; 0.00082 → (% =)5.50; 3.67; 1.83; 1.28; 1.10; 1.00; (36)

Comment 8. Let us recall that the threshold value of strains and gradients of displacements means
here the value, the exceeding of which by them can not be considered as the small ones. Therefore
an comparison of the approximately determined deviations of nonlinear curves σ ∼ ε and t ∼ υ from
their linear prototypes is realized in this paper for small strains and gradients of displacements. The
main result that follows from comparison of deflection of curves σ ∼ ε and t ∼ υ is twofold: 1. The
tables (34)–(36) confirm the fact that metals become deformed nonlinear elastically under small strains
and the Murnaghan model is able to describe this feature of metals. 2. The curves curves σ ∼ ε and
t ∼ υ differ about eight times – if the deflection near the threshold values ε = υ = 3·10−2 for the curves
σ ∼ ε are significantly large (from 37% to 52%), then for curves t ∼ υ the deflections are essentially
smaller (from 4.6% to 6.6%).

3. Final conclusions relative to reticences in the mathematical modeling of elastic
materials

The general estimate of facts of reticences seems to be positive, because for one part of scientists-
mechanicians the reticences form the comfort feeling the monolithic character of the classical theory of
elasticity, whereas for another part the reticences form the space for developing the theory. Just this
second line of estimating the reticences is presented in this paper. Three facts of reticences are chosen.
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The first fact consists in a reticence of one of the first steps in the mentioned above procedure — an
assumption that the kinematics of deformation is described by the linear approximation of motion of
material continuum, namely by gradients of deformation. In the paper, some novel nonlinear approach
to this procedure is offered. The second and third facts are associated with constitutive relations. The
second fact consists in absence of necessary comments relative to determination of smallness of strains
and gradients of displacements (absence of comments relative to a criterion of applicability of the
linear model because the criterion |ui,k| ≪ 1 is sufficiently abstract. It is shown that the based on the
nonlinear Cauchy relations approximate procedure of determination of threshold values of strains and
gradients of deformations starting with which a nonlinearity of process appears. The third fact consists
in absence of comments relative to essential differences between the nonlinear constitutive equations,
which are written for the ordered pairs “Lagrange stress tensor – Cauchy-Green strain tensor” and
“Kirchhoff stress tensor – gradients of displacements”. It is shown on an example of the shear stress
and the Murnaghan model of nonlinear elastic deformation that deviation from the corresponding
straight lines of linear deformation for different pairs differs in many times in the range of small strains
and small gradients of displacements.
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Про три факти умовчання в класичному математичному
моделюваннi пружних матерiалiв

РущицькийЯ.Я.

Iнститут механiки iм. С.П.Тимошенка

вул. Нестерова, 3, 03680, Київ, Україна

Описано i прокоментовано три факти умовчання (вiдсутностi коментарiв) в проце-
дурах математичного моделювання пружних матерiалiв. Перший факт полягає в
некоментуваннi одного з перших крокiв у згаданiй процедурi — припущення, що кi-
нематика деформування описується за допомогою лiнiйної апроксимацiї руху мате-
рiального континууму, а саме за допомогою градiєнтiв деформацiї. У статтi запропо-
новано певний новий нелiнiйний пiдхiд в процедурi. Другий i третiй факти пов’язанi
з побудовою визначальних рiвнянь. Другий факт полягає у вiдсутностi належних
коментарiв щодо визначення малостi деформацiй i градiєнтiв змiщень (вiдсутностi
коментарiв щодо критерiю застосування лiнiйної моделi, оскiльки критерiй |ui,k| ≪ 1
є досить абстрактним). Показано, що iснує базована на нелiнiйних спiввiдношен-
нях Кошi наближена процедура визначення порогових значень деформацiй i градiєн-
тiв змiщень, при яких вже починає виявлятися нелiнiйнiсть процесу деформування.
Третiй факт полягає у вiдсутностi коментарiв щодо суттєвих вiдмiнностей мiж не-
лiнiйними визначальними рiвняннями, записаними для впорядкованих пар «тензор
напружень Лягранжа – тензор деформацiй Кошi-Грiна» та «тензор напружень Кiрх-
гоффа – градiєнти змiщень». Показано на прикладi зсувних напружень та моделi не-
лiнiйного пружного деформування Мернагана, що вiдхилення вiд вiдповiдних прямих
лiнiйного деформування для рiзних пар вiдрiзняються в дiапазонi малих деформацiй
i малих градiєнтiв змiщень у багато разiв. Загальна оцiнка фактiв умовчання вигля-
дає позитивною, оскiльки для однiєї частини вчених-механiкiв умовчання створює
комфортне вiдчуття монолiтностi класичної теорiї пружностi, а для iншої частини
умовчання створюють простiр для розвитку теорiї.

Ключовi слова: математичне моделювання пружних матерiалiв, замовчування

в класичнiй теорiї пружностi, малiсть деформацiй i градiєнтiв змiщень, нелiнiйнi

кiнематичнi параметри

2000 MSC: 74B20

УДК: 539.3

Mathematical Modeling and Computing, Vol. 1, No. 2, pp. 245–255 (2014)


