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Within the framework of the dynamic statement of the coupled thermomechanics prob-
lem accounting for the microstructural phase transformations invoked by the heating and
subsequent cooling of the material, the stress-strains state of the steel disk caused by
the thermal pulse is investigated. The axisymmetric problem is solved numerically with
application of FEM. Material response is simulated with the use of the thermodynam-
ically consistent theory for inelastic behavior of the material with account of thermal
dependencies of physical and mechanical properties. The influence of the microstructural
transformations on the dynamic and quasistatic response of the material as well as the
residual stress-strain state at the irradiated zone are studied in details.
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1. Introduction

The wide variety of industrial applications of metallic materials is due primarily to the huge range
of their mechanical properties and relative simplicity of their modification by various means (grain
size refinement, strain hardening, solid solution hardening, etc.) Additional possibilities for property-
oriented management are accessible if mechanical and other properties depend on the microstructure
of material, which often is a result of specific thermal treatments [1,2].

Laser or electron beam peening has some advantages in comparison with classical techniques for
strength, durability and fatigue resistance augmentation (forging, rolling, cogging, etc.) [3]. The length
of the laser pulse is easy to manage. Therefore, very short stress pulses can be generated and used as
probing signals within the frame of the acoustic defectoscopy technique. Moreover, dosed irradiation
by short thermal pulses can be used for surface cleaning, microforming and microforging [1].

There are two main thermomechanical mechanisms of laser pulse influence on a material. Firstly,
when a metallic target is irradiated by an intense pulse, the surface layer instantaneously vaporizes
into a high temperature and high pressure plasma. This plasma induces shock waves during expansion
from the irradiated surface, and mechanical impulses are transferred to the target. This mechanism
dominates for the irradiation by the short pulses of high intensity [1,3]. Secondly, the irradiation
induces rapid heating with high temperature gradients accompanied by the generation of thermal
stresses and shock waves as an inertia effect along with the following gradual cooling. This scenario
occurs for prolonged or less intensive pulses. Under these circumstances, the mechanical properties can
be changed significantly both on the surface and in the near-surface region resulting in large residual
stresses and strains [3–5], which, in turn, can influence the strength, endurance and fatigue life of the
structure element. It worth mentioning that this influence can be either positive (enhancing material
response in the case of compressive stresses) or negative (compromising structural strength in the case
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of tensile stresses). Therefore, the correct prediction of the residual stress-strain state of the structure
is of great importance.

Microstructural phase transformations occurring during the heating and subsequent cooling of the
material are additional complicating factors affecting the residual state [6–8]. Austenite is the densest
of the possible microstructural phases (meanwhile, the specific volume of the martensite is the largest
of the all structural phases), and therefore, during the phase transformation upon quenching, there is
a net volume increase [9,10]. Consequently, the volume increase upon martensitic transformation is
the main cause of straining, distortion, hogging and cracks initiation [6,10].

Dynamic processes generated by the non-steady thermal and mechanical loadings applied to metal-
lic solids possessing fixed microstructural composition were studied in the previous works [3,5]. In the
present paper these processes are investigated taking in to account microstructural phase transforma-
tions.

It is assumed that during the thermal loading the temperature of the material does not exceed the
melting point. To attack the problem, the dynamic problem statement is used [3,5]. The nonlinear ma-
terial response under complex thermomechanical conditions for wide range of temperature is simulated
by the generalized unified Bodner-Partom model [11], which is consistent with the thermodynamics of
irreversible processes and is improved to allow for phase transformation [12]. The problem is solved
by the finite element method (FEM) technique modified for studying the coupled thermomechanical
response of elastic-viscoplastic materials including phase transformations [13]. The influence of the
microstructural phase transformation accompanying the heating induced by the thermal pulse and
the subsequent cooling on the residual stress-strain state as well as general regularities of coupled
thermomechanical and dynamic response of the disk are studied.

2. Model accounting for the microstructural transformations

Generalized thermodynamically consistent modification of the Bodner-Partom model [12] is used to
describe the material response under elevated temperatures and high velocity loading [11]. A brief
account of the model relations is listed below. It consists of the strain additivity principle: the total
strain, εij , is representable as a sum of the elastic, εeij , inelastic, εpij, and thermal, εθij , components (the
usual summation convention over the repetitive indices is assumed further on)

εij = εeij + ε
p
ij + εθij , (1)

where thermal strain is expressed in the form

εθij = δij

θ
∫

θ0

α
(

θ′
)

dθ′; (2)

and θ is a temperature, α is a thermal expansion coefficient; the Hooke’s law is written in terms of
deviatoric and spherical parts of tensors

sij = 2G
(

eij − ε
p
ij

)

,

σkk = 3KV

(

εkk − εθkk

)

, (3)

where σij and εij are the stress and strain tensors, sij and eij are the deviators of the stress and strain
tensors, and G and KV are the shear and bulk moduli correspondingly; the flow law along with the
condition of plastic incompressibility

ε̇
p
ij = λ sij , ε̇

p
kk = 0; (4)
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the kinetic equation

D
p
2 = D2

0 exp

[

−

(

Z2

3J2

)n]

, (5)

where Z = K +D, J2 =
sijsij

2 , D
p
2 =

ε̇pij ε̇
p
ij

2 , λ2 =
Dp

2

J2
;

the evolution equations for internal parameters of isotropic, K, and kinematic, βij , hardening

K̇ = m1 (K1 −K) Ẇp, K (0) = K0, (6)

β̇ij = m2 (D1uij − βij) Ẇp, βij (0) = 0, (7)

where D = βijuij , uij =
σij

(σijσij)
1/2 , Ẇp = σij ε̇

p
ij .

The quantities D0, D1, K0, K1, m1, m2 and n are constants of the model. Theoretical studies and
numerous tests [11,12] have shown that the parameters D0, D1 and m2 exhibit weak dependence upon
temperature and can be considered to be temperature independent for most metals. Meanwhile, the
parameters K0, K1, m1 and n are temperature dependent.

Eqs (6) and (7), in contrast to [11,12], do not contain thermal recovery terms. The processes under
consideration here are fast enough to prevent large thermal recovery of taking place.

To describe the microstructural transformations, the following modification of the model Eqs (1)–
(7) is proposed. According to Eq. (1), the total strain is expressed as a sum of the elastic, inelastic and
thermo-structural, εθ sij , components [13]

εij = εeij + ε
p
ij + εθ sij , (8)

The expressions for the stress and inelastic strain components take the form:

σij = 2G
(

εij − ε
p
ij − εθ sij

)

+ λE

(

εkk − εθ skk

)

δij , (9)

ε̇
p
ij = D0 exp

{

−
1

2

[

(

K̄0 +K
)2

3J2

]n}

sij

J
1/2
2

,

ε
p
ij (0) = 0,

(10)

K̇ = m1

(

K̄1 −K
)

Ẇ p, K (0) = 0, (11)

where K̄0 and K̄1 are calculated as K̄0 = CξKξ0, K̄1 = CξKξ1 and λE is the Lamй constant, Cξ are
volume concentrations of the microstructural phases, ξ = f , p, b, m for austenite, ferrite, pearlite,
bainite and mertensite, respectively; Kξ0 and Kξ1 are parameters of the model for the corresponding
phase.

The thermo-structural strain εθ sij is calculated by making use of the specific volume of the phases
Vξ according to the formula [14]

εθ sij (θ, θr, Cξ) =
Vξ (θ)Cξ (θ)− Vξ (θr)Cξ (θr)

3Vξ (θr)Vξ (θr)
. (12)

Here θ is the current temperature and θr is some reference temperature.
The temperature dependencies of the specific volumes Vξ (θ) in m3/kg normalized by θ = 20◦С are

taken in the form [14]

Va (θ,CC) · 10
3 = 0.12282 + 8.56 · 10−6 (θ − 20) + 2.15 · 10−3CC ,

Vf,p,b (θ, 20
◦,CC) · 10

3 = 0.12708 + 5.528 · 10−6 (θ − 20) ,

Vm (θ, 20◦,CC) · 10
3 = 0.12708 + 4.448 · 10−6 (θ − 20) + 2.79 · 10−3CC ,

(13)
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where CC is the mass percentage of carbon.
Eqs (8)–(13) along with the evolution equation (6) for the parameter of kinematic hardening define

the model of the microstructural transformations.

3. Problem statement

The disk of radius R and thickness h is defined in a cylindrical coordinate frame Orzϕ with |r| 6 R,
0 6 |z| 6 h. Along with the equations of the response of the material accounting for microstructural
transformations given in Section 2, the axisymmetric problem statement contains Cauchy relations
between the strain tensor components and the components of the displacement vector u = (ur, uz, uϕ)

εz =
∂uz

∂z
, εr =

∂ur

∂r
, εϕ =

ur

r
,

εrz =
1

2

(

∂uz

∂r
+

∂ur

∂z

)

, (14)

the equations of motion

∂σr

∂r
+

1

r
(σr − σϕ) +

∂σrz

∂z
= ρ

∂2ur

∂ t2
,

∂σrz

∂r
+

1

r
σrz +

∂σz

∂z
= ρ

∂2uz

∂ t2
, (15)

the energy balance equation reduced to the heat conduction equation

cv θ̇ + 3αθKV

(

ε̇kk − 3αθ̇
)

−D′ − k∆θ = rs, (16)

initial conditions
ur = uz = u̇r = u̇z = 0, θ = θ0; t = 0, (17)

mechanical boundary conditions
σijnj = 0 on S (18)

and appropriate thermal boundary conditions.
The following notation is used in the Eqs (3)–(18): cv and k are the coefficients of thermal capacity

and thermal conductivity, respectively, rs is the specified intensity of the internal heat sources, D′ is
the velocity of the mechanical energy dissipation, θ0 is the initial temperature, nj are the components
of the unit normal on the positive side of the appropriate boundary surface, ε̇kk = ε̇r + ε̇z + ε̇ϕ,

∆ = 1
r

∂
∂r

(

r ∂
∂ r

)

+ ∂2

∂z2
.

The thermal boundary conditions are formulated in a special way to simulate the thermal pulse.
The circular region 0 6 r 6 rp at the center of the face z = 0 is irradiated by the thermal pulse, which
is simulated by the heat flow, qs, through the disk boundary [3,5].

Thermal flow varies according to the rule

qs =







q0 cos
πr

2rp
sin

πt

tp
; r 6 rp, t 6 tp,

0; r > rp, t > tp,

(19)

where tp is the pulse length and rp s the radius of heated spot.
Convective heat transfer between the heated spot and the environment is assumed after the comple-

tion of the thermal pulse. Herewith, the heat-transfer coefficient is chosen to be high enough, αT =105

kW/m2·К, to simulate the fast forced cooling by means of water shower, cooled gas blasting, etc. This
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thermal transfer stops if the temperature at the center of the disk face drops below 50◦С. All of the
other surfaces of the disk are assumed to be completely insulated from the very beginning.

The effect of the mechanical energy dissipation for impulsive loading was thoroughly studied in
the paper [3]. It was found that corresponding temperature increase is less then 10◦С. This heating
is negligible in comparison to the temperature increase (up to 1300◦С) during the pulse. Therefore,
temperature effects due to the dissipation of the mechanical energy are negligible for the process under
consideration, and the dissipation velocity D′ in Eq. (16) can be set to zero.

Eqs (7)–(16) along with initial conditions (17) and boundary conditions (18), (19) provide the
statement of coupled thermomechanical problem for inelastic solids under thermal loading accounting
for microstructural phase transformations.

4. Solution technique

It is assumed that the disk is made of the steel. The physical and mechanical properties along with the
parameters of the Bodner-Partom model for this material as well as their temperature dependencies
are taken from the paper [3]. The technique for determining the model parameters over the wide
range of temperatures is described in [11] in detail. In the present paper, the microstructure of the
material is accounted for through the thermo-structural component Eq. (12) of the total strain, while
the dependence of the physical and mechanical properties on the material microstructure is neglected.

The calculation of the concentration of the microstructural phases induced by the transformations
of the austenite under temperature decrease is based on the continuous cooling transformation (CCT)
diagrams and relations for the specific volumes of the phases Eq. (13). The procedure is described
in [2] in detail.

The problem statement Eqs (7)–(19) is intrinsically nonlinear and is attacked numerically. The
approach developed initially in [3,5] to solve the dynamic plane or axisymmetric problems of thermo-
viscoplasticity is used. It is modified to calculate the microstructural state and the properties of an
elementary volume of the disk at each time step.

The numerical solution technique is designed as a double iterative process. The first (internal)
process is formed by the numerical integration of the nonlinear system of equations for the material
response using an implicit Euler’s method. The second iterative process (external) is related to the
equation of motion and the integration of the heat conductivity equation. In the frame of this process,
the temperature dependencies of the material constants and Bodner-Partom model parameters are
taken into account. A time step correction technique is applied to deal with the transition from the
elastic to the inelastic response of the material. A simple integration technique is employed for the
solution of the nonlinear transcendental system of equations, which arises at each time step. The
Steffensen-Eytken technique is used to accelerate the convergence of the process.

The problem is solved using a finite-element technique based on the approach developed in [3,5].
The FEM mesh and the time step are refined to reach 1% of relative accuracy of the stress and inelastic
strain intensities, especially in the vicinity of the heating spot to simulate correctly the microstructure
of the material and the complex thermomechanical behavior caused by the high temperature gradients.

5. Numerical results and discussion

It is assumed that the disk is made of the steel. The physical and mechanical properties along with the
parameters of the Bodner-Partom model for this material as well as their temperature dependencies
are taken from the paper [3]. The technique for determining the model parameters over the wide range
of temperatures is described in [11] in detail.

In the present paper, the microstructure of the material is accounted for through the thermo-
structural component (Eq (12)) of the total strain, while the dependence of the physical and mechanical
properties on the material microstructure is neglected.
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Fig. 1. Evolution of temperature and stress (a) and inelastic strain (b) in the center of the irradiated face.
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Fig. 2. Evolution of the radial stress distributions along the disk radius.

Calculations were performed for the disk of radius R = 5 · 10−3m and thickness h = 10−4m. The
radius of the heating zone, rp, was chosen to be equal to rp = 1.5 ·10−3m. The duration of the thermal
pulse, tp, was varied between 10−8sec and 10−7s. Several values of the thermal flow parameter, q0,
lying in the interval between 6 · 107kW/m2 and 2 · 108kW/m2 were used. The initial temperature of
the disk, θ0, was equal to 20◦С. It is assumed that initial microstructural phase of the disk material is
bainite.

Under the irradiation process, the temperature on the disk surface rapidly reaches 1300◦C. The
heat pulse induces the high temperature gradients in the near-surface region. Then the temperature
decreases quite rapidly due to heat propagation inside the disk. There are two scenarios of the devel-
opment of the process after the completion of the pulse considered in this paper: a) complete thermal
insulation of the disk surface, and b) forced cooling of the irradiated spot with high heat-transfer
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Fig. 3. Spatial distributions of the residual inelastic strains.

coefficient, γ =105 kW/m2K, provided that all of the other surfaces are still completely insulated. The
forced cooling stops as soon as the temperature in the middle of the spot drops below 50◦C.

Since the microstructural transformations considered here are temperature induced, the kinetics of
the formation of new phases is completely determined by the evolution of the temperature field. It was
found that temperature histories obtained under conditions described above for different disk points
lead to microstructural transformation bianite–austenite at the heating stage and to transformation
austenite-martensite at the cooling stage. As a result, other phases do not appear. For the particular
case of forced cooling at tp = 10−8sec and q0 = 2 · 108kW/m2, the origination of the martensitic
phase out of the overcooled austenite begins approximately at t = 1.3 · 10−8sec. Due to the “bell-like”
distribution of the heat flow (see Eq.(19)) along the disk radius, the transformation initially occurs at
r ≈ 0.76 · 10−3m instead of at the center of the spot r = 0, z = 0.

Under subsequent cooling, the percentage of martensite in the near-surface region gradually in-
creases. This zone expands to the disk axis. When the temperature decreases below the austenite–
martensite transformation completion temperature, a region with 100 % martensite content appears.
Eventually, a region consisting entirely of the martensite is formed near the center of the disk face,
meanwhile all of the surrounding material possesses bainitic microstructure because it was not heated
above AC1 = 790◦C. As a result, transformation-induced residual stress-strain state is formed due to
the mismatch of the specific volumes of the phases.

Another mechanism contributing to the residual stress-strain state is intensive heating leading
to the appearance of inelastic strain. Due to the abrupt material expansion in the irradiated zone,
an essential compressive stress occurs inducing the quasistatic component of the stress field. The
compressive stresses decrease gradually with time. For times significantly exceeding the pulse length,
they change direction and become tensile ones. As a result, a region of tensile residual stresses is
formed in the center of the disk face. These effects are demonstrated in Fig. 1. Evolution curves for
temperature, θ, and radial stress, σrr, at the center of the irradiated spot are shown in Fig. 1(a). The
dotted line corresponds to the stress obtained as a solution with no phase transformations under a
thermally insulated disk surface. The dashed line shows the stress history accounting for the phase
transformations under forced cooling, and the solid line – without heat exchange with the surroundings.
These curve patterns are preserved everywhere in this paper. It should be pointed out here that the
sharp bend in the dashed and solid lines at the initial stage of heating corresponds to microstructural
transformation bianite–matrensite occurring when the temperature exceeds the AC1 = 790◦C level.
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Same histories for inelastic strain ε
p
rr and ε

p
zz are shown in Fig. 1(b). They show quite appreciable

inelastic strains in the center of the heated spot. Fig. 1(b) shows clearly that neglecting structural
transformations leads to an overestimation of the residual stress and strain levels.

Evolution of the radial stress distributions along the disk radius is displayed in Fig. 2. Origination
of the martensite possessing the largest possible specific volume induces the increase of the mate-
rial volume and generation of the stresses, which partly compensate the tension caused by cooling
(Fig. 2(a)). This process continues to propagate to the axis of the disk and results in the formation of
the final residual stress state (Fig. 2(b)). It is easy to see that the highest level of the residual stress is
predicted for the calculations with no accounting for phase transformations. Therefore, the proposed
model and calculation technique enables the more precise evaluation of the residual stress-strain state.
The lowest level of the potentially damaging residual tensile stresses affecting the material strength is
induced under slow gradual cooling. Fast forced cooling causes the opposite effect.

Results for the spatial distributions of the residual inelastic strains are shown in Fig. 3. The typical
distributions of εprr along the disk radius (Fig. 3(a)) and the distributions of εpzz along the disk thickness
(Fig. 3(b)) are displayed there.

The divergence of the curves is observed in the region, which lies within the irradiated zone. Far
from the pulse site, the lines are almost coincident.
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Fig. 4. Comparison of compressive pulses generated due to thermoelastic inertial effects predicted both with
account of microstructural transformation and without it.

A stress pulse is generated in the disk as the inertial effect accompanying fast thermoelastic defor-
mation. It represents the dynamic component of stress field, unlike the quasistatic fields considered
above. This effect was studied in [5] in detail. Since the method of laser irradiation is applied rather
widely in the acoustic technologies of estimating the structure of a material for the generation of a scan-
ning stress pulse, detailed information on this pulse is extremely important. Taking microstructural
transformations into account refines substantially the data on this pulse and enables one to improve
the technology itself. Indeed, in the case of forced quenching, the formation of a new microstructural
phase in supercooled austenite proceeds very rapidly, namely, with the velocity of sound in the ma-
terial. Hence, in a microscopic volume, martensite is formed practically instantly. Since the specific
volume of martensite is the greatest, due to this a compressive pulse is generated. This stress pulse is
several tens of times as high as the value of compressive pulse generated due to thermoelastic inertial
effects. The results of comparison of such processes is illustrated in Fig. 4.
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Here, the solid and dashed lines correspond to the cases of taking microstructural transformations
into account under conditions of forced cooling and disregarding these transformations (data from [5]
for tp = 10−8 sec, q0 = 2 · 108 kW/m2 and the same geometrical sizes of the disk). We see that the
stress pulse caused by austenite-to-martensite microstructural transformation is substantially greater
than the thermoelastic pulse, but arises later. The velocity of propagation of both pulses is identical
and equal to the velocity of sound in the material.

It is worth noting that this effect is most clearly pronounced for the stress σzz, which propagates
over the disk thickness because a significant part of the material at the center of irradiation zone
changes its microstructural state instantly. For the radial stress, the picture turns out very complex
and fuzzy as a consequence of the spatial features of microstructural transformation, which are caused
by the shape of the irradiation pulse.

6. Conclusions

The proposed technique of the numerical investigation of the coupled thermomechanical problem ac-
counting for the material microstructure enables one to evaluate more precisely the residual stress-strain
state of the material below the irradiated site where experimental probing is difficult to perform. The
technique is a reliable tool to determine the geometrical dimensions of the pulse affected zone. The
approach proposed provides the investigator with the necessary information on the regularities of the
residual stress-strain state to find the stress concentration factors and, thus, could be incorporated into
fracture prediction techniques developed with the use of the different fracture criteria.
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Вплив мiкроструктурних перетворень на квазистатичну та
динамiчну термомеханiчну поведiнку опромiненого диску

ЖукЯ.О., КашталянМ.
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Абердiн AB24 3UE, Великобританiя

У рамках динамiчної постановки зв’язаної задачi термомеханiки дослiджується
напружено-деформований стан диска, який виникає внаслiдок теплового опромiне-
ння, з врахуванням мiкроструктурних перетворень, якi супроводжують нагрiвання i
наступне охолодження матерiалу. Розв’язування осесиметричної задачi проводиться
чисельно з використанням термодинамiчно узгодженої теорiї непружної поведiнки
матерiалу iз застосуванням скiнченно-елементної методики та врахуванням залежно-
стi фiзико-механiчних властивостей матерiалу вiд температури. Вивчається вплив
мiкроструктурних перетворень на динамiчну i квазiстатичну реакцiю матерiалу, а
також на залишковий напружено–деформований стан в зонi опромiнення.
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