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Wave processes in the locally nonhomogeneous solids
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There is proposed a method of studying wave processes in locally nonhomogeneous solids
with account for geometrically non-uniform surface. The method is based on the equation
system of the locally nonhomogeneous elastic solid model obtained within the local gradi-
ent approach and the use of averaging operation to separate oscillatory and slowly variable
over period of oscillation components of displacement and density fields. At the example
of a layer there is illustrated an application of the method to study the frequencies of
natural oscillations for different fixing conditions at the layer surfaces. It was established
that the dependence of frequencies of natural oscillations of the layer on the characteristic
sizes the nearsurface and structural nonhomogeneities in the case of the free layer surfaces
is much higher comparing to the fixed surfaces case.
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1. Introduction

Nowadays technology employ extensively machines and devices built of elements that are heteroge-
neous in terms of their physical properties. The practice of engineering use of modern materials such
as nanocomposites, nanostructured materials, characterized by a significant surface to volume ratio
increases. These elements operate in various conditions including a vibration load. The issue of oper-
ational characteristics in such conditions is of considerable practical and theoretical interest.

A variety of mathematical models are used to describe and predict the behavior of the elements
under different conditions of exploitation. The advanced approaches of continuum mechanics have to
be applied to build an adequate model of the element with finite size effects, surface and interface
effects. Among such approaches the approaches of nonlocal theory of elasticity [1,2] as well as local
gradient approach in thermomechanics [3,4] are distinguished.

The mathematical models of local gradient approach are constructed using methods of irreversible
thermodynamics and nonlinear mechanics. The introduction of reversible component of the mass flow
vector allowed us to modify the mass balance equation for locally nonhomoheneous systems. Com-
paring to classical models the state parameter space is expanded with the density and the conjugate
parameter chemical potential [3]. The key systems formulated for such approach were used for investi-
gation of nearsurface nonhomogeneity and related phenomena in elastic, thermoelastic solids and solid
solutions [6]. The attention was paid to studying the size effects of surface stresses, strength, surface
tension etc. Further to coordinate the reference and actual states in the model the mass sources were
introduced. The mass sources were related to the way of forming of the real surface of the body. In the
model presentation they allow to consider geometric non-uniformity (roughness) of such surface [4,6].
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In this paper the method of wave processes studying in deformable solids taking into account
the structural nonhomogeneity of material and geometric non-uniformity of the surface is proposed.
On the basis of the equations system of the model of locally nonhomogeneous elastic body, enriched
with mass sources, there are studied the natural oscillations of locally nonhomogeneous elastic layer
under different conditions at its surfaces. The dependence of the normal mode frequencies on the
characteristic sizes of the nearsurface and structural nonhomogeneities is investigated.

2. The key system of nonhomogeneous elastic solid and the averaging operation

We consider key system of equations describing processes in locally nonhomogeneous elastic bodies [6]

0 ou 9
— | p=) = .u) — 2
<p > uVu+ A+ p)V(V-u) — (BN +2u)a,, Vp,

v2p - 52(p - P*) = _fzdam- (1)
Here w is the velocity vector, p and p, are the densities in actual and reference state respectively,
dom 1s the mass source related to body structure formation [4], 7 is the time, u, A, a,,, & are material

parameters. This system is nonlinear due to expression in the brackets in the left hand side of the first
equation, this expression representing the momentum of mechanical motion. The mass sources must

satisfy the condition
/ domdV = / (p—pe)dv,
V) V)

where (V') is the region occupied by body.

We consider the locally nonhomogeneous body that is under the external action in the form of
periodic power load. We assume that such action does not change parameters of nearsurface and
structural nonhomogeneities. The solution of equation system (1) is represented as the sum of the
oscillatory @, p and the slowly varying over time u, p components

u=u+a, p=p+p (2)

Such a presentation is made using averaging operation |7,8]

_ 1 T+70
o == [ rw 3
Relation (3) yields
drf drf
i

We also accept approximations
o ~ fO, f_@%o, d~0 (5)

of theory of nonlinear wave processes according to |7]. These ratios are held accurately when considering
steady mode oscillations.

Given that the external action does not change the structure of the body we assume that oscillatory
component of the density is absent, i.e. p = p.

Using representation (2) in the system (1) we obtain

% (ﬁ (g—’;‘ + g—":)) = V(a4 @)+ A+ )V (V- (@+a) — 3\ + 2)an Vp,
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V2,5 - 52(:5 —ps) = —&dgm.- (6)
Due to the smallness of averaged inertia force term from (6) we write such systems for averaged
and oscillatory components of considered fields

uV2a 4+ N+ )V (V-a) — 3\ + 21)a,, V= 0,

V2,5 - 52(:5 —pe) = _§2J0m§ (7)
0% 9. .
pwzuv u+AN+p)V(V-a). (8)

Thus the study of wave processes in locally non-homogeneous elastic bodies taking into account
structural and nearsurface nonhomogeneities is reduced to a consecutive determination of averaged
components on the basis of equations (7) with the following investigation of oscillatory component of
the displacement vector from (8).

3. Structural and nearsurface nonhomogeneities effect on natural frequencies of the
layer

Let us apply the formulated above system of equations to study the influence of parameters of structural
nonhomogeneity of the material and geometric nonuniformity of the body surface on the natural
oscillation frequency of the elastic layer that occupies domain |z| < [ of Euclidean space. Note that
similar research in the case when the surface value of the chemical potential is prescribed and the mass

sources are abcent was considered in [9,10].
To find fields

we have the system of equations

iy, 1 p Oty

0z2 2 p, 012

A+2p
Ccl —
P

is the speed of longitudinal wave propagation in a medium with parameters A, u, ps.
We assume that both surfaces x = 41 of the layer are identical and the mass source is

Here

- _ cosh((x)
dam (SC) = msma

where the parameter my is choosen to satisfy relation

l l
cosh(Cx) / B
s————dr = — ps)dz. 10
[ misian = [ o= pas (10)
The solution of Eq. (9) that satisfies boundary condition
P = Pa (11)
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at surfaces x = +[ has the form

_ 1 — 74« [ cosh(&x) cosh(Cx)
— o |1— -D : 12
p=r [ 1-D (cosh(fl) cosh(¢l) (12)
where
- &’ D ftanh(fl).
. C tanh(Cl)
Using this solution we write second equation of (9) as
0?1y B lz | 1 —rqs (cosh(fx) Dcosh((x) 0?1y _0 (13)
oz? 3 1—D \ cosh(&l) cosh((l) 072
Considering periodic external load we seek solution of the equation in the form
Uy (z,7) = u(z) exp(ivr). (14)
The amplitude of oscillatory displacement (14) satisfies the equation
d*u 1—r cosh(&x) cosh(Cx)
— + k|1 — = - D =0. 15
iz " [ 1-D <cosh(£l) cosh(Cl) > “ (15)

Here k =v/c;.
We accept ¢ > £. This does not reduce generality of further consideration because we may change
notation for &, ¢ and D. The Eq. (15) we rewrite as

d*u cosh(¢&l)

9 a
pri k {1 BET,) (cosh(ﬁx) - Dcosh(g“l)

cosh(gx)ﬂ u=0, (16)

where
T —rax

‘= cosh(&l)

Next we confine consideration to the layers the thickness of whose is much larger than the typical
size of area of the structural and nearsurface non-homogeneities such that the following inequalities
are hold

exp(&l) > &, exp(Cl) > (L.

The solution of (16) can be represented using expansion over a small parameter «
u(z) = uo(z) + quy (x) + Pus(z) + . .. (17)

For the zero and first order approximations over a we obtain equations

d2
—d;o + k2UQ = 0,
d?uy 9 k2 cosh(&l)
) + k*up = D <cosh(§x) - Dcosh((l) cosh((x)) ug. (18)

The solution of (18) is
ug = Ag cos(kz) + By sin(kx),

1 ﬁQD {Ao [52?1%2 ((Cosh(fiﬂ) — 1) cos(kz) + 2% sinh(&x) sin(k;x)> _

Uy =
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cosh(¢l) 1
T cosh(Cl) ¢ + 4k2

<(Cosh(Cx) — 1) cos(kx) + 2% sinh(Cz) sin(kx)>] +
+By {52%4/{2 <(cosh(§x) 4 1) sin(ke) — 2% sinh(éx) cog(kx)> _

cosh(él) 1 . k.
_Dcosh(Cl) e <(cosh(§x) + 1) sin(kx) — 2z sinh(¢x) cos(kx))} } . (19)

Here Ag, By are constants to be determined on the base of the properly stated boundary conditions.
Fixed surfaces of the layer. If the surfaces are fixed then the displacement is set to zero

u(—1) =0, u(l) = 0. (20)
For the first order approximation and accepted above assumptions from (17), (19) and (20) we write

ak? 1
1—D | &2+ 4k?

k . .
Ao {cos(kl) + <(cosh(§l) — 1) cos(kl) + 25 sinh(&l) sm(k:l)) -

cosh(&l)

cosh(¢l) ¢% + 4k?
ak? 1
1—D | &2+ 4k2

cosh(&l) 1 g sin ok sin cos =
cosh((l) (2 + 4k? <(C05h(<l) + 1) sin(k) 2( h(ch) Ud))] } -0

k2 k
104_ D [52 +14k2 <(cosh(§l) — 1) cos(kl) + 25 sinh(&1) sin(kl)) _

((cosh(Cl) — 1) cos(kl) + 2% sinh(¢l) sin(k:l))] } +

+ By {sin(kl) + ((cosh(fl) + 1) sin(kl) — 2% sinh(&1) cos(kl)) -

Ao {cos(k:l) +

cosh(&D) L S k sin sin —
- Dcosh((l) e <(cosh(§l) — 1) cos(kl) + QC h(¢l) (k:l)>] }
k2
— By {sin(k‘l) + 1 _kD LQ —|—14k2 <(cosh(§l) + 1) sin(kl) — 2% sinh(&1) cos(k:l)) —
cosh(¢l) 1

. k.
cosh(Cl) C2 + 4k2 <(C03h(cl) + 1) sin(kl) — 22 sinh(¢l) cos(kl))] } =0, (21)

A necessary condition for the existence of a nontrivial solution of the system of equations (21) is
the zero determinant of the system. Confining ourselves to linear approximation and considering
layers whose thickness is much larger than the characteristic sizes of the structural and nearsurface
nonhomogeneities, we obtain

E2(1 — 7ax) 1 D . _
[H 1-D (52 e C2+4k2>] Sin(2kl) =

R =) (k1 k- D  cosh(&l)
T 1-D (252 Fak2  CCP 4 ak? cosh(gz)> cos(2kl). (22)

If the structural and nearsurface nonhomogeneities are ommited from consideration then the analogous

to (22) equation is
sin(2kl) = 0. (23)
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The last equation solution yields such wave numbers

™

—
0 2la

n=1,2.3,... (24)

Given that kg = v/c; we write the expression for natural frequencies of the layer with fixed surfaces

ey
21 7

vp = n=123,... (25)
On this basis, one could argue that equation (22) is a transcendental equation for finding the natu-
ral frequencies of the layer taking into account the structural non-homogeneity of the material and
geometric surface nonuniformity.

For the layers whose thickness is much larger than the specific size of structural and nearsurface
nonhomogeneities we accept

k=ko+ kq, ]{51/]{50<<1. (26)

In the first approximation with respect to small parameter k; /kg for parameter k from Eq. (22) we

obtain . % [1+(1 ) <%)2 (& +ﬁ>} C n=1,23,... (27)

This corresponds to such natural frequencies

Yy = m;lcl [1+(1 ) (”—;)2 (@ +ﬁ>}  n=1,2,3,... (28)

The layer with fixed and free surfaces. If one surface is fixed and another surface is free then

du

~0. (29)

=l

In this case from above consideration we write such systems of linear algebraic equations

ak? 1
1—D | &2+ 4k?

k . .
Ao {cos(kl) + <(cosh(§l) — 1) cos(kl) + 25 sinh(&1) sm(k:l)) -

cosh(&l)

cosh(¢l) ¢% + 4k?
ak? 1
1—D | &2+ 4k2

cosh(¢!) 1 S sin - Esin cos =
cosh(Cl) &2+ 42 <(cosh((l) + 1) sin(kl) 2C h(¢l) (k:l)>]} 0,

k2 1
1a_ b Lﬂ e (k: (cosh(&l) — 1) sin(kl) +

((cosh(Cl) — 1) cos(kl) + 2? sinh(¢1) sin(k:l))] } _

— By {sm(kl) + ((cosh(fl) + 1) sin(kl) — 22 sinh(&1) cos(kl)) -

52 + 2]{2

Ag {—ksin(kl) + sinh(fl)cos(kl)) -

_peoshe) 1 (k(cosh((l)—l)sin(k‘l)

N
cosh(¢l) ¢% + 4k?

sinh(¢1) cos(u)ﬂ } +

52 + 2]{2
£

sinh((l)sin(k:l))}} =0. (30

1—D | &2+ 4k2

cosh(&l) 1
cosh(¢l) ¢% + 4k2

k2 1
+ By {kcos(k:l) + 2 [

(k (1 — cosh(&l)) cos(kl) + sinh(&l) sin(k:l)) -

CQ + 2]{2

<k: (1 — cosh((l)) cos(kl) +
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Within the above assumptions for parameter k& finding from condition of non-zero solution of (30)
existence we get equation

l—ry (1 D
cot (2kl) + k N _TD <E — Z) =0. (31)

If effects of the nonhomogeneities are ommited from consideration then the equation corresponding to
(31) is
cos(2kl) = 0. (32)

In the first approximation for parameter £ we obtain

_ m(2n+1) 11—re (1 D B
k= [1+21_D(5l Clﬂ’ n=012,... (33)

Thus natural frequencies for the layer with one free surface are

m(2n + 1)c; 11—re (1 D
= L —— =, =0,1,2,... 4
Y 2 [ 21D (55 gz)] n=0 (34)

The layer with free surfaces. In this case the boundary conditions for amplitude of wave
component of displacement vector component are

d_u
dzx

d_u
’ dx

=0. (35)

r=—1 =l

Using the above procedure and approximations we obtain such expression for the natural frequencies
for the layer with free surfaces

T(2n + 1) =74 (1 D
n — 1 - — = s =0,1,2,...
v 2 [ + 3 <5z Clﬂ n=0 (36)

From comparison of formulas (28), (34) and (36) of the natural frequencies we can see that in the
layer with fixed surfaces the structural and nearsurface nonhomogeneities effect on the frequencies v,
is negligible. In the layer with both free surfaces this effect is twice of the effect in the case of one
surface free. These conclusions are similar to the results obtained in [9].

4. Conclusions

The key equation system of the locally nonhomogeneous solid is nonlinear due to nonlinearity of the
momentum of mechanical translational motion. The model relations for describing such body take into
account the structural nonhomogeneity of the body and the geometric nonuniformity of its surface, to
coordinate the reference and actual states the mass source is used. The analysis of oscillating processes
in the body under periodic external action can be carried out using the technique of averaging on the
period of oscillation. Within the considered model the expression for frequency of natural oscillations
includes two characteristic sizes, one of which is associated with the structural nonhomogeneity of the
body material and another is related to geometrical nonhomogeneity of its surface. The frequencies of
natural oscillations of locally nonhomogeneous layer depend on its thickness showing the size effect of
magnitude depending on the fixing conditions of the layer surfaces. In the layer with both free surfaces
the size effect of the natural oscillation frequencies is twice of such effect if just one surface is free. If
both the surfaces of layer are fixed then the size effect is small.
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3alpOIIOHOBAHO METO][ BUBYEHHSI XBUJIbOBHUX IIPOIECIB Y JIOKAJBHO HEOMHOPIIHUX Tijlax
i3 BpaxyBaHHSIM T'€OMETPUYHOI HEOJIHOPIIHOCTI moBepxHi. MeTos 6a3yeThcsd Ha CUCTEMi
PIBHSIHB MO/IEJIi JIOKAJIGHO HEOTHOPITHOTO MPYXKHOTO Tijla, OTPUMaHINl y MeXKax JIOKAJIbHO
rpaJIieHTHOTO MiJXOy, Ta BUKOPUCTAHHI ONepaIlil ocepeIHEHHS JIJIsT PO3IiIeHHsT KOJTUBHOL
Ta MOBLJIBHO 3MIHHOI HA [1€PIO/Ii KOJIMBAHD CKJIAIOBUX OB II€pEMIIeHHs Ta rycTuau. Ha
MIPUKJIAJI APy MPOLTIOCTPOBAHO 3aCTOCYBAHHS METO/Y /IO BUBUEHHS YaCTOT BJIACHUX KO-
JINBAHDb JIJIsI PI3HUX YMOB 3aKpIIlJIEHHSI [TOBEPXOHL IMapy. BCTaHOB/EHO, IO 3aJIE2KHICTH
9acTOT BJIACHUX KOJIMBAHD IIAPY BiJl XapaKTEePHUX PO3MIPIiB IPUIIOBEPXHEBOI Ta CTPYKTYP-
HOI HEOHODIAHOCTEN y BUNAJKY MIAPY 13 BUIBHUMHU MOBEPXHAME € 3HAYHO OLIBIIOIO I10-
PIBHSIHO i3 ITapoM, IOBEPXHI SKOTO 3aIlEMJIEH.
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