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In this paper in the compliance with the method of the local averaging, the basic relations
of surface physics and thermodynamics for the description of diffusion process of the liquid
and gas phases in the inhomogeneous porous media have been considered. In line with
the drainage and sorption properties of the liquid in the porous skeleton, the normalized
function of distribution of the pore size for the effective radius has been defined. The
relations for the determination of the intrinsic and relative permeability of phases in the
solid skeleton have been proposed. The dependence of the intrinsic permeability on the
structural properties of porous material has been analyzed. A simple condition of the
equilibrium of phases in the porous skeleton with surrounding medium has been obtained.
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1. Introduction

The majority of porous structures may refer to the class of the mesoscopical divided materials. In-
vestigation of such materials [1] can be performed by the experimental methods of microscopy and
stereology according to the physical phenomena scattering and diffraction of electromagnetic waves or
molecular adsorption from the liquid or gas phases. The reproduction of structure can be accomplished
by the mathematical methods of statistical modeling or fractal analyses.

For the approximate description of continuous processes in the wet porous materials the most
reasonable is usage of the averaging into the space the (local) [3] or the effective (macroscopic) [4]
the middle values of physical quantity which can be obtained according to the function of distribution
for sizes of pores from the effective radius [5] or methods of theory homogenization [6] by appropriate
selection of the model for porous skeleton structure. For example, with assistance of the pore size
distribution function in the approach of the laminar motion of liquid into the pore network which are
simulated by the sets of interconnected capillaries with different radius it is possible to obtain the
analytical expressions [7] for relative permeability [8] of the liquid and gas phases.

In this paper there has been demonstrated how the pore size distribution function for the effective
radius can be obtained from the experimental sorption isotherms [9] or the drainage curves [10, 11] of
liquids retention. For this purpose the main relations of equilibrium [1, 7, 9, 12] between phases in the
porous wet material has been reviewed in conformity with the method of averaging in local space.

Due to the numerous experimental investigations [1] and model relations [9–11] for description
drainage or sorption properties of liquid in the solid skeleton, there arises the necessity of systemati-
zation and selection of the optimal description of the structural properties for porous material.

The main purpose of presented publication is investigation of model parameters in the relations
with intrinsic and relative permeability of phases into the porous structure according to the specified
pore size distribution from the mean radius.
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2. The volume characteristics of phases in the porous material. Principles of the local
spatial averaging
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Fig. 1. The depiction for the mesoscopic volume of ave-
raging.

In the inhomogeneous multiphase porous me-
dia we can select the typical or characteristic
mesoscopic volume of averaging ∆VREV (Fig. 1)
(REV — Representative Elementary Volume)
∆VREV =

∑

α
∆Vα, where α = {s, l, g} is the

index which corresponds to the solid (s), liquid
(l) and gas (g) phases, ∆Vα is the volume of
α-phase.

First of all, we must define the volume frac-
tions of phases in the volume of averaging as
θα = ∆Vα/∆VREV (

∑

α
θα = 1), then for the

porosity of material we have

ϕ = (∆Vl +∆Vg)/∆VREV = 1−∆Vs/∆VREV (ϕ = θl + θg = 1− θs). (1)

If define the local pore saturation with liquid ηl and gas ηg as

ηl = ∆Vl/(∆Vl +∆Vg), ηg = ∆Vg/(∆Vl +∆Vg) (ηl + ηg = 1), (2)

then from the expressions (1) and (2) its follows that

θs = 1− ϕ, θl = ϕηl, θg = ϕ(1− ηl). (3)

According to the principle of local spatial averaging [3], the mesoscopic averaging volume (REV)
(Fig. 1) has a constant spherical shape (d is the diameter of sphere) and is positioned arbitrarily (r is
the Cartesian coordinate of the center of the sphere) in a finite region Ω of investigated microscopically
porous material.

If on the boundaries of phase separation the physical laws of interaction [9] are known and the
structure of the skeleton according to conditions of mesoscopically [1] may be represented then the
way of deriving а spatially averaged (local) values of physical quantity [4] is quite simple because the
method for calculation [2] of interaction between phases is described. For the obtaining of effective
(macroscopic) values according to the theory of homogenization [6], there should be applied additional
conditions for the periodic rapidly oscillating in the space functions of the studied physical quantity
within the volume of irregularities of the structure (usually in a pore) under which the diffusion
coefficients in the differential equations in the partial derivatives can be considered to be the constants
as in the case of homogeneous material.

In some cases, as shown in [4], the effective value of physical quantity can be obtained as a local
characteristic of porous material. Then such value is determined through the macroscopic (the averaged
by distribution function [5]) parameters of the structure of porous material, volume fraction of phases
and factors of external influence.

If the condition of static equilibrium is satisfied (the surface interfacial interaction is immovable)
the volume fraction of phases is known at each point of the porous medium. Thus, we have to assert
that the obtained by the method of spatial averaging, the local or effective values of the physical
quantity are also continuous in the internal volume of investigated porous material.
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3. The simple conditions of phase equilibrium in porous material. Definition of averaged
capillary pressure

According to the Young-Laplace [9] equation and the Whitaker [2] theory of drying, a simple relation
of equilibrium for averaged pressures can be written as follows

pc = pg − pl = 2σ/r, (4)

where pc is the capillary pressure, which is defined by the effective radius of meniscus between liquid
and gas phases r = 1

n

∑

n
rn (1/rn = 1/R1

n + 1/R2
n), here R1

n and R2
n are the main curvature radiuses,

n is the number of surfaces separations between phases along the reciprocally connected capillaries, pl
and pg are the pressures in the liquid and gas phases and σ is the surface tension coefficient.

By using the principles of local thermal equilibrium [2] (Tα = T , here α = {s, l, g}, Tα is the
temperature of α-phase, аnd T is the equilibrium temperature), we will describe a thermodynamic
state of liquid and water vapor in the mesoscopic volume of averaging by means of Gibbs-Duhem [12]
equations

−sνdT +
1

ρν
dpg +

RT

Mνxν
dxν − dµν = 0, −sldT +

1

ρl
dpl − dµl = 0, (5)

where β = {l, ν} is a symbolic notation of the liquid (l) phase and the unsaturated water vapor
(ν) component, Gβ i Sβ are the Gibbs energy and the entropy in the volume of averaging (REV),
sβ = Sβ/∆mβ is the specific entropy, µβ = Gβ/∆mβ is the definition of the chemical potential, ∆mβ,
∆Vβ and ρβ = ∆mβ/∆Vβ are the mass, the volume and the specific density, respectively, xν = pν/pg
is the molar fraction of water vapor, pν and pg are the partial pressures of the water vapor and the gas
phase respectively, Mν is the molar mass of water vapor, R is the universal gas constant.

Due to the increments of chemical potentials in a state of the thermodynamic equilibrium of qua-
sistatic process are equal (dµν = dµl), based on the relations (4) and (5), considering the equation of
state ρν =Mνpg/RT (REV) under isothermal conditions, we can obtain the relation

(1− ρlRT xν/Mνpν) dpν − dxν/xν = 2σxνd (1/r) . (6)

For real gases, in particular the mixture of dry air and water vapor, the molar fraction of water
vapor, xν is the known function of partial pressure pν and the temperature T according to the equation
of state xν = f(pν, T ) [13]. In the approximation of close to saturation (xν ∼= 1) water vapor, it is
possible assume that the quantity xν is a constant (pν 6 pνs, were pνs = pνs(T ) is the pressure of
saturated water vapor). Then by integrating equation (6) with boundary conditions, which takes into
account the fact that the pressure of a saturated water vapor pνs corresponds to the average, the
flat (r → ∞) surface of separation between phases ( lim

r→∞
pc = 0), we obtain the Kelvin-Thomson [9]

equation
pc = 2σ/r = −ρlRTLn(ϕ)/Mν + δ, (7)

where ϕ = pν/pνs is the relative humidity of water vapor, δ = pν − pνs is negligibly small with regard
to the first item parameter.

4. The function of distribution of the pore sizes according to the effective radius

The finite region Ω of the investigated porous sample with the total volume ∆Vspl we can divide in
the n elementary connected together and periodically repeated mesoscopic ∆VREV volumes of some
constant geometric form.

Then the mean porosity ϕ̄ = 1−∆V ∗
s /∆VREV of the material can be determined, where

∆V ∗
s = 1

n

∑

i
∆V i

s , i = {1 ÷ n} is the averaged volume of skeleton, ∆V i
s is the part of the solid phase
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volume which indexed according to sequential disposition of the elementary volume ∆VREV in the
finite region Ω of the investigated porous sample.
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Fig. 2. The distribution function of the pore satura-
tion η with liquid depending on the effective radius r of

meniscus.

For any elementary volume ∆VREV of
porous sample with the total volume ∆Vspl
(∆Vspl = n∆VREV ), we can set in correspon-
dence the discrete value of the effective radius
of meniscus r̄k ∈ (rk−1, rk]. For this purpose,
let us divide the experimentally obtained do-
main of values for the effective radius of menis-
cus r on the uniform intervals with the length of
∆r = rk − rk−1 = (rmax − rmin)/n, where rmin

and rmax are the restricted minimal and max-
imal values of the meniscus radius. Then, in
line with the relation (3), it is possible to affirm
that for the selected r̄k, the relation for the pore
saturation η(r̄k) with the liquid phase has the
form

η(r̄k) = ϕ̄−1∆V ∗
l (r̄k)/∆VREV , k = {1÷ n} (8)

where ∆V ∗
l (r̄k) =

1
nk

∑

r̄i∈ Ωk

∆Vl(r̄i) and Ωk = {nk∆VREV : r̄i 6 r̄k)} is a set of the nk volumes ∆VREV

(Ωk ⊆ Ω) for which the effective radius is satisfied the inequality r̄i 6 r̄k, ∆Vl(r̄i) is the part of the
liquid phase volume in the elementary volume ∆VREV for which the mean effective radius r̄i ∈ (ri−1, ri].

It should be noted that lim
r̄k→rmin

∆V ∗
l (r̄k) = ∆V̄ir (∆V̄ir ∼= 0), where ∆V̄ir is the residual volume of

liquid phase, which corresponds to the water absorbed up to the surface of the solid skeleton. Such
water, according to the drainage method, is impossible to remove from the porous material. Because
lim

r̄k→rmax

∆V ∗
l (r̄k) = ∆V̄cr, (∆V̄cr ∼= ∆VREV ), where ∆V̄cr is the critical volume of liquid phase, so in

accordance with the relation (8) (ηα = ϕ̄−1∆V̄α/∆VREV , where α = {′ir′,′ cr′} is symbolic denotations)
we have the inequality: ηir 6 η(r̄k) 6 ηcr, k = {1 ÷ m}, here ηir and ηcr is residual (ηir ∼= 0) and
critical (ηcr ∼= 1) saturations of pores with liquid, respectively.

We can obtain a typical example of the continuous dependence η = f(r) (Fig. 2) for the macro-
scopic volume ∆Vspl of porous material on the basis of the experimentally found curves of sorption
isotherms [9]: W = f(ϕ), where W = ϕη ρl/ρs is a moisture content (ρs and ρl are the densities
of solid and liquid phases respectively) or drainage curves of liquid retention [7]: h = f(η), where
h = pc/ρlg is the hydraulic head of liquid in the porous medium (g is a gravity acceleration), by using
the relations (4) and (7) on moving up to the variables η and r.

From this dependence on the limits r → rmin and r → rmax, we have ∂η(r)/∂r → 0, so on the basis
of the work [7] we can introduce a normalized function of pore size distribution for the mean radius

Φ(r) =
1

ηcr − ηir
r
∂η(r)

∂r





rmax
∫

rmin

Φ(r)dr = 1



 , (9)

as well as the effective pore saturation θ with liquid

Θ =
η − ηir
ηcr − ηir

=

r
∫

rmin

Φ(r)dr (0 6 Θ 6 1). (10)
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An interception point of the tangent to the dependence curve η = f(r) (Fig. 2) under the pore

half-saturation with liquid (η = 1/2) and the axis of coordinate within the top boundary (η → 1)

makes it possible to obtain an approximate value of the so called bubble pressure pb ∼= 2σ/rb, where rb
is the mean radius of the detached gas bubbles at continuous filling of the pores with the liquid phase.

The given pressure substantiates the definition of the critical saturation ηcr and gives grounds to state

that according to (7) we have lim
η→ηcr

pc ∼= pb = δ.

5. The flow equations in the saturated porous material. The Darcy law and Karman-

Cozeny equation. The intrinsic permeability of the porous skeleton

When investigating the flow of liquid under gravity downward in a vertical tube filled up with the

spherical particles of sand, Darcy [7] found the following: Ql = −KlA∆h/L, where Ql is the volume

flow of the liquid, ∆h is the hydraulic pressure difference of the liquid in the manometers (L is the

distance between them), A is the cross-sectional area of the tube, Kl is a proportional constant, which

corresponds to the hydraulic conductivity of the liquid in the sand.

For one-dimensional plane case of full saturation of the pores with liquid (pg = 0 and η = 1), the

Darcy law can be generalized. To do this we define the relative to skeleton velocity of the liquid phase

(superficial velocity) [7] as ul = vl − vs (here vl and vs are the average velocities of the liquid and solid

phases) in the line with the relation Ul = Q/A = ϕ̄ ul, where Ul is the absolute velocity of the liquid

(specific discharge), аnd ϕ̄ is the average porosity of the material. Since h = pc/ρlg is the hydraulic

head, then in the case of immovable state (vs = 0), the solid phase (stationary skeleton) for infinitely

small increments of the length L we obtain

Ul = ϕ̄vl = −(Kl/ρlg)∂pc/∂x = −ks/µl ∂pc/∂x, (11)

here ks = Klµl/ρlg is the intrinsic permeability of the porous skeleton, µl is the dynamic viscosity of

the liquid phase.

The intrinsic permeability is an absolute characteristic of the porous skeleton as pointed out by the

well known Carman–Kozeny [5] equation

ρlg∆h/L = −α0ψ
2τµlUl(1− ϕ̄)2/ϕ̄3, (12)

where ψ = As/Vs is a specific surface of the solid phase (As and Vs are the total surface area and

the volume of the solid phase, respectively), τ = Le/L is the tortuosity factor, in other words, the

curving of capillaries in the pores (Le is the mean length of the trajectory that is actually passed

by a microparticle of liquid or gas in the porous medium between two parallel planes, which are

perpendicular to the straight line of the length L). The tortuosity factor is a constant, which depends

on the configuration and properties of the porous skeleton.

Modeling the skeleton of porous medium with the aid of the spherical particles of the equivalent

diameter d [5], we have ψ = 6/d. By comparing the relation (12) with the Darcy [7] law (Kl = ρlgks/µl)

we obtain

ks = (1/36α0)[ϕ̄
3/(1 − ϕ̄)2](d2/τ), (13)

where ϕ̄ is the average porosity.

In general, the detailed reconstruction of the structural properties for the porous material can be

performed by the methods of the percolation theory [15], deterministic or stochastic geometry [16].
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6. The flow equations in the unsaturated porous material. The Leverett approach.
The equilibrium condition with surrounding media

Under conditions of unsaturated plane flow in porous media [7], according to the previous definitions,
we can introduce specific discharges of the liquid or gas phases as Uα = ϕ̄ ηα uα, where α = {l, g} is
the index of phase (uα = vα − vs are superficial velocities of the α-phases) and ηα are corresponding
pore saturations (ηl + ηg = 1). In the case of stationary skeleton (vs = 0), the generalized Darcy laws
by analogy with the relation (11) will take the form

Uα = ϕ̄ ηα vα = −(Kα(η)/ραg)∂pα/∂x = −(kskrα(η)/µα)∂pα/∂x, (14)

where krα(η) = kα(η)/ks, α = {l, g} are the relative permeability which satisfy the condition
0 6 krα(η) 6 1 [14], kα(η) = Kα(η)µα/ραg, Kα(η) are the absolute permeability and the hydraulic
conductivity of α-phase in the porous material, respectively.

Analyzing the generalized Darcy laws (11) and (14), we conclude that, according to the equation
of a state pν = f(T, xν) (pg = pν/xν) [13] and the Young-Laplace (5) (pl = pg − pc) relation, the value
of the main dependence pc = f(η) is necessary for a successful description of diffusion processes of the
liquid and gas phases in the porous material.

Let us assume that the porous skeleton is treated as aggregate of capillaries with the mean diameter
d. Then in the relation (12) ψ = 4/d [5], where d = 4σ cos θ/pc, and θ is the angle of wetting between
the liquid and gas phases in a capillary. Hence, similarly to the relation (13), it follows that

pc
√

ks/ϕ̄/σ = ϕ̄ cos θ/[(1− ϕ̄)/
√
α0τ ]. (15)

Since cos θ is the function of the pore saturation η with liquid only, on the basis of (15) we will
obtain the dimensionless J- Leverett function [7], which uniquely describes the process of liquid phase
retention for the given structure of the porous material

J(η) = σ−1pc(η)/
√

ks/ϕ̄, (16)

here ϕ̄ is the average porosity, ks is the intrinsic permeability of porous skeleton, σ is the coefficient of
surface tension.

It should be noted that an equilibrium state of liquid in porous media can be achieved under the
condition that in the relation (14) Ul = Ug = 0. Such state is achieved for the equilibrium value of the
material wetting ηeqv, which, according to relation (4), is determined on condition that pl(ηeqv) = 0.
Then we get pc(ηeqv) = P amb, where Pamb is the pressure of gas phase in the external environment.

7. Relative permeability of the liquid and gas phases according to the statistical model

To complete the analysis of the flow equations (11) and (14), we must determine the relations for
the relative permeability of phases in porous material. In line with the statistical model [7], the
following expressions have been proposed to calculate relative permeabilities for wetting (liquid) krl
and non-wetting (gas) krg phases

krl(η) =
Θκ

α

r
∫

rmin

rΦ(r) dr, krg(η) =
(1−Θ)ζ

α

rmax
∫

r

rΦ(r) dr



α =

rmax
∫

rmin

rΦ(r) dr



 , (17)

where Φ(r) is the function of pore size distribution according to the effective radius r (9), Θ is the
effective pore saturation (10) with liquid phase. Here κ and ζ are the experimental parameters, which
represent, respectively, the relation between the pore size and the curvature of path for flow of the
particles of liquid and gas in an unsaturated porous material.
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The relation (17) can be generalized for the case of random dependence pc = f(Θ(η)), where Θ
is the effective saturation, which corresponds to the real model for liquid phase retention in porous
material. For this purpose from the relations (10) and (4) we obtainΦ(r)dr = dΘ and r = 2σ/pc.
So, changing the variables in the equation (17) r → Θ(η) in compliance with limits of the integration
rmin → Θ(ηir) = 0 and rmax → Θ(ηcr) = 1, we obtain

krl(Θ) =
Θ1/2

β

Θ
∫

0

[1/pc(x)] dx, krg(Θ) =
(1−Θ)1/3

β

1
∫

Θ

[1/pc(x))] dx, (18)

where β =
1
∫

0

[1/pc(x)] dx is the normalizing factor. According to the investigations of Mualem [17] and

Luckner [18], in the expressions (17) there are given κ = 1/2 and ζ = 1/3.

8. A comparative analysis of models the moisture retention

At present, the most widely used means to describe the experimental dependence pc = f(η) in the
porous material are the semi-empirical approximations of Brooks–Corey [10] and van Genuchten [11].
Such approximations well agree with the data on the distribution function of the pore saturation η
with liquid with respect to the mean radius r of meniscus for the finite volume of mesoscopic porous
material (Fig. 2).

According to the Brooks-Corey model

Θ = [1/αpc]
λ (αpc > 1), (19)

where λ is a dimensionless parameter that corresponds to the slope of the curve on the dependence
η = f(r) at pore half-saturation with liquid η̄ = 1/2, this is reported in the work [7] to be the pore
size distribution index, α is the parameter to be determined

According to the van Genuchten model

Θ = [1/(1 + (αpc)
m)]n , (20)

here m and n are empiric parameters.
Substituting the dependences pc = pc(Θ), which are defined by the expressions (19) and (20), into

the relation (18) upon integrating, we obtain the following expressions for the relative permeability by
the Brooks–Corey

krl(Θ) = Θ5/2+2/λ, krg(Θ) = (1−Θ)1/3
[

1−Θ2(1+1/λ)
]

, (21)

and the van Genuchten models

krl(Θ) = Θ1/2
[

1− (1−Θ1/m)m
]2
, krg(Θ) = (1−Θ)1/3

[

1−Θ1/m
]2m

, (22)

where m = 1− 1/n is an integrability condition.
For α 〈pc〉 ≪ 1, the Brooks-Corey model (19) and the van Genuchen model (20) coincide, hence it

follows that λ = mn = n− 1.
The empirical parameter m in the van Genuchen (20) model we obtain from the relation

r∂η/∂r = −pc∂η/∂pc and the known experimental dependence η = f(r) (Fig. 2), when assume
n = 1/(1 −m). Then the pore size distribution function with respect to the effective radius (9) can be
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described by the analytical expression

Φ(r) = [m/(1 −m)]
⌢
Θ (r)(1−

⌢
Θ (r)1/m), (23)

where
⌢
Θ (r) = Θ(f(r)) is the effective saturation of pores with liquid phase as the function of the

effective radius r of meniscus.
It is expedient to introduce the parameterα into the relations (19) and (20) at pore half-saturation

with liquid (η = 1/2).Then, on the basis of the van Genuchen [11] model, we obtain

α =
(

1/θ̄1/m − 1
)1−m/

p̄c = r̄
[

(ηcr − ηir)/(η̄ − ηir)
1/m − 1

]1−m/

2σ, (24)

where p̄c = 2σ/r̄ is the capillary pressure, аnd r is the mean radius of meniscus at pore half-saturation
η with liquid.

In line with the relation (19) and (24), within the framework of the Brooks-Corey [10] model, it is
reasonably easy to see, using the actual dependence η = f(r) (Fig. 2) as an example, so that αpc = J(η)

(16), where J(η) = [1/Θ](1−m)/m is the J-Leveret function. Since 1/α = pb, where pb is the bubble
pressure, the intrinsic permeability ks of porous media is

ks = ϕα2σ2 = ϕσ2/p2b , (25)

here ϕ is the average porosity, and σ is the coefficient of surface tension.

9. The results of numerical simulation
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Fig. 3. The dependence of η = f(r) for
the ceramic brick.

In Fig. 3, there is depicted the experimentally obtained de-
pendences [19] η = f(r) for ceramic bricks from the district
San Marco (Venice) (ϕ = 0.46) in two modifications with
respect to the average porosity ϕ: modA − ϕ = 0.4 and
modB− ϕ = 0.52.

Based on the given curves and relations (23) and (24), in
line with the model description of van Genutchen (20), it has
been found that for the basic material at ηir = 0.015 (Fig. 3)
we have m = 0.67 and pb = 102.9 kPa, while for the two mo-
difications: modA(ηir = 0.01) −m = 0.72 and pb = 136.7 kPa
and modB(ηir = 0.02) −m = 0.61 and pb = 77.5 kPa. Accor-

ding to the relations (16) and (25), as well as for the calculated model parameters m and α, where taken
α = 1/pb for the distribution function Φ(r) (23) and J(η) = ([1/Θ(η)]1/m − 1)1−m for the J-Leverett
function (16), we obtain the dependences shown in Fig. 4 and Fig. 5, respectively.
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Fig. 4. The normalized function of distribution the
pore sizes by the effective radius.

Fig. 5. J-Leverett function.
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Fig. 6 depicts according to the relation (22) the relative permeability for the liquid krl and gas krg
phases vs. the pore saturation η with liquid.
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Fig. 6. The relative permeability of liquid
krl and gas krg phases.

The values of the intrinsic permeabilities, de-
fined by the relation (25) for the basic material
ks = 2.29× 10−13m2 and for the two modifications:
ks = 1.13× 10−13m2 (modA) and ks = 4.57× 10−13m2

(modB) give grounds to state that the values for equi-
librium wetting of the porous material condition of static
equilibrium (pc(ηeqv) = P amb, where Pamb is the pressure
of gas phase in surrounding media under normal condi-
tions), coincide with the peaks of the distribution func-
tion Φ(r) (Fig. 4) and are equal to ηeqv = 0.64 for the
basic material (ϕ = 0.46), ηeqv = 0.82 for modA (ϕ = 0.4)
and ηeqv = 0.51 for modB (ϕ = 0.52), respectively.

10. Conclusions

The means of representation of the distribution function of pore size with respect to the effective ra-
dius under known drainage or sorption characteristics for the mesoscopic porous material have been
described. The methods for determination of structural parameters in the semi empirical models of
moisture retention have been demonstrated. Based on comparative analysis of these models, a simple
formula to calculate the intrinsic permeability of porous skeleton has been obtained. According to the
graphical analysis of the experimental data, it is established that with the increase of porosity (intrin-
sic permeability) of solid skeleton, the equilibrium wetting of porous material (pressure of bubbles)
decreases. It is shown that the maximum of the distribution function is identical to the equilibrium
wetting of porous material.
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Дослiдження структурних властивостей пористого матерiалу
згiдно з iзотермами сорбцiї або дренажних кривих

ГолубецьТ.

Iнститут прикладних проблем механiки i математики

iм.Я.С. Пiдстригача Нацiональної академiї наук України

3б вул. Наукова, 79060, Львiв, Україна

Вiдповiдно до методу локального просторового усереднення, розглянуто основнi спiв-
вiдношення фiзики поверхнi та термодинамiки для опису процесiв дифузiї рiдкої або
газової фаз в неоднорiдному пористому середовищi. Згiдно з дренажними або сорб-
цiйними властивостями рiдини у пористому скелетi означено нормовану функцiю роз-
подiлу розмiру пор за ефективним радiуском. Запропоновано спiввiдношення для
визначення абсолютної i вiдносної проникностi фаз у твердому скелетi. Проаналi-
зовано залежнiсть абсолютної проникностi вiд структурних властивостей пористого
матерiалу. Отримано просту умову рiвноваги фаз у пористому скелетi з навколишнiм
середовищем.

Ключовi слова: пористi матерiали, адсорбцiя, капiлярнi явища, дифузiя газу i

рiдини.
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