odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.3, No.1, pp.23-32 (2016) I\/I @P”ti"g

athematical

Investigation of the structural properties of porous material according
to the sorption isotherms and drainage curves

Holubets T.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
of National Academy of Sciences of Ukraine
3b Naukova str., 79060, Lviv, Ukraine

(Received 1 April 2016)

In this paper in the compliance with the method of the local averaging, the basic relations
of surface physics and thermodynamics for the description of diffusion process of the liquid
and gas phases in the inhomogeneous porous media have been considered. In line with
the drainage and sorption properties of the liquid in the porous skeleton, the normalized
function of distribution of the pore size for the effective radius has been defined. The
relations for the determination of the intrinsic and relative permeability of phases in the
solid skeleton have been proposed. The dependence of the intrinsic permeability on the
structural properties of porous material has been analyzed. A simple condition of the
equilibrium of phases in the porous skeleton with surrounding medium has been obtained.

Keywords: porous materials, adsorption, capillary phenomena, diffusion of gas and
liquid.
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1. Introduction

The majority of porous structures may refer to the class of the mesoscopical divided materials. In-
vestigation of such materials [1] can be performed by the experimental methods of microscopy and
stereology according to the physical phenomena scattering and diffraction of electromagnetic waves or
molecular adsorption from the liquid or gas phases. The reproduction of structure can be accomplished
by the mathematical methods of statistical modeling or fractal analyses.

For the approximate description of continuous processes in the wet porous materials the most
reasonable is usage of the averaging into the space the (local) [3| or the effective (macroscopic) [4]
the middle values of physical quantity which can be obtained according to the function of distribution
for sizes of pores from the effective radius [5] or methods of theory homogenization [6] by appropriate
selection of the model for porous skeleton structure. For example, with assistance of the pore size
distribution function in the approach of the laminar motion of liquid into the pore network which are
simulated by the sets of interconnected capillaries with different radius it is possible to obtain the
analytical expressions [7] for relative permeability [8] of the liquid and gas phases.

In this paper there has been demonstrated how the pore size distribution function for the effective
radius can be obtained from the experimental sorption isotherms [9] or the drainage curves [10, 11| of
liquids retention. For this purpose the main relations of equilibrium [1,7,9, 12| between phases in the
porous wet material has been reviewed in conformity with the method of averaging in local space.

Due to the numerous experimental investigations [1] and model relations [9-11] for description
drainage or sorption properties of liquid in the solid skeleton, there arises the necessity of systemati-
zation and selection of the optimal description of the structural properties for porous material.

The main purpose of presented publication is investigation of model parameters in the relations
with intrinsic and relative permeability of phases into the porous structure according to the specified
pore size distribution from the mean radius.

(© 2016 Lviv Polytechnic National University 23
CMM IAPMM NASU



24 Holubets T.

2. The volume characteristics of phases in the porous material. Principles of the local
spatial averaging

In the inhomogeneous multiphase porous me-

dia we can select the typical or characteristic

mesoscopic volume of averaging AVzgpy (Fig. 1)

(REV — Representative Elementary Volume)

d AVrpy = >, AV,, where a = {s,l,g} is the
[0

index which corresponds to the solid (s), liquid
(I) and gas (g) phases, AV, is the volume of
a-phase.

First of all, we must define the volume frac-
tions of phases in the volume of averaging as
0o = AVy/AVrey (3.0, = 1), then for the

Fig. 1. The depiction for the mesoscopic volume of ave- o
raging. porosity of material we have

Y= (AV} + AVg)/AVREV =1- AVS/AVREV ((,D =0+ 9g =1- 93) (1)
If define the local pore saturation with liquid 7; and gas 7, as
w= AVI/(AVi+AV,), 1, = AV, /(AVi+ AV,) (4 = 1), (2)

then from the expressions (1) and (2) its follows that

Os=1—¢, O =om, 0,=¢l—mn). (3)

According to the principle of local spatial averaging [3], the mesoscopic averaging volume (REV)
(Fig. 1) has a constant spherical shape (d is the diameter of sphere) and is positioned arbitrarily (r is
the Cartesian coordinate of the center of the sphere) in a finite region € of investigated microscopically
porous material.

If on the boundaries of phase separation the physical laws of interaction [9] are known and the
structure of the skeleton according to conditions of mesoscopically [1] may be represented then the
way of deriving a spatially averaged (local) values of physical quantity [4] is quite simple because the
method for calculation [2] of interaction between phases is described. For the obtaining of effective
(macroscopic) values according to the theory of homogenization [6], there should be applied additional
conditions for the periodic rapidly oscillating in the space functions of the studied physical quantity
within the volume of irregularities of the structure (usually in a pore) under which the diffusion
coefficients in the differential equations in the partial derivatives can be considered to be the constants
as in the case of homogeneous material.

In some cases, as shown in [4], the effective value of physical quantity can be obtained as a local
characteristic of porous material. Then such value is determined through the macroscopic (the averaged
by distribution function [5]) parameters of the structure of porous material, volume fraction of phases
and factors of external influence.

If the condition of static equilibrium is satisfied (the surface interfacial interaction is immovable)
the volume fraction of phases is known at each point of the porous medium. Thus, we have to assert
that the obtained by the method of spatial averaging, the local or effective values of the physical
quantity are also continuous in the internal volume of investigated porous material.
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3. The simple conditions of phase equilibrium in porous material. Definition of averaged
capillary pressure

According to the Young-Laplace [9] equation and the Whitaker [2] theory of drying, a simple relation
of equilibrium for averaged pressures can be written as follows

Pe =pg —p1 = 20/, (4)

where p. is the capillary pressure, which is defined by the effective radius of meniscus between liquid
and gas phases r = 2 >"r,, (1/r, = 1/R. + 1/R?%), here R} and R2 are the main curvature radiuses,
n

n is the number of surfaces separations between phases along the reciprocally connected capillaries, p;
and p, are the pressures in the liquid and gas phases and o is the surface tension coefficient.

By using the principles of local thermal equilibrium [2] (T, = T, here a = {s,l,g}, Ty is the
temperature of a-phase, and T is the equilibrium temperature), we will describe a thermodynamic
state of liquid and water vapor in the mesoscopic volume of averaging by means of Gibbs-Duhem [12]
equations

1 RT 1
—5,dT + —dpg + ——dz, — dp, =0, —sdT + —dp; — dpy =0, (5)
Pv M,x, Pl
where 8 = {l,v} is a symbolic notation of the liquid (/) phase and the unsaturated water vapor

(v) component, Gg i Sg are the Gibbs energy and the entropy in the volume of averaging (REV),
sg = Sg/Amg is the specific entropy, ug = Gg/Amg is the definition of the chemical potential, Amg,
AVjz and pg = Amg/AVjs are the mass, the volume and the specific density, respectively, , = p,/pg
is the molar fraction of water vapor, p, and p, are the partial pressures of the water vapor and the gas
phase respectively, M, is the molar mass of water vapor, R is the universal gas constant.

Due to the increments of chemical potentials in a state of the thermodynamic equilibrium of qua-
sistatic process are equal (du, = du;), based on the relations (4) and (5), considering the equation of
state p, = M,p,/RT (REV) under isothermal conditions, we can obtain the relation

(1 —pRT x,/M,p,) dp, — dxy, [z, = 202,d(1/T). (6)

For real gases, in particular the mixture of dry air and water vapor, the molar fraction of water
vapor, x, is the known function of partial pressure p, and the temperature 1" according to the equation
of state x, = f(p,,T) [13]. In the approximation of close to saturation (z, = 1) water vapor, it is
possible assume that the quantity z, is a constant (p, < pys, were pys = pys(T) is the pressure of
saturated water vapor). Then by integrating equation (6) with boundary conditions, which takes into
account the fact that the pressure of a saturated water vapor p,s corresponds to the average, the
flat (r — oo) surface of separation between phases (Tli_>nolo pe = 0), we obtain the Kelvin-Thomson [9]

equation

pe = 20/r = —p RT Ln(p)/M, + 6, (7)

where ¢ = p, /pys is the relative humidity of water vapor, 6 = p, — p,s is negligibly small with regard
to the first item parameter.

4. The function of distribution of the pore sizes according to the effective radius

The finite region ) of the investigated porous sample with the total volume AV, we can divide in
the n elementary connected together and periodically repeated mesoscopic AVipy volumes of some
constant geometric form.
Then the mean porosity @ =1— AVS/AVrpy of the material can be determined, where
AV = LSTAVE i = {1 + n} is the averaged volume of skeleton, AV is the part of the solid phase
(2

s T n
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volume which indexed according to sequential disposition of the elementary volume AVgpy in the
finite region 2 of the investigated porous sample.

A7 For any elementary volume AVggy of
porous sample with the total volume AV,
¢ i_ 1__ (AVgpy = nAVgpy), we can set in correspon-
I dence the discrete value of the effective radius
| of meniscus 7 € (rg_1,7x|. For this purpose,
: let us divide the experimentally obtained do-
+ main of values for the effective radius of menis-
: cus r on the uniform intervals with the length of
|

|

d

T'rn

Ar =1, — 7k—1 = (Tmax — Tmin)/", Where ryiy
and 7.y are the restricted minimal and max-

/
Nir H /

o+

min b

imal values of the meniscus radius. Then, in
ax line with the relation (3), it is possible to affirm

Fig.2. The distribution function of the pore satura- that for. the Se_lecte(.i Tk, the .relz.ition for the pore
tion 1 with liquid depending on the effective radius  of ~ saturation n(7%) with the liquid phase has the

S ————

meniscus. form
n(k) = ¢ AV (1) /AVREy, k= {1+n} (8)
where AV*(7y,) = nik > AV(7;) and Qk = {npAVggy: 7; < T)} is a set of the ny volumes AVgpy
7€ Qg

(Q C Q) for which the effective radius is satisfied the inequality 7; < 7, AV(7;) is the part of the
liquid phase volume in the elementary volume AVggy for which the mean effective radius 7; € (r;—1, 7).
It should be noted that lim AV/*(ry) = AV, (AV;r = 0), where AV, is the residual volume of

Tk—Tmin
liquid phase, which corresponds to the water absorbed up to the surface of the solid skeleton. Such
water, according to the drainage method, is impossible to remove from the porous material. Because
lim  AV*(7,) = AVe, (AVer = AVgpy), where AV, is the critical volume of liquid phase, so in

Tk—Tmax

accordance with the relation (8) (17, = ¢ 1AV, /AVggy, where a = {’ir’/ cr'} is symbolic denotations)
we have the inequality: 7; < 7(7g) < Ner, & = {1 + m}, here 7, and 7., is residual (n; = 0) and
critical (n.. = 1) saturations of pores with liquid, respectively.

We can obtain a typical example of the continuous dependence n = f(r) (Fig.2) for the macro-
scopic volume AVj, of porous material on the basis of the experimentally found curves of sorption
isotherms [9]: W = f(p), where W = ¢np;/ps is a moisture content (ps; and p; are the densities
of solid and liquid phases respectively) or drainage curves of liquid retention [7]: h = f(n), where
h = p¢/p1g is the hydraulic head of liquid in the porous medium (g is a gravity acceleration), by using
the relations (4) and (7) on moving up to the variables n and r.

From this dependence on the limits 7 — ryi, and 7 — ryax, we have 9n(r)/0r — 0, so on the basis
of the work [7] we can introduce a normalized function of pore size distribution for the mean radius

1 an(r) Tmax
d(r) = ®(r)dr=1 9
(T) Ner _Tlirr or / (T) " ’ ( )
as well as the effective pore saturation 6 with liquid
_ N =N
O=—"—= / O(r)dr (00O <1). (10)
Tler — Nir

Tmin
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An interception point of the tangent to the dependence curve n = f(r) (Fig.2) under the pore
half-saturation with liquid (7 = 1/2) and the axis of coordinate within the top boundary (n — 1)
makes it possible to obtain an approximate value of the so called bubble pressure p, = 20 /1, where 7
is the mean radius of the detached gas bubbles at continuous filling of the pores with the liquid phase.
The given pressure substantiates the definition of the critical saturation 7. and gives grounds to state
that according to (7) we have nl—igvlcr De = pp = 0.

5. The flow equations in the saturated porous material. The Darcy law and Karman-
Cozeny equation. The intrinsic permeability of the porous skeleton

When investigating the flow of liquid under gravity downward in a vertical tube filled up with the
spherical particles of sand, Darcy [7] found the following: @; = —K;AAh/L, where @ is the volume
flow of the liquid, Ah is the hydraulic pressure difference of the liquid in the manometers (L is the
distance between them), A is the cross-sectional area of the tube, Kj is a proportional constant, which
corresponds to the hydraulic conductivity of the liquid in the sand.

For one-dimensional plane case of full saturation of the pores with liquid (p; = 0 and n = 1), the
Darcy law can be generalized. To do this we define the relative to skeleton velocity of the liquid phase
(superficial velocity) [7] as u; = v; — vs (here v; and vy are the average velocities of the liquid and solid
phases) in the line with the relation U; = Q/A = @ u;, where Uj is the absolute velocity of the liquid
(specific discharge), and ¢ is the average porosity of the material. Since h = p./p;g is the hydraulic
head, then in the case of immovable state (vs = 0), the solid phase (stationary skeleton) for infinitely
small increments of the length L we obtain

U= ou = —(Ki/p1g)0pe/0x = —ks /[ Ope /0, (11)

here ks = Kjp;/p1g is the intrinsic permeability of the porous skeleton, y; is the dynamic viscosity of
the liquid phase.

The intrinsic permeability is an absolute characteristic of the porous skeleton as pointed out by the
well known Carman-Kozeny [5] equation

pgAh/L = —aop iU (1 — ¢)? /7, (12)

where 1 = Az/Vs is a specific surface of the solid phase (As; and V; are the total surface area and
the volume of the solid phase, respectively), 7 = L./L is the tortuosity factor, in other words, the
curving of capillaries in the pores (L. is the mean length of the trajectory that is actually passed
by a microparticle of liquid or gas in the porous medium between two parallel planes, which are
perpendicular to the straight line of the length L). The tortuosity factor is a constant, which depends
on the configuration and properties of the porous skeleton.

Modeling the skeleton of porous medium with the aid of the spherical particles of the equivalent
diameter d [5], we have ¢ = 6/d. By comparing the relation (12) with the Darcy [7] law (K; = pigks/ )
we obtain

ks = (1/3600)[7°/(1 — )2)(d2/7), (13)

where @ is the average porosity.
In general, the detailed reconstruction of the structural properties for the porous material can be
performed by the methods of the percolation theory [15], deterministic or stochastic geometry [16].
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6. The flow equations in the unsaturated porous material. The Leverett approach.
The equilibrium condition with surrounding media

Under conditions of unsaturated plane flow in porous media |7], according to the previous definitions,
we can introduce specific discharges of the liquid or gas phases as U, = @14 tuq, where a = {l, g} is
the index of phase (u, = v, — vs are superficial velocities of the a-phases) and 7, are corresponding
pore saturations (1; + 1y = 1). In the case of stationary skeleton (vs = 0), the generalized Darcy laws
by analogy with the relation (11) will take the form

Ua = @ NaVa = —(Ka(1)/pag)0pa/0r = —(kskra(n)/1ta)OPa /0T, (14)

where k.o(n) = ka(n)/ks, « = {l,g} are the relative permeability which satisfy the condition
0 < kra(n) < 1[14], ka(n) = Ka()pa/pag, Ka(n) are the absolute permeability and the hydraulic
conductivity of a-phase in the porous material, respectively.

Analyzing the generalized Darcy laws (11) and (14), we conclude that, according to the equation
of a state p, = f(T',z,) (pg = pv/xv) [13] and the Young-Laplace (5) (p; = pg — pe) relation, the value
of the main dependence p. = f(n) is necessary for a successful description of diffusion processes of the
liquid and gas phases in the porous material.

Let us assume that the porous skeleton is treated as aggregate of capillaries with the mean diameter
d. Then in the relation (12) ¢» = 4/d [5|, where d = 40 cos 0/p., and 6 is the angle of wetting between
the liquid and gas phases in a capillary. Hence, similarly to the relation (13), it follows that

peV'ks/ /o = @eos8/[(1 — @) /v/aoT]. (15)

Since cos is the function of the pore saturation n with liquid only, on the basis of (15) we will
obtain the dimensionless J- Leverett function [7]|, which uniquely describes the process of liquid phase
retention for the given structure of the porous material

J(n) = o pe(n)/ ks /@, (16)

here @ is the average porosity, ks is the intrinsic permeability of porous skeleton, ¢ is the coefficient of
surface tension.

It should be noted that an equilibrium state of liquid in porous media can be achieved under the
condition that in the relation (14) U; = Uy = 0. Such state is achieved for the equilibrium value of the
material wetting 7)eqy, which, according to relation (4), is determined on condition that p;(1eqy) = 0.
Then we get pe(Neqn) = Pamp, Where P,y is the pressure of gas phase in the external environment.

7. Relative permeability of the liquid and gas phases according to the statistical model

To complete the analysis of the flow equations (11) and (14), we must determine the relations for
the relative permeability of phases in porous material. In line with the statistical model [7], the
following expressions have been proposed to calculate relative permeabilities for wetting (liquid) k.
and non-wetting (gas) k4 phases

" r B C Tmax Tmax
ki (n) = % /7‘ Q(r)dr, keg(n) = % /r O(r)dr o= /7‘ O(r)dr |, (17)

where ®(r) is the function of pore size distribution according to the effective radius r (9), © is the
effective pore saturation (10) with liquid phase. Here x and ( are the experimental parameters, which
represent, respectively, the relation between the pore size and the curvature of path for flow of the
particles of liquid and gas in an unsaturated porous material.
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The relation (17) can be generalized for the case of random dependence p. = f(©(n)), where ©
is the effective saturation, which corresponds to the real model for liquid phase retention in porous
material. For this purpose from the relations (10) and (4) we obtain®(r)dr = d© and r = 20/p,.
So, changing the variables in the equation (17) » — O(n) in compliance with limits of the integration
Tmin — ©(1ir) = 0 and ryax — O(Ner) = 1, we obtain

2 9 0)1/3 ;
:@T/ [1/pe(x)] dz,  kpy(©) = /1/pc (18)
0 (€]

1
where 8 = [ [1/pc(z)] dz is the normalizing factor. According to the investigations of Mualem [17] and

0
Luckner [18], in the expressions (17) there are given £ = 1/2 and ¢ = 1/3.

8. A comparative analysis of models the moisture retention

At present, the most widely used means to describe the experimental dependence p. = f(n) in the
porous material are the semi-empirical approximations of Brooks—Corey [10] and van Genuchten [11].
Such approximations well agree with the data on the distribution function of the pore saturation n
with liquid with respect to the mean radius r of meniscus for the finite volume of mesoscopic porous
material (Fig.2).

According to the Brooks-Corey model

= [1/apc]*  (ape > 1), (19)

where )\ is a dimensionless parameter that corresponds to the slope of the curve on the dependence
n = f(r) at pore half-saturation with liquid 77 = 1/2, this is reported in the work [7] to be the pore
size distribution index, « is the parameter to be determined

According to the van Genuchten model

= [1/(1 + (ape)™)]" (20)

here m and n are empiric parameters.

Substituting the dependences p. = p.(©), which are defined by the expressions (19) and (20), into
the relation (18) upon integrating, we obtain the following expressions for the relative permeability by
the Brooks—Corey

k() = ©271 ky(0) = (1-0)3 [1 - 2] (21)
and the van Genuchten models
2 2m
kn(©) =02 [1 = (1=01/™™ ", k() = (1- ) [1—em]™, (22)

where m =1 — 1/n is an integrability condition.

For a (p.) < 1, the Brooks-Corey model (19) and the van Genuchen model (20) coincide, hence it
follows that A = mn =n — 1.

The empirical parameter m in the van Genuchen (20) model we obtain from the relation
ron/or = —p.On/dp. and the known experimental dependence n = f(r) (Fig.2), when assume
n = 1/(1 —m). Then the pore size distribution function with respect to the effective radius (9) can be
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described by the analytical expression
®(r) = [m/(1—m)] © (r)(1- © (r)'/™), (23)

where © (r) = ©(f(r)) is the effective saturation of pores with liquid phase as the function of the
effective radius r of meniscus.

It is expedient to introduce the parametera into the relations (19) and (20) at pore half-saturation
with liquid (77 = 1/2).Then, on the basis of the van Genuchen [11] model, we obtain

o= (110" 1) " [pe =7 [0 — ) @) 1] 20, (24)

where p. = 20 /7 is the capillary pressure, and 7 is the mean radius of meniscus at pore half-saturation
7 with liquid.

In line with the relation (19) and (24), within the framework of the Brooks-Corey [10] model, it is
reasonably easy to see, using the actual dependence n = f(r) (Fig. 2) as an example, so that ap. = J(n)
(16), where J(n) = [1/@](1_m)/m is the J-Leveret function. Since 1/a = py, where py is the bubble
pressure, the intrinsic permeability ks of porous media is

ks = pa’o? = po?/pf, (25)

here ¢ is the average porosity, and o is the coefficient of surface tension.

9. The results of numerical simulation

LO#N In Fig.3, there is depicted the experimentally obtained de-

4 pendences [19] n = f(r) for ceramic bricks from the district

08 San Marco (Venice) (¢ = 0.46) in two modifications with

0.6f respect to the average porosity ¢: modA — ¢ = 0.4 and
modB — ¢ = 0.52.

o4 Based on the given curves and relations (23) and (24), in

line with the model description of van Genutchen (20), it has

ook been found that for the basic material at n; = 0.015 (Fig.3)

we have m = 0.67 and p, = 102.9kPa, while for the two mo-
difications: modA(n; = 0.01) —m = 0.72 and p, = 136.7 kPa
and modB(n;, = 0.02) —m = 0.61 and p, = 77.5kPa. Accor-
ding to the relations (16) and (25), as well as for the calculated model parameters m and a, where taken
o = 1/py for the distribution function ®(r) (23) and J(n) = ([1/©(n)]*/™ — 1)*=™ for the J-Leverett
function (16), we obtain the dependences shown in Fig.4 and Fig. 5, respectively.

Fig. 3. The dependence of n = f(r) for
the ceramic brick.

12
P -~
08F — = == modA
ra - = o o= MOdA 10k
........ = modB
modB
0.6 stk
6F
04}
4 L
02}
2F
Inr n
A A i " ™ " i ; ” —
7.0 -65 -6.0 55 5.0 0.0 0.2 0.4 0.6 0.8 1.0
Fig.4. The normalized function of distribution the Fig. 5. J-Leverett function.

pore sizes by the effective radius.
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Fig. 6 depicts according to the relation (22) the relative permeability for the liquid k,; and gas k4
phases vs. the pore saturation n with liquid.

The values of the intrinsic permeabilities, de-
fined by the relation (25) for the basic material
ks =229 x 107¥m? and for the two modifications: 08
ks =113 x 107¥m? (modA) and ks = 4.57 x 10~ 3m?
(modB) give grounds to state that the values for equi-
librium wetting of the porous material condition of static ~ 04}
equilibrium (pe(Negv) = Pamp, Where Py, is the pressure
of gas phase in surrounding media under normal condi-
tions), coincide with the peaks of the distribution func-
tion ®(r) (Fig.4) and are equal to 7¢q = 0.64 for the
basic material (¢ = 0.46), 1eqy = 0.82 for modA (¢ = 0.4)
and 7eqy = 0.51 for modB (¢ = 0.52), respectively.

0.6

02F cveveemodB

n

0.2 0.4 0.6 0.8 1.0
Fig.6. The relative permeability of liquid
kr and gas k4 phases.

10. Conclusions

The means of representation of the distribution function of pore size with respect to the effective ra-
dius under known drainage or sorption characteristics for the mesoscopic porous material have been
described. The methods for determination of structural parameters in the semi empirical models of
moisture retention have been demonstrated. Based on comparative analysis of these models, a simple
formula to calculate the intrinsic permeability of porous skeleton has been obtained. According to the
graphical analysis of the experimental data, it is established that with the increase of porosity (intrin-
sic permeability) of solid skeleton, the equilibrium wetting of porous material (pressure of bubbles)
decreases. It is shown that the maximum of the distribution function is identical to the equilibrium
wetting of porous material.
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Hocnip)xeHHa CTPyKTYypHUX BJIaCTMBOCTEli NOPUCTOro maTepiasy
3rigHo 3 i3oTepmMmamu copbuii abo ApeHa>KHNX KPUBUX

Tosy6ens T.

Inemumym npuxsaOHUT NPobAeM METAHIKY | MAMEMATNUKY
im. A. C. ITidempueavwa Hayionaavroi axademii nayx Yrpainu
36 eya. Hayxosa, 79060, JIveis, Yxpaina

Binmosigmo no MeTomy JIOKAJIHLHOTO TPOCTOPOBOTO YCEPETHEHHS, PO3TJISHYTO OCHOBHI CITiB-
BizHoteHHs (Hi3uKM MOBEPXHI Ta TEPMOIUHAMIKK JIJTsT OMUCY TIpotieciB audys3il piakoi abo
ra3oBol a3 B HEOIHOPIJHOMY IIOPUCTOMY CEPEIOBUINI. 3TiJHO 3 JIPeHaKHUMU abo CcopO-
MIHHIMA BJIACTUBOCTSIMU PiUHU Y TIOPUCTOMY CKeJIeTi 03HAYEHO HOPMOBaHy (DYHKIIIIO pO3-
IO/IULy PO3MIpY IOp 3a eDEKTUBHUM PAJiyCKOM. 3AaIPOIIOHOBAHO CIIiBBIIHONIEHHS I
BU3HAYEHHsT aOCOJIIOTHOI 1 BimHOCHOT mpoHUKHOCTI a3 y TBepmomy ckejeri. [Ipoanasti-
30BaHO 3aJIE2KHICTH aOCOJIIOTHOI MMPOHUKHOCTI BiJl CTPYKTYPHUX BJIACTUBOCTEH TTOPUCTOTO
Marepiasy. OTpUMaHO IIPOCTY YMOBY piBHOBaru (a3 y MOPUCTOMY CKeJIeTi 3 HABKOJIUIITHIM
CEPEIOBUINEM.

Kntouosi cnoBa: nopucmi mamepianu, adcopbuyis, Kanisaphi asuwa, Judysia 2a3y i
pIoUHU.
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