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New challenges raised almost in all segments of the global economy in the last two decades.
The energy-, finance-, environmental crises, as well as the intensive use of natural resources
require new design methods in the engineering activity, for both the product design and
the manufacturing process planning. An effecting tool to be competitive is to apply
the optimum design methods to the engineering tasks. This paper reviews the different
methods of mathematical optimization, which are widely used for solving engineering
problems, and describes the application of this method for two different cases. The first
sample shows how to find the optimal dimensions of the welded, box type frame of a freight
bogie, which will minimize the manufacturing cost of the structure and will satisfy several
restrictions, e.g. mechanical stress limit, dimensional constraints, buckling, and fatigue
conditions. The other case is to find the optimal geometric dimensions of a pipe insulation
system which will result in a minimum investment and operating cost, when the heat loss
and the outside surface temperature are restricted.
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1. Introduction

The continuous increasing trends in the case of the raw material-, energy-, production-, and operation
costs have been made necessary, the development of the numerical methods made it possible to spread
widely the optimal design methods in the technical practice. Using these methods we can meet not
only the different requirements, but also we are able to reduce the cost level of the product. The
reduction of the structural mass or volume was the target at the early stage of the optimal design
studies. Later the overall cost of the product was the goal to be reduced.

We have to know the mathematical methods as well as the technical and engineering background
of the task for the efficient application of the optimal design methods. A brief overview is given on the
mathematical bases and also some technical applications are presented in this paper.

2. General formulation of the optimum design

Any kind of optimization problem can be formulated to find the appropriate set of the design variables
in the multidimensional parameter-space, which can optimize the objective function. In general, the
minimum (or maximum) of the objective function f(x) in an n-dimensional, Euclidean space R

n is to
be searched. The result of the optimization can be illustrated thus by one point or a vector in this
solution space. In the mathematical notation, the optimization problem can be generally represented,
as

min f(x), x ∈ R
n,

0 6 gj(x), j = 1, 2, . . . ,m, (1)

0 = hj(x), j = m+ 1, . . . , p,
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where x = [x1, x2, . . . , xn]
T is the vector of the unknown quantities, gj(x) and hj(x) are, respectively,

the inequality and the equality constraints, m and p are integer numbers. Any point x — that satisfies
these equations — is called a feasible point or feasible solution of the optimum design problem. The de-
sign parameters (variables) can be dimensions, technology parameters, physical attribute (temperature,
pressure) strength parameters. The variables may have discrete or continuous distribution.

The objective function may contain the raw material cost, the manufacturing costs, the assembly
costs, the operation costs, the maintenance costs and also the costs related to the recycling at the end
of the lifetime, some special cases it is the stiffness of the construction (buckling), or the eigenvalue
of structure [1]. Also constraints have to be established reflecting the special requirements to be ful-
filled. The constraints can be formulated, as inequality constraints (0 6 gj(x)), or equality constraints
(0 = hj(x)). The physical content of the constraint functions can be the limitation of the mechanical
stresses, deformations, buckling criteria, surface temperature, etc.

The functions (objective function and constraints) may be linear, nonlinear, or special functions.
Due to that fact, solving this equation system will cause difficulties. The mathematical methods
developed to solve the optimum tasks relating to the handle of optimal problem described in (1). The
suitable solving method for the optimizing problem can be selected depending on the actual form of
the objective function and the constraints.

Fig. 1. Optimum task with 2 variables. Fig. 2. Relative and global maxima and minima.

The optimum design problem with 2 design variables and 3 constraints can be easily described
graphically (Fig. 1). The 3 inequality constraints g1(x), g2(x), g3(x) will figure the area of the feasible
variables in the x1 − x2 coordinate system. Have to find the point(s) of the feasible area, which
will minimize the objective function. Describing the objective function with 3 different C1, C2, and
C3 values, the positions of the function graph is parallel. The optimum solution of the problem
(x1min, x2min) will be determined by the tangent point of the objective function curve set and the
boundary curve of the feasible area (g2(x)) [2].

In the case of more complex functions there could be not only one, but more local minimum points
(Fig. 2). Solving real technical problems the main target is to find the one from the local minimum
values, which provides the smallest value, so called global minimum value of the optimal problem. The
figure shows, that x1 and x3 provide local minimum values, but x1 gives us the global minimum point.
Similarly, x2 and x4 provide local maximum values. The global maximum value will appear at x2.
When the feasible area of the independent variables is convex, the local minimum is identical to the
global one [3].
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3. Local and global maximum and minimum

The majority of the optimizing procedures usually supply local optimum solution, but it is possible,
that these local optimum points are also global ones. In the case of a local optimum is reached, the
solution point will be a better starting point (starting vector) for further calculation in order to reach
the global optimum solution. In the case when we are interesting to find the global optimum solution,
than it is a possible strategy to use different starting vectors, and to perform the optimization process
several times. However we have to remark, that a global optimum solution will exist only in a convex
space of the design variables.

Necessary and sufficient condition of the extrema of a multivariable function

We will formulate the necessary and sufficient condition for the existence of the extrema at a multi-
variable function with the help of the Hessian matrix containing second order partial derivates [4]. Let
the function

f(x1, x2, . . . , xn)

with n variables be partially differentiable twice.
The necessary condition at the point x0 = [x10, x20, . . . , xn0]

T is that the partial differential function
has to be zero

grad f(x0) =
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The minimum value at this point can be local minimum, maximum, or a saddle point. The type of
the extremum can be characterized by the Hessian matrix. The Hessian matrix is as follows

H =
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. (3)

The sufficient condition

In the case the quadratic form of the Hessian matrix is positive definite at the x0 = [x10, x20, . . . , xn0]
T

point, the result is a local minimum.
In the case the quadratic form of the Hessian matrix is negative definite at the

x0 = [x10, x20, . . . , xn0]
T point, the result is a local maximum.

In the case the quadratic form of the Hessian matrix is indefinite at the x0 = [x10, x20, . . . , xn0]
T

point, the result is a saddle point.
The suitable solving method for the optimizing problem can be selected depending on the actual

form of the objective function and the constraints.
The next chapter will summarize historical development and classification of the optimum design

methods.
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4. Some tools of mathematical programming

4.1. Linear programing

The linear optimization problem with restrictions seems to be an important special case of the opti-
mization tasks. In this case, the objective function and all the restrictions are linear functions of the
design variables. The simplex method of linear programming was developed by Dantzig in 1947 [5].
This method was successfully applied solving economic tasks, and also several technical problems be-
came easy to solve. A lot of plastic deformation problems was modelled as linear optimum task, like
beam or trust structures.

4.2. Nonlinear programing

The Lagrange multiplier method. In the case, when one of the functions of the system (1) is non-
linear, the optimum task is called nonlinear. Because of the majority of engineering problems are
nonlinear, these methods have special importance. The problem can be formulated, to find the min-
imum of f(x) to satisfy the hj(x) = 0 equality constraints (j = 1, 2, . . . , p), then the problem can
be solved by the method of Lagrange (1736–1813). A so called Lagrange function was generated by
adding the equality constraints to the objective function

L(x, λj) = f(x) +

p
∑

j=1

λjhj(x), (4)

where the constants λj are called Lagrange multipliers [6]. A location of the minimum and value of
the modified main function can be obtained by using the methods developed for the unconstrained
optimum tasks

∂L(x, λj)

∂xi
=

∂f(x)

∂xi
+

p
∑

j=1

λj
∂hj(x)

∂xi
= 0, i = 1, 2, . . . , n. (5)

∂L(x, λj)

∂λj
= hj(x) = 0, j = 1, 2, . . . , p. (6)

The Lagrange multiplier rule can be used to convert an optimization problem with equality constraint
into a nonlinear system of equations [7].

The method of Kuhn-Tucker criteria. This method has not been widely used by the middle of the
20-th century even after its early development. The high capacity and high speed computers have
made it possible to develop new methods and to apply the optimum calculation for different problems.
A method was developed by Kuhn and Tucker for solving the problem (1) with inequality constraints
in 1951 [8]. The method was widely used from the 60-es. According to this method, we have to find
the minimum of the f(x) main function, with the

gj(x) 6 0, j = 1, 2, . . . ,m

constraints. The gj(x) functions will be transformed into equality constraints by adding non-negative
auxiliary variables y2j

Gj(x, yj) = gj(x) + y2j = 0, j = 1, 2, . . . ,m. (7)

The modified optimum task can be solved using the Lagrange method as follows. The Lagrange
function

L(x, yj, λj) = f(x) +

m
∑

j=1

λjGj(x, yj). (8)
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The necessary condition of the local minimum is

∂L

∂xi
=

∂f(x)

∂xi
+

m
∑

j=1

λj
∂gj(x)

∂xi
= 0, i = 1, 2, . . . , n, (9)

∂L

∂λj
= gj(x) + y2j = 0, j = 1, 2, . . . ,m, (10)

∂L

∂yj
= 2λjyj = 0, j = 1, 2, . . . ,m, (11)

In the case of active constraints gj = 0, then yj = 0, and λj > 0. When the constraints are inactive,
gj < 0, then yj 6= 0 and λj = 0. Thus, instead of (10) and (11) we can use the

λj > 0 and λjgj = 0 (12)

conditions in the case of active constraints.
The conditions of

∂f(x)

∂xi
+

m
∑

j=1

λj
∂gj(x)

∂xi
= 0, i = 1, 2, . . . , n, (13)

λj > 0 and λjgj = 0 (14)

are called Kuhn-Tucker optimum criteria [9]. When the set of feasible points forms a convex range, the
Kuhn-Tucker criteria are the necessary and sufficient conditions of the existence of the global minimum.

SUMT (Sequential Unconstrained Minimization Techniques) method. The major cases of techni-
cal problems the objective (main) function as well as the restriction functions are nonlinear functions
of the design variables, so the optimization problem can be handled by the methods of nonlinear
optimization. One of the most well-known nonlinear optimization methods is the Sequential Uncon-
strained Minimization Technique (SUMT) – method. The essence of this method is transferring the
problem with restrictions into a problem without restrictions. A designer often meets optimization
tasks with several target functions during the product optimization process. The optimization task
with several target functions represents an aggravation of the optimization problem. Because of the
various application possibilities, an intensive development can be observed last years.

The first overview about the modern engineering optimization was made by Schmit [10], who
applied the mathematical programming method for designing elastic structures under difficult load
cases, subjected to nonlinear inequality constraints. Also we have to mention, that a new design
philosophy was established in the engineering practice and had a great role to introduce the finite
element method and the nonlinear programming into the automated optimum design method. A strong
development of the nonlinear optimization was started, when — based on the study of Caroll [11] —
Fiacco and McCormick [12] developed the sequential unconstrained minimization method (SUMT-
method). The SUMT method transfers the (1) constrained optimum task to an unconstrained set of
minimization tasks of the P (x, rk) function

P (x, rk) = f(x)− rk

m
∑

j=1

ln gj(x) + r−1
k

p
∑

j=m+1

{min [0, hj(x)]}
2 , (15)

where the convergence speed depends on the initial value r1 of the rk parameter. The value of rk will
be monotone decreasing

r1 > r2, . . . , > 0, rk+1 = rk/c, c > 1, (16)

lim [minP (x, rk)] = min f(x). (17)
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It is easy to show, that in the case of rk → 0, the set of the minimum values of the unconstrained
optimum task will converge to the solution of the constrained f(x) function.

In order to understand the method, a sample task will be shown in the following chapter.

4.3. Multi-objective optimization

Multi-objective optimization is a vector optimization, each element of which represents one of the
objective functions being optimized. Effective methods for multi-objective optimization are listed
below:

The multi-objective optimization is widely used for solving optimization tasks of engineering prob-
lems [13–14]. The method was developed by Vilfredo Pareto (1848–1923). The method was published
in 1896. The Pareto optimum is a solution point, where no other main function can be improved
without the degradation of another main function. We cannot find too many papers about the theory
of the multi-objective optimization by the 60-es, but a lot of papers came out in this topic after that,
including also the decision making applications. Mathematical formulation is as follows

minF (x) = [f1(x), . . . , fn(x)] , n = 1, 2, . . . ,

0 6 gj(x), j = 1, 2, . . . ,m, (18)

0 = hj(x), j = m+ 1, . . . ,m,

where fi(x) is the i-th objective function; gj(x), hj(x) are the inequality as well as the equality
constraints. All of these functions or some of them can be nonlinear. We have several methods for
solving the problem. We are describing here so called weighting method. We apply here the wi weight
factors for the different main functions and a new main function is formulated here [15–16]

F (x) =

n
∑

i=1

wifi(x), (19)

where
n
∑

i=1
wi = 1 and wi > 0.

The weight factors have to be selected based on the importance of the single main functions.

4.4. Evolutionary optimization method

Recently, the evolutionary algorithms are used frequently as optimization procedures in the case of
component and product optimization (mechanical components) [17].

Evolutionary algorithms are stochastic search methods, which are based on the principles of the
biological evolution. Three optimization directions of the evolutionary algorithms were developed
independently from each other: the evolutionary programming, the evolution strategies, and the genetic
algorithms. All these methods use the variation and selection operations as the basic elements of the
evolution process, but they differ in the development of these elements [18]. The usage of these
algorithms is going to increase in the coming years due to the various application possibilities. The
calculation of the actual restriction values (e.g. shifts, tensions, etc.) can be computed in many
applications only by numeric methods.

4.5. Some nature-inspired heuristic algorithms

The heuristic algorithms are based on an observation of a natural phenomenon. The algorithm was
developed on the behaviour of different animals. Some of them are described below [19, 20].

The Particle Swarm algorithm (PSO) was developed in 1995; it is the most promising metaheuristic
optimizing method. The PSO is based on the food searching motion of bird flocking or fish schooling.
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The operation of the method starts with the generation of numerous particles locates randomly selected
starting points. The particles are moving together to other places providing better solutions for the
problem, and the squad motion is driven by the best animal. The algorithm based on the nutrition of
bacteria (Bacterial Foraging – BA) was first published in 2002, and it is working on the phenomenon
of the squad intelligent. The common characteristics of these methods, that the behaviour model
of a large population is replicated. If an individual creature is not able to solve the problem, the
collective intelligence of a group could be enough for solving the problem according to the phenomena.
The Firefly (FF) algorithm was first developed by Xin-She Yang in late 2007. The phenomena of
this method originated from the firefly-type creatures. These insects find each other with the help of
special light emission. The better solution was found by one bug, the stronger light will be submitted.
This strong light emission will pull the others to that area. The Ant Colony algorithm is based on
the observation of the nutrition of ant colonies. The random route searching will be systematic by
indicating the way with the feromon tracks, after finding the food.

5. Technical optimization problems

A lot of optimization problem will combine technical and economical requirements against the product
or the component, so functional and economical requirements must be equally considered. When
specifying the technical and economical approaches, product and process optimization are defined.
The product optimization can be specified as follows [21, 22]:

product optimization:

– topology optimization,
– form optimization,
– dimension optimization,
– material optimization and

process optimization.

During the topology optimization, the arrangement of geometrical elements of a product can be de-
termined (dimensions and position) with the optimizing procedure (Fig. 3). The topology optimization
is an everyday task of technical designers. They have to design a component (as a part of a product)
so that available space must not exceed, it has to keep the outside loads, and the minimum material
expenditure can be achieved at the same time [23].

Fig. 3. Topology optimization. Fig. 4. Form optimization of beam.

During the beam unit optimization, the topology optimization is an effective design tool, because
it is possible to develop light and at the same time rigid beam units [24]. As an initial geometry,
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the results of the topology optimization can be usually used for the dimension and form optimization
process.

A goal of the form optimization is to determine the optimal geometry of a construction — un-
der given boundary conditions — regarding defined quality criteria (Fig. 4). Objective function and
restrictions are selected according the nature of the tasks [25].

In the case of dimension optimization, the dimensions of cross sections are often computed [26–27].
In the cross-sectional optimization problems mainly displacements, tensions or natural frequencies are
determined (Fig. 5). An example of this class of optimization problems is the calculation of optimal
dimensions of mechanical components or the optimization of the isolation thickness of pipelines [28].

Fig. 5. Dimensional optimization of a rectangular
section.

Fig. 6. Material optimization of a composite
structure.

During the material optimization have to find the optimal structure of the materials [21] e.g. how to
arrange the structure of Composite layers (Fig. 6) or how to arrange the fiber strips in fiber-reinforced
materials.

Fig. 7. Process optimization in the
heat transfer technology.

The material optimization basically is a topology optimiza-
tion, however, in the variable space is a microscopic solution
area.

The process optimization was developed in technology and
economics in the last decades very rapidly, and the theory was
based on the discipline “Operation‘s Research”. The technical
processes in the production were completed with the disassem-
bly or the recycling, the technological processes with the equip-
ment technology (Fig. 7) or economic processes in the economic
science models.

6. Optimal design of railway bogie

The railway bogie is a heavy duty sub-assembly of carriage, bearing the weight of the payload, the
dead load of all the rest of the carriage assembly as well as the dynamic loads originated from the
normal or the exceptional operation. We are going to find the optimal dimensions of a welded, box
type freight bogie, which will minimize the total manufacturing cost of the structure and will satisfy
several engineering conditions originated from the strength level, or from manufacturing issues.

6.1. Geometrical model

The geometrical model of the bogie is, basically, a H-type structure with double main frame as it
is illustrated in Fig. 8. Both the side and the main beams are modelled as prismatic, welded box
beams. In order to increase the overall rigidity of the structure, all the beams are reinforced by welded
diaphragms in certain cross sections [29].
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Fig. 8. Schematic geometric model, loads, and cross section of the bogie frame.

6.2. External loads and supports

The external loads (forces) originated from the normal and exceptional operation of the vehicle, and
have to be calculated according to the rules described in the EN 13749 norm. Different load cases are
defined here based on special operating conditions. The location and direction of the external loads
are also described in Fig. 9.

Fig. 9. Statically determined structure and additional loads.

6.3. Internal loads and mechanical stresses

Fz , Fy, and Fx are the external loads, acting on the beam structure. Fz originated from the dead
loads, Fy from the wind load and the additional load running in curved rail, and Fx from the operation
of the train.

Because of the number of reaction forces of the structure are larger than the number of static
equilibrium equations, it is said the structure is statically indeterminate. Moreover, the closed frame
design will make us to establish more static constraints to calculate the reactions.

The statically indeterminate structure has to be converted to a statically determinate primary
structure acted upon by the external loads and secondary structures acted upon by the redundancies.
The deformations (deflection or rotation) corresponding to the selected redundancies are determined
from the boundary and the continuity conditions.

The vertical displacement at the point “C” is zero, the displacements and the deflections at the
point “E” are equals (the displacement field is continuous at the point “E”)

δE
−

i − δE
+

i = 0, i = 1, . . . , 6. (20)
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In this case, seven redundancies (support force at “C” and internal loads at “E”) have to be calculated
from a system of seven equations. Equation system for calculating the X1, . . . ,X7 internal loads [28]
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Fk, (21)

where the
δij = δE

−

ij − δE
+

ij = 0, (i, j = 1, . . . , 6). (22)

coefficients means displacement (deflection) difference in direction “j”, at the points E− and E+ due
to the internal load Xi.

The displacements (deflections) at the point P were calculated from the principle of virtual work
using the Nz, Mx, My, Mz load diagrams originated from the load acting at the point P in direction
“i”, and also the N∗

z , M∗
x , M∗

y , M∗
z load diagrams originated from the unit load acting at the point Q

in direction “j”.
The integrals were calculated using the Simpson formula. Altogether 19 elements and 57 points

were established on the bogie frame for the numerical calculations.
The topology of the bogie frame was built up from welded box beams reinforced at selected locations.

The height of the web plates are uniform in the middle area of the frame (main beams and for the side
beams).

Also the height of the web plate is uniform at the end sections. The dimension of the flange plate
was uniform for all the side beams as well as for the main beams.

The plate thicknesses for the side beams and for the main beams are uniform.
A matrix formulation was used for handling all of the internal loads, displacements, etc.
The vector of the design variables (the unknowns to be calculated) is following:

T
T(i) =

[

h1 h2 bm bs tm,w tm,f ts,w ts,f
]

. (23)

Where h1 is the height of the side beams in the middle section and the main beams, h2 is the height
of the side beams at the ends, bm is the dimension of the flange plate for the main beams, bs is the
dimension of the flange plate for the side beams, tm,w and ts,w are the plate thickness of the web and
side plates for the main beam, tm,f and ts,f are the plate thickness of the web and side plates for the
main beam (Fig. 10).

The topology matrix (A(57, 6)) will describe the structure of the frame for each cross sections (for
57 cross sections according to Fig. 11). The first column denotes if the cross section is reinforced (1)
or not (0). The dimension sr is the characteristic dimension (thickness) of the reinforcement
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2 T (7) T (4) T (8) 0

. . . . . . . . . . . . . . . . . .
0 T (1) T (5) T (3) T (6) 0
. . . . . . . . . . . . . . . . . .























. (24)
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Fig. 10. Topology of the bogie structure.

Fig. 11. Nodes for calculation of mechanical stresses.

The geometry matrix G(57, 10) contains the length, cross section, inertia of each cross sections (for
57 cross sections). If the cross section is reinforced, the 7–10-th columns contain the geometrical data
for the reinforced sections [29]

G(57, 10) =













0 0 EA010 EIx010 EIy010 GIp010 0 0 0 0
1 0 EA010 EIx010 EIy010 GIp010 EA011 EIx011 EIy011 GIp011
1 l1 EA010 EIx010 EIy010 GIp010 EA011 EIx011 EIy011 GIp011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .













. (25)
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The external load matrices (Fx, Fy, Fz) contain the tension load, the shear forces, the bending
moments and the twisting moment for all the 57 cross sections. The load matrices were generated for
all the components of the external forces (Fx, Fy , Fz) and for all the components of the X+

1 , X−
1 , . . .,

X7 internal and support forces. A sample for Fx

Fx(57, 6) = Fx

















−1 0 0 0 0 0
−1 0 0 0 0 0
−1 0 0 0 0 0

− cosα 0 0 0 0 0
− cosα sinα 0 h/2 0 0
. . . . . . . . . . . . . . . . . .

















. (26)

The final internal force matrix (L(57, 6)) was calculated as a summary of the internal forces origi-
nating from the external (Fx, Fy , Fz) and internal (X1, . . . ,X7) forces

L(57, 6) =







. . . . . . . . . . . . . . . . . .
∑

Ni
Fi,Xi

∑

T1,i
Fi,Xi

∑

T2,i
Fi,Xi

∑

MB1,i
Fi, Xi

∑

MB2,i
Fi, Xi7

∑

MT3,i
Fi,Xi

. . . . . . . . . . . . . . . . . .






. (27)

The mechanical stress matrix σ(57, 6) was calculated using the formulas of the elasticity

σ(57, 7) =





. . . . . . . . . . . . . . . . . . . . .
σmax,N τmax,T1

τmax,T2
σmax,MB1

σmax,MB2
τmax,MT1

τmax,MT2

. . . . . . . . . . . . . . . . . . . . .



 . (28)

6.4. Cost function

The target of the optimization process is to find the best set of the design variables which will minimize
the total manufacturing cost of the bogie frame covering the material cost and all the production process
related costs [29]

K = kmρV + kf (T1 + T2 + T3 + T4 + T5 + T6 + T7), (29)

where km is the material cost and kf is the fabrication cost, ρ is the density, V = Σ2(bitfi + hitwi)li
is the total volume of the structure, l is the length of bogie, and Ti is the fabrication time for the i-th
operation.

Fabrication times for the preparation, assembly, and tacking. T1 is the preparation, assembly, and
tacking time, can be formulated with an approximation equation [30]

T1 = C1Θd

√

κρV , (30)

where C1 is a welding technology dependent constant, θd is a difficulty factor and κ is the number of
structural components to be assembled.

Real welding time and additional action time. The real welding time depends on the length of
the weld and on the weld size. The time for additional actions will cover the time consumption for
changing the electrodes, deslagging and chipping [30]

T2 + T3 = 1.3

n
∑

1

C2ia
1.5
wiLwi (31)
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where C2i is the i-th welding technology dependent constant factor, awi is the i-th weldsize and Lwi is
the i-th weld length.

Plate flattening time. Prior to assembling together the web and flange plates it is necessary to make
them flat. The time for the plate flattening will be the function of the plate thickness t and the total
area of the plates Ap = 2(bl + hl). Based on industrial practice, the time necessary for the plate
flattening is as follows [30]:

T4 = Θde(ae + bet
3)Ap, (32)

where θde is the difficulty factor for plate flattening, ae and be are constants.

Surface preparation time. The surface preparation time means the cleaning (rust removal, degreas-
ing) of the surfaces prior the painting operation. It will depend on the surface area Ap = 4(bl + hl)

T5 = ΘdsaspAp, (33)

where θds is the difficulty factor for surface preparation, asp is a parameter [29].

Painting time. The painting operation generally means to prepare a two layer protection film (ground
coat and finishing coat). The structure of the time function is similar to the preparation. It will depend
on the surface area Ap [30]

T6 = Θdp(agc + atc)Ap, (34)

where θdp is the difficulty factor, agc and atc are parameters.

Time of plate cutting and edge grinding. The time necessary for the plate cutting and edge grinding
will be the function of the plate thicknesses t and the length of the cut Lci = 2(h+ l) and Lci = 2(b+ l),
respectively, [29]

T7 =

n
∑

i=1

C7it
n
i LCi, (35)

where the C7i parameter depends on the cutting technology, n is a parameter, t = tw and t = tf ,
respectively.

6.5. Design variables

The design variables (unknowns to be optimized) in the calculation process are the h, b, tw and tf
dimensions of the each beam elements according to the design restrictions, which will be described
later. The plate thickness for the side and main panels are considered to be uniform from technological
point of view. The total number of the design variables (the number of dimension of the design space)
is eight.

6.6. Design constraints

Static and fatigue stress limitation constraint. The maximal equivalent stress must not exceed the
material specific admissible stress σadm

σmax = σeq 6 σadm, (36)

where
σeq = max(σvMises1, σvMises2) (37)
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and

σvMises1 =
√

(σN + σMB1 + σMB2)2 + 3(τT1
+ τMT1

)2, (38)

σvMises1 =
√

(σN + σMB1 + σMB2)2 + 3(τT2
+ τMT2

)2 (39)

the stress data are taken from the σ(57, 7) matrix.

Fatigue stress constraint based on Eurocode 3.

γFf∆σ 6 ∆σL/γMf , (40)

where γFf is a safety factor, ∆σ = σmax − σmin, the nominal stress range, γMf is the fatigue safety
factor for the ∆σL stress, ∆σL is the cut-off limit for 108 cycle.

Buckling condition for the web and the flange plate. The relevant condition for the web and flange
plate was calculated following the methodology of the Eurocode 3.

The buckling limitation for the flange is

βwh 6 tw, (41)

where βw = 1/(124ε), ε = (235/fy)
1/2 according to the Eurocode 3, and fy is the yield stress.

The buckling limitation for the flange is

δf b 6 tf , (42)

where
δf = 1/(42ε). (43)

Also the effect of the reinforcements, applied to several cross sections of the side beams and also the
main beams were considered.

Dimensional constraints. The following dimensional constraints were applied for the thickness of the
web plates and the flange plates:

8 ≦ tf ≦ 15[mm], 8 ≦ tw ≦ 15[mm], (44)

150 ≦ b ≦ 250[mm], 150 ≦ h ≦ 300[mm]. (45)

6.7. Numerical results

The mathematical optimizing task was solved using the modified SUMT (Sequential Unconstrained
Minimization Technique) method for 5 different load cases according to the EN 13749. The load cases
are described in Table 1.

Table 1. Load cases of the optimization.

Load case Fz1 [kN] Fzp [kN] Fz2 [kN] Fy [kN]

1 0 372 0 0

2 0 446 0 0

3 0 298 0 0

4 89 357 0 −4.4

5 60 238 0 −4.4
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Numerical data for the calculation: km = 3USD/kg; kf = 50USD/hour; ρ = 7.85 · 10−6 kg/mm3;
C1 = 1; θd = 2; C2i = 0.7889 · 10−3; awi = tw; Lwi = 1435mm; θde = 1.2; ae = 9.2 · 10−4 min/mm2;
be = 4.15 · 10−7 min/mm5; θds = 1.2; asp = 3 · 10−6 min/mm2; θdp = 1.2; agc = 3 · 10−6 min/mm2;
atc = 4.15 · 10−6 min/mm2; C7i = 0.691; n = 0.383; σadm = 220MPa; τadm = 140MPa; (S 275 steel);
gFf = 1; gMf = 1.35; ∆σL = 51MPa; ∆τL = 46MPa; fy = 275MPa; welding technology: manual arc
welding.

The results of the optimizing process (the minimum cost for each load cases as well as the optimum
values of the design parameters) are described in Table 2.

Table 2. Optimum results.

Number Minimum Optimal
of load case of cost function [USD] dimensions [mm]

No. Kmin h1 h2 bm bs tm,w tm,f ts,w ts,f
1 8244 300 290 150 150 11.1 8.0 12.2 8.5

2 9924 290 290 150 150 13.5 8.4 12.1 8.5

3 6696 290 290 150 150 8.7 8.0 12.3 8.5

4 8028 298 300 151 150 10.5 9.2 12.5 8.5

5 5724 251 240 150 150 8.0 8.0 12.2 8.5

The results after the optimization show, that it is possible to find an economic (from engineering
point of view: optimal) design to gain the maximum benefit and to cause the minimum negative impact
on the natural and economic environment. Also several engineering constraints were fulfilled; among
them are fatigue stress limitation and local buckling criteria of the web and flange plates.

The effectivity of the calculation method can be characterized by the convergence history graph.
The algorithm converges very fast after some ∼ 100 steps, and will reach optimum value after 150−200
iteration steps.

Fig. 12. Convergence history of objective function.

7. Optimization of insulation layer thickness for pipelines

7.1. The thermal resistances of cylindrical wall

The conductive thermal resistance of cylindrical wall. The Fourier equation, for steady-state con-
duction through pipes in the normal direction to the wall surface (Fig. 13), can be written

Q̇ = −λA
dt

dr
, (46)
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where Q̇ is the rate of heat transfer, λ is the thermal conductivity of the pipe, A is the area normal to
the direction of heat flow (A = 2rπl), t is the temperature (tfl > tu), r is the radius of pipe (d = 2r),
l is the length of the pipeline.

Fig. 13. One-dimensional heat
conduction in a cylindrical layer.

After integration and rearranging, the rate of heat transfer takes
the form:

Q̇ =
t1 − t2
1

2πλl ln
d2
d1

, (47)

where

R =
1

2πλl
ln

d2
d1

(48)

is the conductive thermal resistance of cylindrical wall.
The insulated pipe (with both inside and outside experienced

convection) is shown in Fig. 14. The thermal resistance of the pipe
is given by [31]

Rp =
1

2πλpl
ln

d2
d1

, (49)

where λp is the thermal conductivity coefficient of pipe material, d1 and d2 are the inner and outer
diameters of the pipe. The thermal resistance of the insulation layer can be expressed as

Ris =
1

2πλ1l
ln

d2 + 2h1
d2

, (50)

where λ1 is the thermal conductivity coefficient of the insulation layer and h1 is the thickness of the
insulation layer.

Fig. 14. Cross section of insulated
pipe.

The convective thermal resistance of cylindrical wall. The
equation for convective heat transfer (Newton’s law of cooling)
(Fig. 14) can be expressed as follows

Q̇ = αA(tfl − t1), (51)

where α is the heat transfer coefficient, A is the heat transfer area
of the surface, tfl and t1 are the temperatures of the fluid and of
the surface of internal wall, respectively.

From the equation (51) the convective thermal resistance of
the surface against heat transfer for the inner surface of pipe can
be expressed as

Riw =
1

αiπd1l
, (52)

where αi is the heat transfer coefficient on the internal surface (wall) of pipe (Fig. 14.). Similarly as in
the equation (52) the thermal resistance on the external surface of the insulated pipe can be expressed
as follows

Rew =
1

αeπ(d2 + 2h1+)l
, (53)

where αe is the heat transfer coefficient on the external surface of insulated pipe (between the external
surface and surround air). Using an electrical circuit analogy, the total thermal resistance equals the
sum of the thermal resistances of heat transfer and conduction (Riw + Rp + Ris + Rew). For the
insulated pipe, the rate of heat transfer is given by

Q̇ =
ti − tu

Riw +Rp +Ris +Rew
. (54)
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7.2. Formulation of the objective function

Calculation of the optimal thickness of an insulation layer has a quite high importance because of the
valuable material cost in the investment phase as well as the heat loss in the operation phase of heat
a pipe system. In general, there is widely used the one-layer insulation. The task is to determine
the optimal thickness of the polyurethane foam insulation layer (h1) (Fig. 14). In the case of the pipe
insulation, the objective (cost) function (related to one meter) includes the material costs of the pipe
(kp) and of the insulating layer with outer jacket (kis), and of the heat loss (khl) as well:

K = (kp + kis + khl)l.

The cost of the heat insulation includes the cost of the insulation layer and the material cost of outer
jacket. Therefore, becomes the insulation costs are the following

kis =

[

(d2 + 2h1)
2 − d22)

]

π

4
kpf + [(d2 + 2h1)π + co] km, (55)

where kpf is the specific material cost of polyurethane foam (HUF/m3), km is the specific material cost
of outer cover (HUF/m2) and co is the overlapping of the outer jacket (m). The thermal resistance of
outer jacket can be neglected.

The energy cost of heat loss related to one meter can be calculated as

khl =
Q̇

l
τkse = q̇τkse,

where q̇ is the rate of heat transfer related to one meter of pipeline, τ is the annual operating time of
pipeline, kse is the specific energy cost (HUF/J).

7.3. Design constraints

Constraint for admissible heat loss. It is necessary to limit the admissible heat loss from different
points of view:

q̇ =
Q̇

l
6 q̇allow,

where q̇allow is the admissible heat loss.

Constraint for the temperature of the outside surface. Also, it is necessary to restrict the temper-
ature of the outside surface of isolated pipeline (t3), it has to be larger than the temperature of the
surrounding air (tu)

tu 6 t3. (56)

The t3 temperature can be calculated from the fact, that the same heat is transformed for all layers

tfl − t3
Riw +Rp +Ris

=
tfl − tu

Riw +Rp +Ris +Rew
, (57)

rearranging yields

t3 = tfl −
(tfl − tu)(Riw +Rp +Ris)

Riw +Rp +Ris +Rew
. (58)
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7.4. The solution of the optimization problem and results

Let us consider the following numerical example. Data: d1 = 0.159m; d2 = 0.168m;
co = 0.01m; kpf = 9100HUF/m3; km = 900HUF/m2; kp = 700HUF/m; kse = 7 · 10−7 HUF/J;
l = 10m; qallow = 20, . . . , 120W/m; tu = −15 oC and +15 oC; tfl = 110 oC; αe = 48.8W/m2K;
αi = 105.5W/m2K; λ1 = 0.021W/mK; λp = 52.3W/mK; τ = 168 hours. The temperature depen-
dence of the heat transfer coefficient and the thermal conductivity are neglected.

The Fig. 15. shows the optimal insulation thickness h1opt depending on the heat loss and surround-
ing air (−15 oC and +15 oC).

Fig. 15. Insulation thickness of pipe lines vs. the heat loss.

Fig. 16. Minimum costs (Kmin) vs. the heat loss.

The Fig. 16. shows the minimum costs (Kmin) depending on the heat loss and surrounding air
(−15 oC and +15 oC).

This calculation results show that it is possible to determine the optimal thickness of the insulation
layer of the object with the correctly formulated objective function and under the given constraints.
Thus, the reduction of the material and heat loss costs is possible. This model is also suitable for
the calculation of multilayer insulation task, and also for the calculation of a spherical tank with the
appropriate modification of the equations.
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8. Conclusions

An overview and sample cases are presented in this paper about the application of optimizing methods
for engineering problems. Several approaches and methods, which are widely used in the engineering
practice, are discussed. Special sample cases are presented using the modified SUMT (Sequential
Unconstrained Minimization Technique) method.

The results obtained after the optimization show, that it is possible to find an economic (from
engineering point of view: optimal) design to gain the maximum benefit and to cause the minimum
negative impact on the natural and economic environment. Also several engineering constraints were
fulfilled, such as fatigue stress limitation and local buckling criteria as well as heat loss limitation or
surface temperature constraint.
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Математична оптимiзацiя та iнженернi задачi

Кульксар Т., Тiмар I.

Iнженерно-механiчний факультет, Унiверситет Паннонiя

вул.Унiверситетська 10, 8200, Веспрем, Угорщина

Новi складнi проблеми постали у всiх сегментах свiтової економiки за останнi два
десятилiття. Енергетична, екологiчна, фiнансова кризи, а також iнтенсивне вико-
ристання природних ресурсiв вимагають нових методiв проектування в iнженерних
задачах як для проектування продукцiї, так i для планування виробничого процесу.
Ефективним засобом залишатися конкурентоспроможними є застосування оптималь-
них методiв проектування в iнженерних задачах. Розглянуто рiзнi методи матема-
тичної оптимiзацiї, якi широко використовуються для вирiшення iнженерних завдань,
i описуються застосування оптимiзацiї для двох рiзних випадкiв. Перший приклад
показує, як знайти оптимальнi розмiри зварної коробчастої рами залiзничного вiзка,
що дасть змогу мiнiмiзувати витрати на виготовлення конструкцiї i задовольняти-
ме низку обмежень, наприклад, граничнi механiчнi напруження, потрiбний розмiр,
вигинання, втому металу. Iнший випадок — знайти оптимальнi геометричнi розмi-
ри системи iзоляцiї труби за встановлених обмежень на втрату тепла i за обмеженої
температури зовнiшньої поверхнi. Розв’язання цiєї задачi призвело до мiнiмальних
капiталовкладень i експлуатацiйних витрат.

Ключовi слова: математична оптимiзацiя, оптимальне проектування залiзнич-

ного вiзка, оптимiзацiя iзольованого трубопроводу.
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