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1. Introduction

The theory of degenerate dwarfs is based on the electron-nuclear model of matter with high density.
This is due to the fact that studied objects have the masses of order of magnitude as the Sun but an
average densities 105 g/cm3. In such conditions even the existence of the bounded electron states is
impossible, so the electronic structure of degenerate dwarfs can be classified as simple metallic systems
in which all electrons are collectivized. Due to the high density the Fermi momentum has the order
m0c therefore the adequate model for the investigation of the characteristics of the degenerate dwarfs
is the electron-nuclear model with relativistic degenerate electron subsystem.

The calculation of degenerate dwarf structures is based on the use of a state equation model, which
in turn requires a prior calculation of n-particle correlation functions of electron subsystem. In the
developed by S. Chandrasekhar theory of the internal structure of the cold dwarfs the equation of state
of ideal degenerate electron gas in the paramagnetic phase at T = 0K is used [1, 2]. The general theory
of the degenerate dwarf structure which could interpret all the diversity of their known properties must
take into account many other factors, the most important of which is the incomplete degeneration, a
variable chemical composition and Coulomb interactions.

The influence of the inter-particle interactions is among the least studied in the theory of degenerate
dwarfs. For the first time it was mentioned by E. Salpeter, who made an approximate assessment
contribution of interaction to the equation of state of an electron gas in the Wigner-Seitz approximation,
Thomas-Fermi and the RPA (random phase approximation) [3].

In order to build the equation of the paramagnetic state of the electron-nuclear model [4] there
exists generalized reference system approach developed in the papers [5, 6] for description the non-
relativistic electron liquid. The aim of our work is the calculation of two- and three-particle correlation
functions of the relativistic electron liquid model in a local field approximation.

In the homogeneous electron-nuclear model two parameters are featured – the nuclear charge z
and the relativistic parameter y = ~kF (m0c)

−1 that are determined by the concentration of electrons
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(kF = (3π2Ne/V )1/3). The contribution of the electron-nuclear interactions to the thermodynamic
potential or free energy of the model is presented in the form of power series in terms of dimensionless
non-ideality parameter ξ = ze2kFE

−1
F , where EF = {(m0c

2)2 + ~
2k2F c

2}1/2 − m0c
2 is the electron

energy at the Fermi level. In the case of the degenerate dwarfs y & 1, then

ξ = zα0y{(1 + y2)1/2 − 1}−1 (1)

(α0 = e2/~c is the fine structure constant) is a small parameter, as z 6 26. The electron-nuclear model
at dwarfs densities is weakly non-ideal that allows us to limit the contributions only of the second and
third orders of perturbation theory on the electron-nuclear interactions.

2. The general relations

As in a non-relativistic theory [4,5], the n-particle correlation functions of the interacting relativistic
electron gas in a momentum-frequency representation µn(x1, · · · , xn) are defined by respective polar-
ization functions Mn(x1, · · · , xn),

µ2(x,−x) = M2(x,−x)

{

1 +
Vq

V
M2(x,−x)

}−1

,

µn(x1, · · · , xn) = Mn(x1, · · · , xn)
n
∏

i=1

{

1 +
Vqi

V
M2(xi,−xi)

}−1

, n > 3,

(2)

where Vq = 4πe2/q2 is the Fourier transform of Coulomb potential, V is the volume of system,
x ≡ (q, ν), where q is a wave vector, νm = 2mπβ−1, (m = 0;±1;±2; · · · ) is Bose-Matsubary fre-
quency, β = (kBT )

−1.
We used the local field approximation [6,7], where

M2(x,−x) = µ0
2(x,−x)

{

1− Vq

V
µ
(0)
2 (x,−x)G(x)

}−1

,

Mn(x1, · · · , xn) = µ0
n(x1, · · · , xn)

n
∏

i=1

{

1− Vqi

V
µ
(0)
2 (xi,−xi)G(xi)

}−1

.

(3)

Here G(x) is the dynamic local field correction function and µ0
n(x1, · · · , xn) are the correlation functions

of an ideal relativistic electron system (without interaction) taking into account only the effects of
symmetry in many-fermion system. According to the formulas (2), (3)

µ2(x,−x) = µ0
2(x,−x) ε−1(x),

µn(x1, · · · , xn) = µ0
n(x1, · · · , xn)

n
∏

i=1

ε−1(xi).
(4)

There appears the effective dielectric function

ε(x) = 1 +
Vq

V
µ0
2(x,−x)[1 −G(x)]. (5)

It is well-known from a non-relativistic electron-liquid theory [7] that for the weakly non-ideal model
the local field correction function is the universal characteristic of the variables x = (q, ν) which does
not depend on any parameter:

Gid(x) = −(2βVq)
−1{µ0

2(x,−x)}−2
∑

x1

Vq1µ
0
4(x,−x, x1,−x1). (6)
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The correlation functions of an ideal model of relativistic electrons are expressed through the one-
particle Green’s function of this model:

µ0
2(x,−x) = −β−1

∑

k,s

∑

ν∗

Gk,s(ν
∗)Gk+q,s(ν

∗ + ν),

µ0
3(x1, x2, x3) = 2β−1

∑

k,s

∑

ν∗

Gk,s(ν
∗)Gk+q1,s(ν

∗ + ν1)

×Gk−q2,s(ν
∗ − ν2)δq1+q2+q3,0δν1+ν2+ν3,0,

µ0
4(x1,−x1, x2,−x2) = β−1

∑

k,s

∑

ν∗

Gk,s(ν
∗)Gk−q1,s(ν

∗ − ν1)

×
∑

σ=±1

Gk−σq2,s(ν
∗ − σν2){2Gk,s(ν

∗) +Gk+q1+σq2,s(ν
∗ + ν1 − σν2)}

(7)

etc., where

Gk,s(ν
∗) = {iν∗ − Ek + µ}−1eiδν

∗

, (8)

δ → +0, Ek = {(m0c
2)2 + ~

2k2c2}1/2 −m0c
2, µ is the chemical potential variable. In the formulas (7)

ν∗m = (2m+ 1)πβ−1 is the Fermi-Matsubara frequency. Expanding the products of Green’s functions
into simple factors and performing a summation over frequency under the rule

β−1
∑

ν∗

Gk,s(ν∗) = nk,s = {1 + exp [β(Ek − µ)]}−1, (9)

we obtain the next representation of the functions (7):

µ0
2(x,−x) = −2Re

∑

k,s

nk,s{iν + Ek − Ek+q}−1,

µ0
3(x1, x2, x3) = δx1+x2+x3,0{γ3(x1,−x2) + γ3(x2,−x3) + γ3(x3,−x1)},
γ3(xl,−xj) = 2Re

∑

k,s

nk,s{iνl + Ek − Ek+ql
}−1{−iνj + Ek − Ek+qj

}−1.

(10)

In the non-relativistic theory (for Ek = ~
2k2/2m) the functions µ0

n(x1, · · · , xn) at T = 0K are well
known: µ0

2(x,−x) is a polarization function which appears in RPA [8]; the static limits of functions (10)
with n > 3 were investigated in [9, 10] and the dynamic functions µ0

n(x1, · · · , xn) with n = 3 and 4 were
calculated for the first time in the paper [4]. The direct calculation of the static and dynamic functions
µ0
n(x1, · · · , xn) with n > 3 requires the integration all with respect to the vector k at the given vectors

(q1,q2, · · · ,qn) and is cumbersome. This difficulty can be overcome by using the Feynman identity [11]

n
∏

j=1

B−1
j = (n− 1)!

1
∫

0

· · ·
1

∫

0

dα1 · · · dαn

{ n
∑

j=1

αjBj

}−n

δ

( n
∑

j=1

αj − 1

)

, (11)

where Bj = iνj + Ek − Ek−qj
, making it easy to integrate with respect to angular variables of the

vector k.
The essential mathematical difficulty on the way of exact analytical calculation of functions

µ0
n(x1, · · · , xn) with n > 3 in the relativistic case is that the identity (11) is not applicable in this

case because of the strong dependence of Ek on a wave vector.
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3. The two-particle correlation function

In the case n = 2, the integration with respect to the angular variables of vector k does not cause any
difficulties and µ0

2(x,−x) is reduced to the one-dimensional integral:

µ0
2(x,−x) = 3Ne[m0c

2y2]−1(2q)−1

∞
∫

0

A(k|q, ν|y)nk,s k dk,

A(k|q, ν|y) = η+ − η− +
1

2
(1 + k2)1/2 ln

[

ν2 + η2+
ν2 + η2−

]

− ν

{

arctg
η+
ν

− arctg
η−
ν

}

,

η± = {1 + y2(k ± q)}1/2 − {1 + y2k2}1/2,

(12)

where “non-relativistic” variables k ≡ |k|k−1
F , q ≡ |q|k−1

F , ν = ν(m0c
2)−1 = ν̃y2; ν̃ = ν(2εF )

−1,
εF = ~

2k2F (2m0)
−1 are used.

At the absolute zero temperature (when µ = EF ) in the static case (ν = 0), the integration with
respect to variable k gives the following result:

µ0
2(q,−q) = lim

ν→0
µ0
2(x,−x) =

3Ne

m0c2y2
J2(q∗|y),

q∗y J2(q∗|y) =
2

9
(R+ −R−)

[

1 +
7

4
y2 − q2∗

8

]

+
5

72
q∗y(R+ +R−) +

q∗y

12
R0 +

1

3
R3

0 ln

∣

∣

∣

∣

R+ −R0

R− −R0

∣

∣

∣

∣

+
1

8
q∗

(

1 +
q2∗
6

){

2 ln |y +R0| − ln |(R+ + y + q∗)(R− + y − q∗)|
}

+
1

6
S3
q

{

ln

∣

∣

∣

∣

∣

1 + 1
2q

2
∗ +

1
2yq∗ + SqR+

1 + 1
2q

2
∗ − 1

2yq∗ + SqR−

∣

∣

∣

∣

∣

− ln

∣

∣

∣

∣

∣

1 + 1
2q∗y + SqR0

1− 1
2q∗y + SqR0

∣

∣

∣

∣

∣

− 2 ln

∣

∣

∣

∣

∣

y + 1
2q∗

y − 1
2q∗

∣

∣

∣

∣

∣

}

.

(13)

Here the following notations are used:

q∗ ≡ y|q|k−1
F ; R0 = (1 + y2)1/2; Sq =

(

1 +
1

4
q2∗

)1/2

; R± = [1 + (q∗ ± y)2]1/2. (14)

This expression is an exact, unlike approximate representation from the paper [12]. The function
µ0
2(q,−q) has the following asymptotic:

µ0
2(q,−q) ⇒

{

3Ne(m0c
2y2)−1(1 + y2)1/2 + · · · by q ≪ kF ;

2Ne(~cq)
−1 + · · · by q ≫ kF ,

(15)

which differs from the non-relativistic function asymptotic

µ0
2(q,−q) ⇒

{

3Ne(2εF )
−1 + · · · by q ≪ kF ;

2Ne(εF )
−1

(

kF
q

)2
+ · · · by q ≫ kF ,

(16)

The dependence of function J2(q∗|y) on the relativistic parameter and wave vector (in units of
q = |q|/kF ) is illustrated in Fig. 1. The dynamic function µ0

2(x,−x) that needs only to calculate the
correlation energy model electron liquid can be used in the form (12) and can be calculated numerically,
placing at T = 0K nk,s = 1 for k 6 1, nk,s = 0 for k > 1. Its dependence on the wave vector and
relativistic parameter is illustrated in Fig. 2. However to identify common characteristics of this
function is useful to obtain an approximate analytical expression. Based on the formula (10) through
the identical transformation, it will be presented in the following form:
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Fig. 1. Dependence of the function J2(q∗|y) on the wave vector q

for different values of relativistic parameter.

µ0
2(x,−x) = 2

∑

k,s

nk,s(Ẽk+q + Ẽk)(Ẽ
2
k+q − Ẽ2

k)
{

(Ẽ2
k+q − Ẽ2

k)
2 + ν2(Ẽk+q + Ẽk)

2
}−1

=
3Ne

m0c2y2
· 1
q

1
∫

−1

dt

1
∫

0

dkk
(

t+ q
2k

)

C(k, t|q)
(

t+ q
2k

)2
+

(

ν
2kqC(k, t|q)

)2 ,

C(k, t|q) = 1

2

{

[1 + y2(k2 + q2 + 2kqt)]1/2 + [1 + y2k2]1/2
}

, Ẽk = {(m0c
2)2 + ~

2k2c2}1/2.

(17)
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Fig. 2. Dependence of the dynamic function µ0

2
(x,−x) on the wave vector q

for different values of relativistic parameter (ν = 0.1m0c
2y2).

To obtain an approximate analytical formula, a substitution must be performed

C(k, t|q) ⇒ (1 + y2)1/2; k−1C(k, t|q) ⇒ y−1(1 + y2)1/2.
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As a result of the integration we obtain the following expression

µ0
2(x,−x) =

3Ne

m0c2y2
J̃2(q, v|y),

J̃2(q, v|y) ≈
1

2
(1 + y2)1/2

{

1 +
1

2q

(

1 + v2 − q2

4y2

)

ln
v2 + (1 + q/2)2

v2 + (1 − q/2)2

− v

[

arctan
1 + q/2

v
+ arctan

1− q/2

v

]}

.

(18)

The difference of this expression from the non-relativistic case is the factor (1 + y2)1/2 and frequency
renormalization

v =
ν

2εF q
(1 + y2)1/2 =

ν

m0c2y2q
(1 + y2)1/2. (19)

It is calculated numerically due to the formula (12) and has a little deviation from the “exact” only in
the vicinity of the maximum.

4. The static three-particle correlation function

In the particular case when q1 + q2 = 0, this function is calculated exactly at the absolute zero tem-
perature because

µ0
3(q,−q, 0) = β−1

∑

k,s,ν∗

Gk,s(ν
∗)Gk+q,s(ν

∗){Gk,s(ν
∗) +Gk+q,s(ν

∗)}

=
d

dµ
µ0
2(q,−q) = 2

∑

k,s

(Ek − Ek+q)
−1 dnk,s

dµ
.

(20)

The equality d
dµnk,s = δ(Ek −µ) allows us to integrate with respect to the vector k and as a result we

find that

µ0
3(q,−q, 0) =

3Ne

(m0c2y2)2
J3(q|y),

J3(q|y) = q−1R0

{

R+ −R− +R0 ln

∣

∣

∣

∣

R+ −R0

R− −R0

∣

∣

∣

∣

}

,

(21)

where R±, R0 are defined by formulas (14) and q = |q|/kF . In the non-relativistic limit (y ≪ 1)

µ0
3(q,−q, 0) =

3Ne

(m0c2y2)2
q−1 ln

∣

∣

∣

∣

∣

1 + 1
2q

1− 1
2q

∣

∣

∣

∣

∣

. (22)

The function (21) has long-wave asymptotic

3Ne

(m0c2y2)2
(1 + 2y2),

which differs by the factor (1+2y2) from the asymptotic behavior of the function (21). The dependence
of the dimensionless factor J3(q|y) on the wave vector and relativistic parameter is illustrated in Fig. 3.
As one can see from this figure, in the wide domain of the vector q variation, the next relationship
takes place

J3(q|y1)
J3(q|y2)

≈ 1 + 2y21
1 + 2y22

. (23)
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Fig. 3. Dependence of the static function J3(q|y) on the wave vector q for
different values of relativistic parameter.

The short-wave asymptotic behavior of the function (21) (∼ q−1) differs from the non-relativistic
asymptotic of the expression (22) (∼ q−2).

Due to the fact that in the domain of parameters, which corresponds to degenerate dwarfs, the
three-particle correlations play a role of only correction, we calculate the function µ0

3(q1,q2,−q1−q2)
approximately. Using the identity transformation, we present γ3(qi,qj) in the form

γ3(qi,qj) = 2
∑

k,s

nk,s{E2
k+qi

− E2
k}−1{E2

k+qj
−E2

k}−1{Ek+qi
+ Ek}{Ek+qj

+ Ek}

= 2
∑

k,s

nk,s(εk+qi
− εk)

−1(εk+qj
− εk)

−1C(k|qi)C(k|qj),
(24)

where εk = ~
2k2/2m0 and the function C(k,qi) is defined by the next relation

C(k|qi) =
1

2

{

(1 + y2[k+ q]2)1/2 + (1 + y2k2)1/2
}

, (25)

and vectors k, and q, and q are measured in kF units. As in the previous section, we use the long-wave
approximation, performing the substitution C(k|qi) ⇒ (1 + y2k2)1/2 ≡ Ck. This allows us to use the
Feynman identity and to integrate with respect to the k-vector angles and to reduce the γ3(qi,qj)
calculation to the one-dimensional integral, without any other approximations. In accordance with the
Feynman identity

(εk+qi
− εk)

−1(εk+qj
− εk)

−1 =

(

~
2

2m0

)−2 1
∫

0

dxF−2(qi,qi|k),

F (qi,qj |k) = x[q2i + 2(k,qi)] + (1− x)[q2j + 2(k,qj)] = Ωij + 2(k,ρij),

Ωij ≡ q2j + x(q2i − q2j ); ρij = xqi + (1− x)qj .

(26)

Now proceed from the sum of the vector k to the integral form where the integration is performed
in a spherical coordinate system in which Oz axis coincides with the vector ρij. As a result of these
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operations we obtain the representation

γ3(qi,qj) =
3Ne

(m0c2y2)2

1
∫

0

dk{1 + y2k2}fij(k),

fij(k) = −1

2

1
∫

0

dx

ρ2ij − 1
4k2

Ω2
ij

.

(27)

In the explicit form, the square trinomial that appears here is written foolows

ρ2ij −
1

4k2
Ω2
ij = Cijx

2 +Bijx+Aij ,

Cij = (qi − qj)
2 − 1

4k2
(q2i − q2j )

2,

Bij = 2{(qi,qj)− q2j} −
1

2k2
q2j (q

2
i − q2j ), Aij = q2j −

1

4k2
q4j ,

(28)

moreover

δij = 4AijCij −B2
ij = ∆ij − q2i q

2
j (qi − qj)

2k−2 = ∆ij −
q21q

2
2q

2
3

k2
= ∆ij

{

1− q2R
k2

}

,

∆ij = 4q2i q
2
j (1− t2ij), q2R = (qi − qj)

2{4(1 − t2ij)}−1.

(29)

Here qR is the radius of the circle circumscribing the triangle constructed on the vectors qi,qj ,−qi−qj ,
tij is a cosine of the angle between the vectors qi and qj .

Whereas ∆ij > 0, we get the following result:

fij(k) = (−δij)
−1/2 ln

∣

∣

∣

∣

∣

Rij + (−δij)
−1/2

Rij − (−δij)−1/2

∣

∣

∣

∣

∣

by k < qR;

fij(k) = 2(δij)
−1/2 arctan{(δij)1/2R−1

ij } by k > qR.

(30)

Here

Rij ≡ Rij(k) = 2Aij +Bij = 2(qi,qj)−
1

2k2
q2i q

2
j . (31)

In accordance with the formula (27), the function µ0
3(q1,q2,−q1 − q2) can be written in the form of

the one-dimension integral

µ0
3(q1,q2,q3) =

3Ne

(2εF )2

1
∫

0

dk(1 + y2k2)Φ(k|q1, q2, q3), (32)

where

Φ(k|q1, q2, q3) = f12(k) + f23(k) + f31(k). (33)

The sum of terms in the formula (33) can be reduced to a compact form, using the fact that elements
∆ij and δij are the invariants of this problem:

∆12 = ∆23 = ∆31, q2R =
q23

4(1− t212)
=

q22
4(1− t213)

=
q21

4(1 − t223)
, (34)
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3
(q1,q2,−q1 − q2)(3Ne)

−1(m0c
2y2)2 at t = 0 and different values of

relativistic parameter (from left y = 0; from right y = 1.0).
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Fig. 5. The function J3(q1, q2, t) = µ0

3
(q1,q2,−q1 − q2)(3Ne)

−1(m0c
2y2)2 at t = 0.5 and different values of

relativistic parameter (from left y = 0; from right y = 1.0).

where q3 ≡ |q1 + q2|. The final result is as follows:

Φ(k|q1, q2, q3) =
k

γ1(k)
· 2

q1q2q3
ln

∣

∣

∣

∣

1 + γ1(k)Dk

1− γ1(k)Dk

∣

∣

∣

∣

by k < qR;

Φ(k|q1, q2, q3) =
k

γ2(k)
· 4

q1q2q3
arctg{γ2(k)Dk} by k > qR.

(35)

Here the following notations are used:

γ1(k) =

[

1− k2

q2R

]1/2

; γ2(k) =

[

k2

q2R
− 1

]1/2

;

Dk =
q1q2q3
4k3

(

1− 1

8k2
(q21 + q22 + q23)

)

(P (k))−1;

P (k) = 1− q21 + q22 + q23
4k2

+
q41 + q42 + q43

32k4
+

(q1q2q3)
2

64k6
.

(36)

The functions Φ(k|q1, q2, q3) and µ0
3(q1,q2,−q1 − q2) actually depend on independent variables

q1, q2, t ≡ cos(q1,q2). The dimensionless factor J3(q1, q2, t) = µ0
3(q1,q2,−q1 − q2)(3Ne)

−1(m0c
2y2)2

at the different orientations of vectors q1 and q2 is presented in Fig. 4, 5.
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If in the formula (27) we replace the factor (1 + y2k2) on (1 + y2), we obtain:

γ3(qi,qj) =
3Ne

(m0c2y2)2
(1 + y2)γ̃ij ,

γ̃ij = −2

1
∫

0

dx

ρ2ij

{

1 +
Ωij

4ρij
ln

∣

∣

∣

∣

2ρij − Ωij

2ρij +Ωij

∣

∣

∣

∣

}

= ϕij −
δij
∆ij

Iij , Iij =

1
∫

0

dx

ρ2ij −
Ω

ij2

4

,

ϕij = − 2qi
∆ij

{q2j − (qi,qj)} ln
∣

∣

∣

∣

1− 1
2qi

1 + 1
2qi

∣

∣

∣

∣

− 2qj
∆ij

{q2i − (qi,qj)} ln
∣

∣

∣

∣

1− 1
2qj

1 + 1
2qj

∣

∣

∣

∣

.

(37)

Reducing the sum of γ3(q1,−q2) + γ3(q2,q1 + q2) + γ3(q1,q1 + q2) to a compact form, we obtain
µ0
3(q1,q2,−q1−q2) the analytical representation which is similar to the introduced in the works [9,10]:

µ0
3(q1,q2,−q1 − q2) ∼=

3Ne

(m0c2y2)2
(1 + y2)

4q2R
q1q2q3

{ 3
∑

i=1

cos θi ln

∣

∣

∣

∣

1 + qi/2

1− qi/2

∣

∣

∣

∣

− Y (q1, q2, q3)

}

,

Y (q1, q2, q3) =
1

2
γ2 ln

∣

∣

∣

∣

1− γ2D

1 + γ2D

∣

∣

∣

∣

by qR > 1,

Y (q1, q2, q3) = γ1 arctg[γ1D] by qR < 1,

D =
1

4
q1q2q3

[

1− 1

8
(q21 + q22 + q23)

]{

1− 1

4
(q21 + q22 + q23) +

1

32
(q41 + q42 + q43) +

1

64
(q1q2q3)

2

}−1

,

γ1 =

[

1

q2R
− 1

]1/2

; γ2 =

[

1− 1

q2R

]1/2

.

(38)

q1 q2

q3

θ1θ2

θ3

Fig. 6.

Here q3 = |q1 +q2| and the angle θi is on the opposite
side of qi triangle is formed by vectors q1,q2,q3, as shown
in Fig. 6.

One can obtain the exact analytical expression with-
out described above replacement but the result is very
cumbersome and we do not give it here.

5. The local field correction function

Doing the summation over the frequencies ν1 and ν∗ (ν∗ appears in µ0
4(x,−x, x1,−x1)), using the

formula (9), we represent the expression (6) in the following form:

Gid(x) = −V −1
q {µ0

2(x,−x)}−2
∑

s

∑

k1,k2

nk1,snk2,s

×
{

V (k1 − k2)f
−
k1,k2

(q, ν)− V (k1 + k2 + q)f+
k1,k2

(q, ν)

}

,

f∓
k1,k2

(q, ν) = Re{[iν + Ek1
− Ek1+q]

−1 ∓ [±iν + Ek2
− Ek2+q]

−1}2.

(39)

In the asymptotic of small and large values of the wave vector q, the expression (39) coincides with
the asymptotic of the local field correction in a non-relativistic theory [13]

Gid(x) ⇒











1
4(q/kF )

2 + · · · , ν = 0; q ≪ kF ;
3
20 (q/kF )

2 + · · · , ν ≫ εF ; q ≪ kF ;
1
3 + · · · , q ≫ kF for all ν.

(40)
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For the numerical calculation of Gid(x) at absolute zero temperature we use a cylindrical coordinate
system for the vectors k1,k2 (kj = (zj , ρj , ϕj)), where (kj ,q) = qzj , (k1 − k2)

2 = ρ21 + ρ22 + (z1 −
z2)

2 − 2ρ1ρ2 cos (ϕ1 − ϕ2), (k1,k2) = z1z2 + ρ1ρ2 cos (ϕ1 − ϕ2), k
2
j = z2j + ρ2j . Doing the integration

with respect to variables ϕ1, ϕ2, we reduce Gid(x) to the following 4-dimensional integral:

Gid(q, ν) =
q2y4

8
J−2
2 (qy, ν̃y2)

1
∫

−1

dz1

1
∫

−1

dz2

√
1−z2

1
∫

0

ρ1dρ1

√
1−z2

2
∫

0

ρ2dρ2×

×
{

f+
q,ν(z1, z2, ρ1, ρ2)

W+(z1, z2, ρ1, ρ2)
−

f−
q,ν(z1, z2, ρ1, ρ2)

W−(z1, z2, ρ1, ρ2)

}

,

(41)

where

f±
q,ν(z1, z2, ρ1, ρ2) =

{

η1
η21 + ν2

± η2
η22 + ν2

}2

− ν2
{

1

η21 + ν2
− 1

η22 + ν2

}2

,

ηi = [1 + y2(z2i + ρ2i )]
1/2 − [1 + y2(ρ2i + (zi + q)2)]1/2,

W+(z1, z2, ρ1, ρ2) =
{

(z1 + z2 + q)4 + (ρ21 − ρ22)
2 + 2(ρ21 + ρ22)(z1 + z2 + q)2

}1/2
,

W−(z1, z2, ρ1, ρ2) =
{

(z1 − z2)
4 + (ρ21 − ρ22)

2 + 2(ρ21 + ρ22)(z1 − z2)
2
}1/2

.

(42)

Proceeding to the limit y → 0 in the formulas (41), (42), we obtain the local field correction func-
tion that corresponds to Geldart-Taylor approximation for polarization function in the first order of
perturbation theory of non-relativistic model [13]:

G0
id(q, ν) =

1

8
{J2(q, ν)}−2

1
∫

−1

dz1

1
∫

−1

dz2

√
1−z2

1
∫

0

ρ1dρ1

√
1−z2

2
∫

0

ρ2dρ2

×
{

ϕ+
q,ν(z1, z2, ρ1, ρ2)

W+(z1, z2, ρ1, ρ2)
−

ϕ−
q,ν(z1, z2, ρ1, ρ2)

W−(z1, z2, ρ1, ρ2)

}

,

ϕ±
q,ν(z1, z2, ρ1, ρ2) =

{

z1 + q/2

(z1 + q/2)2 + u2
± z2 + q/2

(z2 + q/2)2 + u2

}2

− u2
{

1

(z1 + q/2)2 + u2
− 1

(z2 + q/2)2 + u2

}2

,

u = ν
[

~2k2
F

m q
]−1

, q ≡ |q|k−1
F ,

(43)

where the functions W±(z1, z2, ρ1, ρ2) is determined by the formulas (42), and J2(q, ν) — by the for-
mula (12). In this approximation, the local field correction is obtained for the first time in the paper [5].
Since ϕ±

q,ν(z1, z2, ρ1, ρ2) does not depend on the variables ρ1, ρ2, then integrating with respect to these
variables is performed in the analytical form and Gid(q, ν) is reduced to the calculation of the two-
dimensional integral with respect to the variables z1, z2 with the help of numerical method. For the
comparison Gid(q, ν) with the local field correction in a non-relativistic theory, in the formulas (41),
(42) the variables q = |q|k−1

F and ν = ν̃y2, ν̃ = ν(~2k2F /m)−1 are used.
Fig. 7 shows the dynamic local field correction function calculated by the formula (41) with ν̃ = 0.01,

which is very close to the static limit. As it shown in the figure, the asymptotic behavior Gid(q, ν) for
small and large values of the wave vector almost do not depend on the relativistic parameter and its
asymptotic coincides with the asymptotic of the function G0

id(q, ν). The deviation of Gid(q, ν) from
G0

id(q, ν) is significant in the domain of its maximum value, which decreases monotonically with the
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Fig. 7. Dependence of the local field correction function Gid(q, ν) on the wave vector q

and relativistic parameter y for the frequency ν = 0.01m0c
2y2(curve 1 – y = 0.05;

2 – y = 0.2; 3 – y = 0.5; 4 – y = 1; 5 – y = 2; 6 – y = 5).
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Fig. 8. Dependence of the local field correction function Gid(q, ν) on the wave vector q

and relativistic parameter y for the frequency ν = 0.5m0c
2y2 (curve 1 – y = 0.05;

2 – y = 0.2; 3 – y = 0.5; 4 – y = 1; 5 – y = 2; 6 – y = 5).

increase of relativistic parameter. Fig. 8 shows the dependence of Gid(q, ν) on the wave vector for
a sufficiently large value of the frequency (ν̃ = 0.5). In this case, the dependence character on the
wave vector corresponds to the behavior of non-relativistic correction, but the maximum height is
significantly reduced with the increase of relativistic parameter due to the frequency renormalization
(ν∗ = ν̃y2) for y & 1. This remark relates also to a shift of the maximum value to the large wave vector
domain.

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 97–110 (2016)



Correlation functions of the degenerate relativistic electron gas with high density 109

6. Conclusions

The correlation functions of the ideal degenerate electron gas model in the momentum-frequency
representation µ0

n(x1, · · · , xn) are the universal characteristics of this model, which at the low temper-
atures depend only on the dimensionless relativistic parameter which in its turn is determined by the
particles concentration. The momentum-frequency dependence of correlation functions for the differ-
ent values of relativistic parameter is similar. For the small values of this parameter, the functions
µ0
n(x1, · · · , xn) are well known. In the internal structure theory of degenerated dwarfs the necessity

of correlation functions calculation with arbitrary relativistic parameter value arises. As it follows
from our calculations in the high density case the role of high order correlation effects is decreasing:
µ0
2(x1,−x1) ∼ 1/y, µ0

3(x1, x2,−x1 − x2) ∼ 1/y2, µ0
4(x1,−x1, x2,−x2) ∼ 1/y3 etc., which corresponds

to a weak non-ideality of this model. This is the reason to use the local field correction function in the
lowest approximation based on the functions µ0

4(x1,−x1, x2,−x2). We have investigated the features
of two- and three-particle correlation functions in the wide domain of relativistic parameter, obtained
the exact expression for the static two-particle correlation function, approximate expressions for the
three-particle correlation function for the first time, studied the local field correction of interacting
relativistic electron gas, which is the basis for calculating the energy and structural characteristics of
degenerated dwarfs.
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Кореляцiйнi функцiї виродженого релятивiстського електронного
газу високої густини

Ваврух М.В.1, ДзiковськийД.В.1, Солов’янВ.Б.2, ТишкоН.Л.1
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Дослiджено i розраховано дво- i тричастинковi кореляцiйнi функцiї моделi виродже-
ного релятивiстського однорiдного електронного газу з кулонiвськими взаємодiями
за T = 0K в iмпульсно-частотному зображеннi у наближеннi локального поля. Цих
функцiй достатньо для коректного розрахунку рiвняння стану електрон-ядерної мо-
делi за густин, що вiдповiдають виродженим карликам.

Ключовi слова: базисний пiдхiд, n-частинковi кореляцiйнi функцiї, поправка на

локальне поле.

2000 MSC: 82B10, 82D10

УДК: 537.31.311, 53.01

Mathematical Modeling and Computing, Vol. 3, No. 1, pp. 97–110 (2016)


