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1. Introduction

The theory of degenerate dwarfs is based on the electron-nuclear model of matter with high density.
This is due to the fact that studied objects have the masses of order of magnitude as the Sun but an
average densities 10° g/cmg. In such conditions even the existence of the bounded electron states is
impossible, so the electronic structure of degenerate dwarfs can be classified as simple metallic systems
in which all electrons are collectivized. Due to the high density the Fermi momentum has the order
myoc therefore the adequate model for the investigation of the characteristics of the degenerate dwarfs
is the electron-nuclear model with relativistic degenerate electron subsystem.

The calculation of degenerate dwarf structures is based on the use of a state equation model, which
in turn requires a prior calculation of n-particle correlation functions of electron subsystem. In the
developed by S. Chandrasekhar theory of the internal structure of the cold dwarfs the equation of state
of ideal degenerate electron gas in the paramagnetic phase at T'= 0 K is used |1, 2]. The general theory
of the degenerate dwarf structure which could interpret all the diversity of their known properties must
take into account many other factors, the most important of which is the incomplete degeneration, a
variable chemical composition and Coulomb interactions.

The influence of the inter-particle interactions is among the least studied in the theory of degenerate
dwarfs. For the first time it was mentioned by E. Salpeter, who made an approximate assessment
contribution of interaction to the equation of state of an electron gas in the Wigner-Seitz approximation,
Thomas-Fermi and the RPA (random phase approximation) [3].

In order to build the equation of the paramagnetic state of the electron-nuclear model [4] there
exists generalized reference system approach developed in the papers [5,6] for description the non-
relativistic electron liquid. The aim of our work is the calculation of two- and three-particle correlation
functions of the relativistic electron liquid model in a local field approximation.

In the homogeneous electron-nuclear model two parameters are featured — the nuclear charge z
and the relativistic parameter y = hkp(moc)~! that are determined by the concentration of electrons
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(krp = (372N./V)Y/3). The contribution of the electron-nuclear interactions to the thermodynamic
potential or free energy of the model is presented in the form of power series in terms of dimensionless
non-ideality parameter £ = ze’kpER,', where Ep = {(moc?)? + h2k%c?}Y/2 — moc? is the electron
energy at the Fermi level. In the case of the degenerate dwarfs y = 1, then

€ = zagy{(1 +y*)/* — 1} (1)

(g = €2/he is the fine structure constant) is a small parameter, as z < 26. The electron-nuclear model
at dwarfs densities is weakly non-ideal that allows us to limit the contributions only of the second and
third orders of perturbation theory on the electron-nuclear interactions.

2. The general relations

As in a non-relativistic theory [4,5], the n-particle correlation functions of the interacting relativistic
electron gas in a momentum-frequency representation p,(x1,--- ,x,) are defined by respective polar-
ization functions M, (x1, -+ ,x,),

V _1
wa(z, —x) = Ma(x, —x) {1 + Vqu(a;, —x)} ,
NP . ©)
/Ln(xly"' 7:1:1’L):Mn(x17'” 7$n)g{1+%M2(xla_xl)} ) 7’L>3,

where V, = 4me?/q? is the Fourier transform of Coulomb potential, V is the volume of system,
r = (q,v), where q is a wave vector, v, = 2mnB~!, (m = 0;%1;42;---) is Bose-Matsubary fre-

quency, § = (kpT)~!
We used the local field approximation [6,7], where

-1
My(z, ) = 1, —x){l V00,2 G(sc)} |
. L 0
Myrsee ) = e o) [L{1 - S e Gl

1=1

Here G(z) is the dynamic local field correction function and pQ (1, -+ ,x,) are the correlation functions
of an ideal relativistic electron system (without interaction) taking into account only the effects of
symmetry in many-fermion system. According to the formulas (2), (3)

po(z, —z) = /Lg(l" —x) 6_1(517)7

n
_ (4)
pn(@1, -y wn) = g (2, ) [ (@)
There appears the effective dielectric function

V.
e(x) =1+ ung(% —z)[1 — G(z)]. ()
It is well-known from a non-relativistic electron-liquid theory [7] that for the weakly non-ideal model

the local field correction function is the universal characteristic of the variables = (q,v) which does
not depend on any parameter:

Gia(x) = —(28Vy) " {us(z, —x) QZVqlM —, 21, —T1). (6)
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The correlation functions of an ideal model of relativistic electrons are expressed through the one-
particle Green’s function of this model:

ps(w, —x) = =~ IZZGks )Gkq,s(V" + 1),

k,s v*
pi(r1, w2, 23) = 2871 > Gies (V") Gty s (V" + 1)
k,s v*
X Gg-— 2, S(V* - 2)5(11+Q2+013705V1+V2+V3,07 (7)
Mg(l’l,—ﬂj‘l,lEg, IZZGkS Gk qdi, 8( Vl)
k,s v*
X Z Gx—oqa,s(V" — 02){2Gy s (V") + Griq,+oqu,s(V" + 11 —0o12)}
o=%1
etc., where
Gies(V) = {v* — B+ p} e, (8)

§ — +0, By = {(moc®)? + 12E2}Y2 —moc?, pis the chemical potential variable. In the formulas (7)
= (2m + 1)mp~! is the Fermi-Matsubara frequency. Expanding the products of Green’s functions
into simple factors and performing a summation over frequency under the rule

BN Gis(ve) = migs = {1+ exp [B(Ey, — )]}, 9)

we obtain the next representation of the functions (7):

pd(x, —x) = =2 Reanﬁ{iV + By — Exiqt

k,s
3 (21,02, 3) = Oay o tas 0{V3(21, —22) + 73(22, —3) + Y3(23, —21)}, (10)
’73(:E1, —l’j) = 2Re Z ’I’Lk78{’iw + Ey — Ek+ql}_l{—’iuj + Ey — Ek-i—qj}_l-
k,s
In the non-relativistic theory (for Ej, = h?k?/2m) the functions u(z1,--- ,z,) at T = 0K are well
known: u9(z, —r) is a polarization function which appears in RPA [8]; the static limits of functions (10)
with n > 3 were investigated in [9, 10] and the dynamic functions u (w1, -+ ,z,) with n = 3 and 4 were
calculated for the first time in the paper [4]. The direct calculation of the static and dynamic functions
p(xq, -, x,) with n > 3 requires the integration all with respect to the vector k at the given vectors
(1,92, "+ ,4qn) and is cumbersome. This difficulty can be overcome by using the Feynman identity [11]

. 1 1 " n n
HB]_ ’I’L—l '/ /dal---dan{Zaij} 5<Zaj—1>, (11)
j=1 0 0 =1 i=1

where B; = iv; + By — Ek_qj, making it easy to integrate with respect to angular variables of the
vector k.

The essential mathematical difficulty on the way of exact analytical calculation of functions
p(xy,- -+, x,) with n > 3 in the relativistic case is that the identity (11) is not applicable in this
case because of the strong dependence of Ey on a wave vector.
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3. The two-particle correlation function

In the case n = 2, the integration with respect to the angular variables of vector k does not cause any
difficulties and p3(z, —) is reduced to the one-dimensional integral:

u9(z, —x) = 3Ne[moc?y?]~Y( 1/A klq, 7|y)nk s k dk,
0

12)
—1 1 2\1/2 . N+ - (
A(klg, Dly) = ny —n- + 2(1+/€ )/~ In 2 U< arctg = arctg =
e = {1+ (k£ )2 — {1+ 2R,
where “non-relativistic” variables k = |k|k', ¢ = |qlkp', 7 = v(mec®)™! = oy% 7 = v(2ep) 7,

er = h2k%(2mg) ! are used.
At the absolute zero temperature (when p = Er) in the static case (v = 0), the integration with
respect to variable k gives the following result:

3N,

19(q, —q) = lig%ug(:n, —x) = mh(q*ly),
2 T, @], b 4y 15 |Ry — Ro
W Jo(qy) = =(Ry —R_) |14 - — 2| + Zquy(Ry + R_ Ro+ =R3ln|———=
ey ) = 3R = o) (14 10 = ] 4 Do+ 1)+ B Ao 4RI |0
1 ¢ (13)
+ g <1+E> {2ln\y+Ro!—1n\(R++y+q*)(R—+y—q*)!}
el 1+ 567+ 59¢- + SqRy | |14 3.y + SeRo o Y+ 54
67 |1+ 562 — 5yq. + SR 1— 1q.y+ S4Ro Y — 54
Here the following notations are used:
1\ 12
vl Ro= A s, = (1432) 0 Re=ld @ sy

This expression is an exact, unlike approximate representation from the paper [12|. The function
ug(q, —q) has the following asymptotic:

W) = 3Ne(moc®y®) (1 + )2 + -+ by q < kp; (1)
2N, (heq)™t + - - by q> kp,
which differs from the non-relativistic function asymptotic
3N.(2ep) 1 +--- by q < kr;
p5(a, —q) = e 2 (16)
2Ne(er) M (FE)" 4+ by g > kp,

The dependence of function Ja(g«|y) on the relativistic parameter and wave vector (in units of
q = |q|/kr) is illustrated in Fig.1. The dynamic function u9(x, —z) that needs only to calculate the
correlation energy model electron liquid can be used in the form (12) and can be calculated numerically,
placing at T' = 0K ng s = 1 for £ < 1, nxs = 0 for £ > 1. Its dependence on the wave vector and
relativistic parameter is illustrated in Fig. 2. However to identify common characteristics of this
function is useful to obtain an approximate analytical expression. Based on the formula (10) through
the identical transformation, it will be presented in the following form:
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1 J,(a.ly)

Fig. 1. Dependence of the function J2(g.|y) on the wave vector q
for different values of relativistic parameter.

~ ~ ~ ~ ~ ~ ~ - —1
3w, ) =23 ms(Buerq + B (Bl yq — BD) { (Bl yq — B2 + V¥ (Bicsq + Bi)?

k,s
1 1
_ 3]\;62'1/&/ dkk( %) Ch.tla) (17)
moc-y Q_ t+2k ( kt|q)

1 ~
Clistlg) = 5 {[1+ (2 + ¢+ 2hgt)] 2 + L+ K2} Bic = {(moc®)? + B2} /2

16 4

Ho (%-%)
1.4
15
1.2
1
l .
05
0.8 -
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0.4 -
0.2 -
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Fig. 2. Dependence of the dynamic function u3(z, —x) on the wave vector q
for different values of relativistic parameter (v = 0.1moc?y?).

To obtain an approximate analytical formula, a substitution must be performed
Clktlg) = (L+y*)"% k7 Ok, tlg) =y " (1+y*)">.
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As a result of the integration we obtain the following expression

3N, -
pud(x, —x) = m&(q’v\y),
- 1 1 ¢ v+ (14 ¢/2)?
R e U G ) e -
1 2 1—¢q/2
—v [arctan + q/ + arctan 7(]/} }
v v

The difference of this expression from the non-relativistic case is the factor (1 + y?)'/2

renormalization

and frequency

v
" 2epq

v

(1+y*)2 = (1+ 3" (19)

v —_—
m002y2q

It is calculated numerically due to the formula (12) and has a little deviation from the “exact” only in

the vicinity of the maximum.

4. The static three-particle correlation function

In the particular case when q; + qs = 0, this function is calculated exactly at the absolute zero tem-
perature because

Ng((L —q,0) = /8_1 Z Gi,s(V")Grrq,s(V){Grs (V) + Giqs (V7))

k,s,v*
20)
d L dnis (
= ——12(q, —q =2§ Ey — Ex =,
dlulu’Q( ) — ( +Q) d,U/

The equality %nk,s = §(FEx — p) allows us to integrate with respect to the vector k and as a result we
find that

3N,
O(ry _ _ e
p3(q, —q,0) (moczyz)st(q\y),
(21)
Jo(aly) = ¢~ Ro { Ry — B+ Roin |2t —F0
3 Yy 0 + — 0 R_ — RO )
where Ry, Ry are defined by formulas (14) and ¢ = |q|/kr. In the non-relativistic limit (y < 1)
3N, 1+ 39
0 e -1 2
[ 70 = 22
#3(q q ) (moc2y2)2q 1_ %q ( )
The function (21) has long-wave asymptotic
3N, )
——55((1+2

which differs by the factor (1+2y2) from the asymptotic behavior of the function (21). The dependence
of the dimensionless factor J3(g|y) on the wave vector and relativistic parameter is illustrated in Fig. 3.
As one can see from this figure, in the wide domain of the vector q variation, the next relationship
takes place

J3(qly1) ~ 14 2y3
J3(qly2) 14 2y3

(23)
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107 s qly)

Fig. 3. Dependence of the static function J3(g|y) on the wave vector q for
different values of relativistic parameter.

The short-wave asymptotic behavior of the function (21) (~ ¢~!) differs from the non-relativistic
asymptotic of the expression (22) (~ ¢~2).

Due to the fact that in the domain of parameters, which corresponds to degenerate dwarfs, the
three-particle correlations play a role of only correction, we calculate the function ,ug(ql, d2,—q1 — q2)
approximately. Using the identity transformation, we present y3(q;, q;) in the form

Ya(di, aj) =2 mics{Fiyq, — B} HER g, — B} H{Bitq, + BxcHEicrq, + Bi}

k,s
’ (24)
=2 mc(Eirq; — e) " (Ektq, — 1) C(K|ai)C(Klgy),
k,s
where e = h?k?/2mg and the function C(k, q;) is defined by the next relation
1
Ckla) = 5 {(1+ 52k + a2 4 (1+ 28212, (25)

and vectors k, and q, and g are measured in kg units. As in the previous section, we use the long-wave
approximation, performing the substitution C(k|q;) = (1 4 32k2)Y/2 = C}. This allows us to use the
Feynman identity and to integrate with respect to the k-vector angles and to reduce the v3(q;, q;)
calculation to the one-dimensional integral, without any other approximations. In accordance with the
Feynman identity

B _ W2\ _
(Ektaq; — €k) 1(€k+qj — ek) '= <2—m0> /dl’F 2(q,~,q,~!k),
0 (26)

F(ai, qj|k) = z[g? + 2(k, )] + (1 — 2)[a} + 2(k, q;)] = Qj + 2(k, p;y),
Qij = qu + x(qzz - qu)§ Pi; = xq; + (1—z)q;.

Now proceed from the sum of the vector k to the integral form where the integration is performed
in a spherical coordinate system in which Oz axis coincides with the vector p;;. As a result of these
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operations we obtain the representation

1

3N,
v3(ai, qj) = m /dk{l +y2k2}fij(k)7
1 (27)
1
=4
’ 2) - 4;12 ;
0
In the explicit form, the square trinomial that appears here is written foolows
p?j 4]€2 Q2 = Cij$2 + Bij:E + Aija
1
Cij = (a4, — qj)* — 4/<;2( —-q)? (28)
1 1
By = 2{(ai ) = 4} — 55G(@ — ) Ay =4 — 59
moreover
2 2 119305 %
0ij = 4Ai;Cij — By = Ny — 473 (ai — a;)°k ™2 = Ayj — w2 = D { ] } (20)

A =4 (1—13), = (@i —aq;)* {41 -5}

Here gp is the radius of the circle circumscribing the triangle constructed on the vectors q;, q;, —q; —q;,
t;; is a cosine of the angle between the vectors q; and q;.
Whereas A;; > 0, we get the following result:

Rij + (=6,)" '/

fij(k) = (—=0;)"*In by k < qg;

Rij — (=0i5)~ /2 (30)
fij(k) = 2(52-]-)_1/2 arctan{(d; )1/2R”1} by k> qg.
Here
1
Rij = R;j(k) = 2A;; + Bij = 2(q;, q;) — @%2%2- (31)

In accordance with the formula (27), the function ,ug(ql, d2,—q1 — q2) can be written in the form of
the one-dimension integral

1
3Ne
#3(q1, 92, q3) = )7 /dk (14 y?k*)®(Klq1, g2, g3); (32)
0
where
D(klq1, g2, q3) = fia(k) + fa3(k) + f31(k). (33)

The sum of terms in the formula (33) can be reduced to a compact form, using the fact that elements
A;j and d;; are the invariants of this problem:

) ¢ @ g
Ajp = Agg = A = = - .
PEES TS RT3, T a1 — 2y 41—ty o
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Jg(qlquvt)

AN

N
DR
MY

—
=

Fig.4. The function J3(q1,q2,t) = pd(qi,qz, —q1 — q2)(3Ne) "1 (moc?y?)? at t = 0 and different values of
relativistic parameter (from left y = 0; from right y = 1.0).

—_

O=MNWREUNAI0OD

35 : ‘]3(q1'q2’t) Js(qquzrt)

Fig.5. The function J3(q1,q2,t) = u3(q1,q2, —q1 — q2)(3N.) "L (moc?y?)? at t = 0.5 and different values of
relativistic parameter (from left y = 0; from right y = 1.0).

where g3 = |q1 + q2|. The final result is as follows:

by k< qg;

k 2 1+ k)D
O (klq1,q2,q3) = ‘ (k) Dy

(k) qigeqz |1 — 71 (k) Dy

k 4 (35)
D(k|q1, qo, = - ———arct k)D by k> qg.
(klq1,q2,q3) ) 10 g{v2(k)Di} by R
Here the following notations are used:
/-6‘2 1/2 k‘2 1/2
ka[l——] ; 'ykz[——l] ;
1( ) qulz 2( ) q%
Q19243 Lo 9 9 -1, 36
Dk—w<1_@(ﬁh +QQ+Q3)> (P(k)™ (36)
Py =1 GHBHE G Ga, (000)

4k? 32k4 64K

The functions ®(k|q1,q2,q3) and p3(q1,q2, —q1 — q2) actually depend on independent variables

q1,q2,t = cos(qi,qz). The dimensionless factor J3(q1,q2,t) = p3(qi, g2, —q1 — q2)(3Ne) " (mocy?)?
at the different orientations of vectors q; and qs is presented in Fig. 4, 5.
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If in the formula (27) we replace the factor (1 + y?k?) on (1 + y?), we obtain:

1 1
- dx QZ" 2pi' — QZ" 5@ dzx
-:—2/—{1+ Jln‘ J L1 =iy — = Lij, I--:/i, 37
i . 4pii | 2pij + S v Ay Y /g2 - QZQ (37)
1 1
4i ¢ o 1 =24 2q5 ¢ 9 1 =54
o — (qi,9:)} In 2 _ (q;,q;)} In
Yij = A (i, qj)} n Tl A, {gi —(ai,q))} In| Tl

Reducing the sum of v3(qi, —q2) + v3(d2, 91 + q2) + v3(q1,d1 + g2) to a compact form, we obtain
ug(ql, q2, —q1 —q2) the analytical representation which is similar to the introduced in the works [9,10]:

3N, 4¢3 { 1+ ¢ /2‘
0 ~ e 2 4R [
q1,92;, —q1 —q2) = 1 E CO@ID YQ7q7q )
Ha(dn, a2, a1 ~ 92) (moc2y2)2( Q1Q2Q3 —qi/2 (01,22, 03)
1 ’72D
Y “nl b >1
(91,92, 93) = 5 r2ln T———> 1+ Dl o>l
Y (q1,q2,q3) = m arctg[y1 D] by qr <1, (38)
1 1 1 1 1 -1
D=-qpp3|l — = (G +@E+ @)1 - (B +B+E)+ =gl + a3 +¢3) + —(q1q203)* ¢,
4 8 4 32 64
1 1/2 1712
71:[—2—1] ; 72:[1——} .
dr qR

Here g3 = |q1 + q2| and the angle 6; is on the opposite
side of g; triangle is formed by vectors q1, q2, q3, as shown
in Fig. 6.

One can obtain the exact analytical expression with-
out described above replacement but the result is very
cumbersome and we do not give it here.

Fig. 6.

5. The local field correction function

Doing the summation over the frequencies vy and v* (v* appears in ,ug(ac, —x,21,—2x1)), using the
formula (9), we represent the expression (6) in the following form:

Gia(z) = =V, b (@, —2)} 2D > niy shi,s

S k17k2
AVl 10 @) - Vi e+ a0}

fli,kQ (q,v) = Re{[iv + By, — Ekl-i-q]_l F [Liv + By, — Ek2+q]_1}2'

(39)

In the asymptotic of small and large values of the wave vector q, the expression (39) coincides with
the asymptotic of the local field correction in a non-relativistic theory [13]

%(Q/k?F)z ey v=0; q¢<kp;
Gia(z) = § 35(q /kp) U ep; q<kpy (40)
% +---, g>kp forallv.
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For the numerical calculation of G;4(x) at absolute zero temperature we use a cylindrical coordinate
system for the vectors ki, ko (kj = (24, pj, ¢;)), where (kj,q) = qzj, (ki —ka)? = p? + p3 + (21 —
22)% — 2p1pacos (o1 — @32), (ki, ko) = 2120 + p1pacos (o1 — @a), k‘]2 = zjz- + p?. Doing the integration
with respect to variables 1, 2, we reduce Gyg(z) to the following 4-dimensional integral:

1 Vi1-22

1 1—
2
Gid(q,V)quJQ qy, vy?) /d21/d22 / p1dpy / p2dpa X
-1 -1 0 0

y {f;u(zl,zmmvm) B f{u(zl,@,m,m)}

Z

(41)

)

W, (z1, 22, p1,p2)  W_(z1, 22, p1, p2)

where

2 2
=+ m 2 —9 1 1
— + _ _
faale1,22:1..92) {?7%+72 n%+72} Y {?7%+72 n§+72}’
mi= 1+ 9222+ )] — L+ 207 + (2 + 0)?)]Y2, (42)
_ 4 2 9232 2 2 211/2
Wi (z1,22,p1,02) = {(z1 + 22 + @) + (o1 — 03)° +2(pT + P3) (21 + 22+ ¢)°} 7,
1/2
W_ (21,22, p1, p2) = { (21 — 22)" + (0% — p3)> + 2(p% + pB) (21 — )2} /%

Proceeding to the limit y — 0 in the formulas (41), (42), we obtain the local field correction func-
tion that corresponds to Geldart-Taylor approximation for polarization function in the first order of
perturbation theory of non-relativistic model [13]:

1 1 1-2 1-2
1 _
GY(q,v) = g{J2(q7 v)} 2/d2'1/d22 / p1dp1 / p2dp2
S04 0 0

% ‘P«IV(Zl?Z?’PlaPﬂ _ g (21522, p1, p2)
W+(21,Z2,01,P2) W—(Zl,ZQ,pl,pg)

21+q/2 22+q/2 }2
21+ q/2)2 +u? 7 (224 q/2)2 + u?

=
V1]

903:,1/(217227/)17/72) == {(

B u2{ 1 - 1 }2
(z14+q/2)2+u?  (22+¢/2)24+u? ]’

n2k2, 11 _
qu[’TFq} ., q=l|alky!,

where the functions W (z1, 29, p1, p2) is determined by the formulas (42), and J2(q,v) — by the for-
mula (12). In this approximation, the local field correction is obtained for the first time in the paper [5].
Since goiy(zl, 29, p1, p2) does not depend on the variables pi, pa, then integrating with respect to these
variables is performed in the analytical form and G;4(q,v) is reduced to the calculation of the two-
dimensional integral with respect to the variables z, zo with the help of numerical method. For the
comparison Gy4(q,v) with the local field correction in a non-relativistic theory, in the formulas (41),
(42) the variables ¢ = |q|kz" and 7 = 0y?, 7 = v(h*k2/m)~"! are used.

Fig. 7 shows the dynamic local field correction function calculated by the formula (41) with 7 = 0.01,
which is very close to the static limit. As it shown in the figure, the asymptotic behavior G;4(q,v) for
small and large values of the wave vector almost do not depend on the relativistic parameter and its
asymptotic coincides with the asymptotic of the function G?d(q, v). The deviation of G4(q,v) from
G?d(q, v) is significant in the domain of its maximum value, which decreases monotonically with the
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Fig. 7. Dependence of the local field correction function G;4(g,v) on the wave vector q
and relativistic parameter y for the frequency v = 0.01mgc?y?(curve 1 — y = 0.05;
2-y=02;3-y=054-y=1;,5-y=2;6—-y=2>5).
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Fig. 8. Dependence of the local field correction function G;4(g,v) on the wave vector q
and relativistic parameter y for the frequency v = 0.5mgc?y? (curve 1 — y = 0.05;
2-y=02;3-y=054-y=1,5-y=2;6—-y=5).

increase of relativistic parameter. Fig. 8 shows the dependence of G;4(q, ) on the wave vector for
a sufficiently large value of the frequency (7 = 0.5). In this case, the dependence character on the
wave vector corresponds to the behavior of non-relativistic correction, but the maximum height is
significantly reduced with the increase of relativistic parameter due to the frequency renormalization
(vs = y?) for y > 1. This remark relates also to a shift of the maximum value to the large wave vector
domain.
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6. Conclusions

The correlation functions of the ideal degenerate electron gas model in the momentum-frequency
representation pl(xy,--- ,,) are the universal characteristics of this model, which at the low temper-
atures depend only on the dimensionless relativistic parameter which in its turn is determined by the
particles concentration. The momentum-frequency dependence of correlation functions for the differ-
ent values of relativistic parameter is similar. For the small values of this parameter, the functions
po(xq, - ,x,) are well known. In the internal structure theory of degenerated dwarfs the necessity
of correlation functions calculation with arbitrary relativistic parameter value arises. As it follows
from our calculations in the high density case the role of high order correlation effects is decreasing;:
p(z1, —x1) ~ 1)y, p3(x1, 22, —71 — 22) ~ 1/92, (71, —21, 79, —2) ~ 1/3> etc., which corresponds
to a weak non-ideality of this model. This is the reason to use the local field correction function in the
lowest approximation based on the functions u(x1, —1, x9, —72). We have investigated the features
of two- and three-particle correlation functions in the wide domain of relativistic parameter, obtained
the exact expression for the static two-particle correlation function, approximate expressions for the
three-particle correlation function for the first time, studied the local field correction of interacting
relativistic electron gas, which is the basis for calculating the energy and structural characteristics of
degenerated dwarfs.
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KopensyiiHi pyHKLIT BUPOO>KEHOro pensitTuBiCTCbKOIro €/IeKTPOHHOIO
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JocutixeHo i po3paxoBaHO JBO- 1 TPUYIACTUHKOBI KOPEJISIIiiiHI (DYHKITT MOIE/T BUPOIKe-
HOTO PEJIATUBICTCHKOT'O OJTHOPITHOTO €JIEKTPOHHOTO ra3y 3 KYJOHIBCBKAMU B3a€MOJIIAMUI
3a T = 0 K B iMIyJIbCHO-YACTOTHOMY 300parkeHHi y HaOJIUKEHHI JIOKAJIbHOTO moJts. [lux
bYHKIIIH TOCTATHRO /I KOPEKTHOI'O PO3PAaXyHKY PIBHAHHS CTaHY €JIEKTPOH-HAJIEPHOI MO-
JeJii 38 TYCTHH, IO BIJIITOBIIAIOTH BUPOJIKEHUM KapJITKaM.

Knw4osi cnoBa: 6Gasuchutll nidrid, n-4acmurkosi Kopeasyitini Gynxyii, nonpaskra Ha
AOKANDHE NOAE.
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