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Досліджена коливальна система, яка моделюється першою змішаною задачею для 
слабко нелінійного рівняння коливань балки в обмеженій області. Отримані умови 
існування локального за часовою змінною розв’язку. Особливо виділений коливальний 
режим із загостренням. Показана можливість застосування до задачі методу Гальоркіна. 

 

The paper is devoted to the research of the oscillating system that is described by the 
first mixed problem for the weakly nonlinear equation of the  beam vibrations in a bounded 
domain. The conditions of the existence of the local, according to a time variable, solution have 
been obtained. Oscillating blowup regime is especially highlighted.  The possibility of the 
Galerkin method application to the problem is shown. 

 

Introduction. We investigate the solution of the problem on nonlinear transverse vibrations of 
elastic body subject to the action of dissipative forces in a bounded domain. Such problems have many 
applications in various technical systems, such as vibration of pipelines, railway lines, drill columns, 
bridges, electrical wires, optical fiber etc. For the nonlinear oscillations model considered, there is no 
general analytical methodologies of determining dynamical characteristics of the oscillation process. Thus 
we propose using the qualitative methods of nonlinear boundary value problems theory to obtain the well-
posedness conditions for the problem’s local solution in time variable. The methodology of the qualitative 
study of nonlinear oscillations under the action of dissipative forces is based on the general principles of 
the nonlinear boundary value problems theory, such as monotony method and Galerkin method. 

The one-dimensional nonlinear equation of fifth order with second derivative in time variable of the 
form ,fuGbuauu xxxxtxxxxtt =)(  where G  is a certain nonlinear function, generalizes the beam 

vibration model (see [1] and the bibliography). Most of the applied problems obviously have the action of 
generalized forces of internal dissipation in oscillating system. In particular, the flexural waves in Voigt-
Kelvin bar are described by the fifth order linear equation of the form mentioned [2, с. 60]) which 
considers the influence of dissipative forces on a dynamic process. The paper focuses on a qualitative study 
of mathematic model of nonlinear oscillations under the action of dissipative forces. The problem entails 
considerable mathematical difficulties and is an urgent technical and engineering problem [3], which has 
been solved in general for very narrow class of problems. In [1], there have been studied the existence of 
solution of mixed problems in a bounded domain for the system of linear equations where one of the 
unknown functions describes the vertical displacement of the beam. Problems for nonlinear wave equations 
of the beam vibration type have been considered, in particular, in [4, 5]. There should be noted that the 
mathematical aspects of qualitative theory of evolutional partial differential equations of odd order have 
been a subject of the research of many scientists from second half of 20th century (see, e.g., [6 - 10] and the 
bibliography). The aim of this paper is to investigate a behaviour of the solution of the mixed problem for 
weakly nonlinear fifth order equation in a bounded domain in spatial variables (beam vibration equation 
under the action of dissipative forces in the oscillating system) as well as to obtain the boundedness 
conditions for generalized solution in a finite time moment. 
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Problem statement. Let )(0,0= TlQT ),( , where <T , <l , ][0,T . In the domain TQ , for 

nonlinear equation  
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we shall consider the mixed problem with initial conditions  
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In equation (1), function  txu ,  is a cross motion of the beam section with x  coordinate at arbitrary 

time moment t ; 0a , 0b , 00 b  are constants which can be expressed through geometrical and 

physico-mechanical parameters of the beam, the constant 00 a  describes the action of resisting forces in 

the oscillating system (linear case), function uuc
p 2

0


 describes the nonlinear elastic forces acting in the 

system,  )txf ,(  is the external driving force. Boundary conditions (4) correspond to the model of a beam 

with fixed pivoting supports on the ends 0x  and lx  .  

From now on we shall assume 1)/(=  ppp and use the cancellation  
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Concerning the right-hand side of equation (1) ind the initial data, we assume the following 
conditions to hold: 

(F)  )0(0, 0
2 ,(),  lLff t  for any 0>0 . 

(U) ;,,, )(0)(0)(0 2242
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The function ))(0];([0, 2
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00 lHTCut ,   
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)(0,T , is called generalized solution of problem (1)-(4) in the domain TQ , if it satisfies initial conditions 

(2)-(3) and the integral equality  
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for almost all ](0, 0Tt  and for any )(0)(02
0 lLlHv p ,,  . If ,= T  then the solution is called global. 

If ,T  then the solution is called local. 

Existence of the oscillation mode without blow-up (local solution of the problem). Main result: 
Under the conditions (F), (U), one can specify a number  00 T  depending on the coefficients, the 

right-hand side of the equation and the initial data, such that the generalized solution u  of problem (1)-(4) 

in the domain 
0TQ exists. 

Considering the separability of the Banach space )(0)(0)(0=)(0 4222
0 lHlLlHlV p ,,,,   , we 

shall take in this space a countable set N}{ k
k  such that any finite count of elements of this set is linearly 
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independent and the closure of its linear shell in )(0 lV ,  coincides with )(0 lV , . Note that N}{ k
k  could 

be selected as orthonormal in the space )(02 lL , . Concider the functions 
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On the basis of Caratheodory theorem [11, с. 54], there exists a continuous solution of problem (6),  
(7), which has an absolutely continuous derivative in t  on a certain interval )[0, 0t . The estimates obtained 

below will imply Tt =0 , and besides, T  will be determined later. Multiplying (6) by ,
N
k tc , summing up 

over k  from 1  to N  and integrating over t  from 0  to < T , we obtain  

     
 

l
N
txx

N
xx

N
txx

l
N
t ubuuadxxu

0 0

2

0

2

2

1


 ),(  

   





 l
NN

t
N
t

NpNN
t

NN
t dxudxdtutxfuuucuubua

0

2

1

2

00
2

0 .
2

1
=),(   (8) 

Let’s estimate integrals (8). We have 
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Further estimating yields  
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where 1C , 2C , 3C , 4C , 5C  are positive constants which do not depend on N . 

In view of the estimates above, from (8) we obtain the inequality  
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where 6C - 12C  are positive constants which do not depend on N . Using the Bellman-Gronwall lemma, 

from (9) we obtain  
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),(0,T  the positive constants 1M , 2M  depend on the coefficients, the right-hand side of the equation 

and the initial data, and they do not depend on N . Applying the Bihari lemma [12, p. 110] to inequality 
(10), we obtain  
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where the positive constant 3M  does not depend on ,N  )(0,1 TT  . 

Further differentiating the integral equality (5) over t , multiplying the result equality by N
ttkc , , 

summing up over k  from 1 to N  and finally integrating over t  from 0  to ,  ](0, 1T  , we obtain: 
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Using the conditions above, let us estimate the summands of (13). Note that in the same way as it is 
described above, one can obtain the following inequality:  
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),(0, 1T  and the positive constants 4M , 5M  do not depend on N . Applying the Bihari lemma to 

inequality (14), we obtain  
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where )(0,0 TT  , the positive constant 7M  does not depend on N . From (12), (16), (17) it follows that 
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integral equality (5) and the initial conditions (2)-(3).  

On Figure 1, there shown a dependence of the critical value 0T  on generalized parameters of the 

oscillating system *M , **M under various values of the exponent p , which describes nonlinearly elastic 

characteristics of the medium: a) 12.p ;  b) 3p ; c) 5p . 
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Fig. 1.  Dependence of the value 0T  on generalized parameters of the oscillating system under various values 

of the exponent p  

Remark. In the case of negativity of the energy functional at the initial time moment 
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exists no global solution of problem (1)-(4) [14], i.e. there exists a blow-up oscillation mode [15]. In other 

words, there exists such a finite 0,>T  for which   .=
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Conclusions. The main result of the proposed work is extending the class of nonlinear partial 
differential equations modeling the oscillation processes in elastic media, for which one can obtain the 
conditions of boundedness for the solution of mixed problem at a finite time moment as well as the 
conditions of existence of a blow-up oscillation mode. It is important to note that the nonlinear wave 
equation of beam vibration type studied in the paper, has a lot of applications while developing 
mathematical models of physico-mechanical processes, in particular, in nonlinear oscillation theory. The 
qualitative results of analysis of the oscillating system that we have obtained in the paper, show the 
possibility of applying Galerkin method to the problem considered as well as they allow further applying 
various approximate methods while investigating the dynamical characteristics of the solutions.  
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