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JlociizkeHa KOJIMBAJIBHA CHCTeMa, IKa MOJEIIOETHCS NEepIIO0 3MIIAHOI0 3aJa4e0 I
c1a0ko HeJiHIHHOro piBHAHHS KOJMBaHb OajJIkm B oOMexeHiii ob6uacti. OTpuMaHi ymMoBH
iCHYBaHHSI JIOKQJBHOIO 32 YaCOBOK 3MiHHOK PO3B si3Ky. Oc00/IMBO BUAIIEHUI KOJIMBAJILHUI
pexuM i3 3aroctpennsiM. Ilokazana MokIUBICTh 3acTOCyBaHHs 10 3aaadi MeTony I'aabopkina.

The paper is devoted to the research of the oscillating system that is described by the
first mixed problem for the weakly nonlinear equation of the beam vibrations in a bounded
domain. The conditions of the existence of the local, according to a time variable, solution have
been obtained. Oscillating blowup regime is especially highlighted. The possibility of the
Galerkin method application to the problem is shown.

Introduction. We investigate the solution of the problem on nonlinear transverse vibrations of
elastic body subject to the action of dissipative forces in a bounded domain. Such problems have many
applications in various technical systems, such as vibration of pipelines, railway lines, drill columns,
bridges, electrical wires, optica fiber etc. For the nonlinear oscillations model considered, there is no
general analytical methodologies of determining dynamical characteristics of the oscillation process. Thus
we propose using the qualitative methods of nonlinear boundary value problems theory to obtain the well-
posedness conditions for the problem’s local solution in time variable. The methodology of the qualitative
study of nonlinear oscillations under the action of dissipative forces is based on the general principles of
the nonlinear boundary value problems theory, such as monotony method and Galerkin method.

The one-dimensional nonlinear equation of fifth order with second derivative in time variable of the
form Uy + AU + DUyec + G(U) = T, where G is a certain nonlinear function, generalizes the beam

vibration model (see [1] and the bibliography). Most of the applied problems obviously have the action of
generalized forces of internal dissipation in oscillating system. In particular, the flexural waves in Voigt-
Kelvin bar are described by the fifth order linear equation of the form mentioned [2, ¢. 60]) which
considers the influence of dissipative forces on adynamic process. The paper focuses on a qualitative study
of mathematic model of nonlinear oscillations under the action of dissipative forces. The problem entails
considerable mathematical difficulties and is an urgent technical and engineering problem [3], which has
been solved in general for very narrow class of problems. In [1], there have been studied the existence of
solution of mixed problems in a bounded domain for the system of linear equations where one of the
unknown functions describes the vertical displacement of the beam. Problems for nonlinear wave equations
of the beam vibration type have been considered, in particular, in [4, 5]. There should be noted that the
mathematical aspects of qualitative theory of evolutional partial differential equations of odd order have
been a subject of the research of many scientists from second half of 20" century (see, e.g., [6 - 10] and the
bibliography). The aim of this paper is to investigate a behaviour of the solution of the mixed problem for
weakly nonlinear fifth order equation in a bounded domain in spatial variables (beam vibration egquation
under the action of dissipative forces in the oscillating system) as well as to obtain the boundedness
conditions for generalized solution in a finite time moment.
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Problem statement. Let Qp =(0,1)x(0,T),where T <o, | <o,z €[0,T]. Inthedomain Qr, for
nonlinear equation

Uyt + @Ugeoocx + Do+ 80U +BoU = ColU| P2utf(xt), p>2 €h)

we shall consider the mixed problem with initial conditions

u(x,0) = o (%), &)
ou(x,0
2 - ©
and boundary conditions
2 2
u0,1)=2"10Y g y,= 2210 g @
OX OX

In equation (1), function u(x,t) isa cross motion of the beam section with x coordinate at arbitrary
time moment t; a>0, b>0, by >0 are constants which can be expressed through geometrical and
physico-mechanical parameters of the beam, the constant ag > O describes the action of resisting forces in

the oscillating system (linear case), function co|u| P=2\, describes the nonlinear elastic forces acti ng in the

system, f(x,t) isthe externa driving force. Boundary conditions (4) correspond to the model of a beam
with fixed pivoting supportsontheends x=0 and x=1.
From now on we shall assume p’ = p/(p—1) and use the cancellation

| Ur
M, =M o) =[JMfde et
0

Concerning the right-hand side of equation (1) ind the initial data, we assume the following
conditionsto hold:

(F) f, f; € L2((0,1)x(0,7¢)) forany 7 >0.
(U) ug e HE(O,NNH*(©O,NNL2P2(0,1); up e HZO,HNH*O,1).

The function ueC([0Tol;H(0) such that u; € C([0,Tol; HE(0,1)),
Uy € L ((0,To); L2(0,1)) N L2 ((0, Tp); H§(o,l)), where Ty is an arbitrary number from the interva
(0, T), is called generalized solution of problem (1)-(4) in the domain Qy, if it satisfies initial conditions
(2)-(3) and the integral equality

|
j [uttv"'autxxvxx DU 4 Vo + A0 U VDUV — Co| U | p_Zuv—fv]dx =0 (5)
0
for amost al t e (0,Tp] and for any ve Hg(O,I)ﬂ LP(O,1). If T =+, then the solution is called global.
If T <+o0, then thesolutioniscalled local.

Existence of the oscillation mode without blow-up (local solution of the problem). Main result:
Under the conditions (F), (U), one can specify a number 0<Tj <+ depending on the coefficients, the

right-hand side of the equation and the initial data, such that the generalized solution u of problem (1)-(4)
in the domain Qr exists.

Considering the separability of the Banach space V(0,1)=HE(0,)NL2P~2(0,NNH*(0,1), we
shall take in this space a countable set {a)k}keN such that any finite count of elements of this set islinearly
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independent and the closure of its linear shell in V(0,1) coincides with V(0,1) . Note that {a)k}keN could

be sdected as orthonorma in  the  space L2(O,I). Concider the  functions

N
uN () =Y el ok (), N=12..,
k=1

where clN cé\‘ - CH are solutions of the corresponding Cauchy problems

I [utt o*+aull, D? wX +buNwk +aguN wX +uNwk—c ‘uN‘ P2y Nk fa)dexzo, (6)
ce O =ul, @ =up, ©

N
N _ Nk N
uN(x) = Uy @, lus —u —)O,
o (%) kZ:iO’k HO OHV(O,I)
N N k N

WN =S uN ok JuN —u 50, No>w, te[0T].
e kZ:ll,kw Hl 1”Hg(o,|))mH4(0,l) © el

On the basis of Caratheodory theorem [11, c. 54], there exists a continuous solution of problem (6),
(7), which has an absolutely continuous derivativein t on acertain interval [O,tg) . The estimates obtained

below will imply tg =T, and besides, T will be determined later. Multiplying (6) by cL\ft, summing up
over k from 1 to N andintegrating over t from 0 to r <T , we obtain

_J'(ut (X, r))zdx+”[ (utxx) + bulyude +

O 00

+a0(utN )2+bouNutN—co‘uN‘p “uN ul - f(xtul }dth——J( )2 8
Let's estimate integrals (8). We have
| = | 7 1 2 1
”buxxutxxdxdt> j(uxx) dx ——j( ) dx, ”f(x,t)uNdxdtgn[E(uN) +§(f(x,t))2}dxdt.
00 00
Further estimating ylelds

| 7 p-2 | 7 T p
”co‘u'\" uN Ut dxdt<cOC1JI utN‘ dxdt <
00

p
u|

I p | 7 p I p (7 p p2
s%”u(')\" dx+Czj'HutN‘ dxdtst‘uS" dx+05j HutN‘ dx | dt,
0 00 0 o\0

where C,;, C,, C3, C4, Cg are positive constants which do not depend on N .

In view of the estimates above, from (8) we obtain the inequality
|

I(utN )de+ _I[(ug()zdxaL ﬁ(ut'\)&)zdxdt < CG_I”u(',\' ‘ IDdx+ C7'|f(u1N )de+ Cg.l[(U(’)\’IXX)ZdX-‘r
0 0 00 0 0 0

| ¢ | 7 > |z > ot p pi2
+09”(f(x,t))2dxdt+010”(UN) dxdlt + cﬂ”(uxNX) dxdt+Clzj(j‘utN‘ dx] dt, 7 €(0,T), (9)
00 00 00 0\ 0

where Cg-Cy, are positive constants which do not depend on N . Using the Bellman-Gronwall lemma,
from (9) we obtain
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R IV b2
I(utN) dx+f(u>'g'() dx+”(utxx) dxdt<Mq + sz(”“r ‘ ] dt, (10)
0 0 00
7€(0,T), the positive constants M4, M, depend on the coefficients, the right-hand side of the equation
and the initial data, and they do not depend on N . Applying the Bihari lemma [12, p. 110] to inequality
(10), we obtain

|

NPy ' NPy lTded 2M
{)(Ut) X+£(Uxx) X*_([,([(Utm) XtS[2—(p—2)M1(p_2)/2M2T]2/(p_2) (11)

under T < 2 . Hence, considering the theorem conditions, from (11) we obtain

(p-2)M{P22pm,

o] AT -] 2(OT)H2ONN(OT)20) " 1 (12

where the positive constant M ;3 does not dependon N, T; € (0, T).
Further differentiating the integral equality (5) over t, multiplying the result equality by cl'(\'tt,

summing up over k from 1 to N and finally integrating over t from O to 7, 7 € (0,T;] , we obtain:

;-I[(utt (x T)) dX+J.J[ (uttxx )2 + bUt>o<Ut’t\lxx + ag (Ut,t\l )2 +
0 00

p-2
+b0utNut’t\l —co(p—l)‘uN‘ ut utt fr (X t)utt }dxdt——j(utt (X, O)) dx. (13)

Using the conditions above, let us estimate the summands of (13). Note that in the same way asit is
described above, one can obtain the following inequality:

p/2

T

j|utt Pdx+ [ > |D%f |2dxdtsM4+M5I[I|ut’t\' |2de dt, (14)
Q, lal=2 o\Q

7€ (0,T;), and the positive constants M4, M5 do not depend on N . Applying the Bihari lemma to
inequality (14), we obtain
| s
N 2 2M4
_[(utt ) dx + j j (uttxx) dxdt < — (15)
0 00 [2-(p-2)M {7 22MgT] (P72

under T < 2 . Hence, from (15) we have

H”“ H ((O.T,);L2(01)NL2((0,T,);H2(0, |)) 6
where the positive constant M g does not depend on N, T, € (0, T) . Assume that
. 2 2
Ty =min ; . Note that
° {(p—Z)M{p‘ZVZMz (p—Z)Mﬁp‘ZVZMs}
I To p— P’
juN‘ dxdt <M+, (17)
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where Ty € (0,T), the positive constant M, does not depend on N . From (12), (16), (17) it follows that

there exists a subsequence {u Nm} NeN <{uM} neN (for convenience, denote it again by {u N }) such that

uN (-, Tp) = *—weaklyin L2(0,1), uN > u *—weaklyin Lw((O,To);Hg(O,I)),
uN>u  weaklyin LP((0,To);LP(0,1)), uN—u, *—weaklyin L*((0,To);L%(0,1)),
uN > u, weaklyin L2((0,To); HE(0,1)), uf—>uy *—weaklyin L®((0,To); L%(0,1)),

ul S Uy weaklyin L2((0,To);HZ(0,1)), ‘uN‘p uN - 7 weaklyin LP (Qq ), N>
Since {utN} is bounded in L2((0,T0); Hg(o,l)), and {uN} is bounded in Lp(QTO) and
Hg(o,l) < LP(0,1) compactly, therefore on the basis of [13, ¢.70] uN Su strongly in Lp(QTO) and
amost everywhere in QTo' Therefore y =|u |'°‘2 u. It is easy to show that the function u satisfies the
integral equality (5) and theinitial conditions (2)-(3).
On Figure 1, there shown a dependence of the critical value Ty on generalized parameters of the

oscillating system M ", M under various values of the exponent p, which describes nonlinearly elastic
characteristics of the medium: & p=21; b) p=3;C) p=5.
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Fig. 1. Dependence of the value T on generalized parameters of the oscillating system under various values
of the exponent p

Remark. In the case of negativity of the energy functional at the initial time moment

| |
E(0) :%j[uf(xﬂb(uo,xx)ﬁ bo(uo)z]dx —%J'co|uo|pdx<0 and under assumption that co >0, there
0 0
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exists no global solution of problem (1)-(4) [14], i.e. there exists a blow-up oscillation mode [15]. In other

|
words, there exists such afinite T* > 0, for which  |im I[utz + (U )? +u p}dxz o0,
t>T*-00

Conclusions. The main result of the proposed work is extending the class of nonlinear partial
differential equations modeling the oscillation processes in elastic media, for which one can obtain the
conditions of boundedness for the solution of mixed problem at a finite time moment as well as the
conditions of existence of a blow-up oscillation mode. It is important to note that the nonlinear wave
equation of beam vibration type studied in the paper, has a lot of applications while developing
mathematical models of physico-mechanical processes, in particular, in nonlinear oscillation theory. The
gualitative results of analysis of the oscillating system that we have obtained in the paper, show the
possibility of applying Galerkin method to the problem considered as well as they allow further applying
various approximate methods while investigating the dynamical characteristics of the solutions.
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