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Abstract. We gudied the gradient dependence of the
effective viscosity # for the diluted solution of the
polystyrene in toluene under three concentrations p =
= 0.510° 1-10° and 2:10° g/m® and for four polystyrene
fractions with average molar weights M = 5.2-10%, 4.4-10",
3.310* and 1.810" g/mal, in the temperature range of
293-308 K. The experiments have been carried out with
the use of rotary viscometer “Rheotest 2.1" at various
cylinder rotation angular rate w (r/s). The analysis of the
dependences n(w) permitted to mark out the frictional #s
and elastic 7. components of the viscosity and to study
their dependences on the concentration p of the polymer
into the solution, on the length of the chain N and on the
temperature T. We have obtained the equation for defining
the intringc viscosity of the polymer solution. It was
shown that the basic contribution into the intrinsic
viscosity gives the elastic component of the viscosity with
taking into account the gradient dependence of #e.

Keywords. effective viscosity, frictional and eastic
components of the viscosity, conformational volume,
deformation, segmental motion, activation energy.

1. Introduction

The viscosity # of polymer solutions is the object of
special attention of numerous experimental and theoretical
investigations, generalized for example, in monographs [ 1-
5]. This is connected both by the practical importance of
this property of polymeric solutions in series of
technological processes and by a variety of factors having
an influence on the value . On the other hand, such interest
can be explained by a wide range of its change a the
transition from the diluted solutions to the concentrated
ones and aso to mets. All above-mentioned gives the
consderable informative data for testing different
theoretical imaginations about equilibrium and dynamical
properties of polymeric chainsinto the solution.

In general, the viscosity of the polymer solutionisa
function h =h(r,M,T) of concentration p of the
polymer (the density of the solution by polymer, g/m?), its
molar weight M and temperature T. However, even for the
diluted polymeric solutions, which are considered only in
this paper, the view of the function h =h(r ,M,T)is
determined only by the empirical approximate equations
such as the Mark-K uhn-Houwink .

[h]=KM?® (@)
and Huggins' s equation
(h-h)h, =[h]r +k?r2+.. (2

where #s is the \viscosity of the solvent;
h1=( - h )/ r istheintrinsic viscosity at p — O; K,
o.and k‘are empirical constants for the homologous series
of polymer.

The main attention of numerous theoretical
investigations (see [1-5], and also [6]), performed, as a
rule, in the middle of the last century, has been paid into
physical interpretation of the Mark-Kuhn-Houwink’s
equation (1).

Only the forces of friction of the polymer chain
links, which are considered as the “beads’ into
“necklace’, againg the solvent, are taking into account in
the majority of these investigations. An additiona
assumption about the locality of the bead response on
hydrodynamic flow leads to the concept of the
hydrodynamically penetrable Gaussian ball. Under this
conception the intrinsic viscosity of the diluted polymeric
solution is proportional to the square of the hydrodynamic
radius Ry of the polymeric chain:

h]~R; 3
The identification of Ry with the radius of the Flory
ball in ¢-solvent R, ~M™Zor in a “good” solvent

R, ~M*® leads to the Mark-Kuhn-Houwink equation
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(1) with the indexa 3 1, whereas in accordance with the
experimental data, suchindexis0.5£a £1.

Taking into account the hydrodynamic interaction,
according to which the local hydrodynamic flow around
the given bead essentially depends on the position of other
beads into necklace, |eads to the dependence:

[h]~R}/M (4)

which gives the values of the index o in the Mark-Kuhn-
Houwink equation (1) under limits 0.5-0.8. This is in
good agreement with the experimental data.

The expression (4) is similar to the Einstein
equation by the form

h]=2% ©)
proposed for the diluted solution containing the solid
spherical particles of the radius R. Since the volumetric
fraction y of these particdlesin the solution is proportional
to R¥m (where m is the particle's weight), then the
conception about the hydrodynamic impenetrability of the
polymer ball has appeared from the analogy (4) and (5).

Introduction of the additional factor considering the
partial permeability of a polymeric ball does not change
the functional dependence (4), although when compared
to the experimental data leads to the conclusion,
accordingly to which, at the molar weight M increasing
the hydrodynamic permeability of the polymer ball
decresses.

This conclusion contradicts to the fact that the
volumetric fraction y of the monomer links into
oonformatlonal volume of the polymer ball is proportional
to M™*°, therefore while molar weight increases the
hydrodynamic permeability of the polymeric ball should
also increase.

Let us also remark that the consideration only of the
friction forces of the monomer links against the solvent,
even taking into account their hydrodynamic interaction
into conformational volume of the polymer ball, cannot
explain the presence of the quadratic term upon p in the
Huggins's equation (2).

The “anomalous’ character of the viscosity at the
gradient rate gs of the hydrodynamic flow change is
another problem of the polymeric solutions viscosity.

This can be visualized in the decrease of measured
viscosity # of polymeric solution at gs increasing. It is
observed even in the case of the diluted solutions, so the
intrinsic viscosity [#] and parameters of the Egs. (1) and
(2) become gradient dependent quartities. As to the
solutions containing the asymmetrical macromolecules
(accordingly to the models — hard strokes, dumbbells,
ellipsoids) the reason of [h] decrease a gs increase is the
orientation of asymmetrical macromolecules along the
direction of the hydrodynamic flow, that decreases the
friction of macromolecules against the solvent under its
Brownian rotation movement.
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For the solutions of flexible polymeric chains
having the spherical conformation, the gradient
dependence [n] is explained by the anisotropy of
hydrodynamic interaction, which in turn creates the
orientation effect.

Finally, it can be noted, that exactly not uniform
deformation of polymeric ball causes the change of the
hydrodynamic interaction between the beads into
necklace, therefore, leads to the oriental effect
reinforcement. However, there is the opinion, that with the
increase of the hydrodynamic flow gradient rate gs the
shifted deformation degree of the conformational volume
of polymeric chain aso increases, and it would seem to
lead to the inverse effect, namely 7 increases at Qs
increasing. Such contradiction can be overcome. If we
take into account, that although with the increase of the
gradient rate g of the hydrodynamic flow the external
action leading to the shifted deformation of the
conformational volume of the polymeric chain increases,
but at the same time, the characterigtic time t, of the
external action on the polymeric ball decreases. This fact
decreases but not increases the shifted deformation degree
on account of the kinetic reasons.

The dependence of the viscosity of polymeric
solutions on the eastic properties of the conformational
volume of the polymeric chain and its gradient
dependence were analyzed in[7, 8].

Here the experimental data on viscosity for diluted
solutions of polystyrene in toluene are proposed and also
their interpretation is presented on the basis of the above
mentioned works.

2. Experimental

In order to obtain the statisticaly important
experimental data we studied the gradient dependence of
the viscosity for the diluted solution of the pol 5ysiyrene in
toluene under three concentrations p = 0.5-10°, 1-10° and
2-10° g/m® and for four polystyrene fractions Wlth average
molar weights M = 52:10°, 4410° 3310" and
1.8:10" g/moal.

Molar weights M of the polystyrene were
determined by the viscosimetric method with the use of
the Ostwald viscometer having the capillary diameter
d. = 0.62:10%m. The gradient dependence of the viscosity
for four temperatures 293, 298, 303 and308K were
studied for every pair of the valuesM-p.

The experiments have been carried out with the use
of rotary viscometer “Rheotest 2.1° by VEB MLW
production with the working cylinder containi ng two
rotation surfac& with the diameters d; = 3.4 10%m and
d,=3.910"m.

The typical viscosity dependences # on the used
cylinder rotation angular rate w (r/s) represented in Fig. 1.
We have obtained 48 curves n(w).
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Fig. 1. Thetypical experimental (points) and cal culated according to the Eq. (10) (full line graph)
dependences of the effective viscosity # on the rotation rate of the working cylinder o

Table 1
Optimization par ameter s#;, 7o and b according to the Eq. (10)
p-10°, g/m® 05 1.0 2.0

T,K|M10,gmo | 52 | 44 | 33|18 | 52|44 | 33| 1.8 | 52 | 44 | 33 | 18
n10°, Pas | 1.88 [ 1.79 | 1.66 [ 1.49 | 5.39 [ 491 | 440 | 250 | 163 | 1532 | 11.70 | 7.55

293 | 5¢10,Pas | 1.09[090|0.72| 047|220 (195|145| 094 | 440 | 368 | 280 | 1.81
b10°s* |1.95|1.73|240|380|145|149|170| 273 | 0.72 | 0.71 | 0.83 | 1.24

n10°, Pas | 1.72 | 1.65 | 1.58 [ 1.28 | 5.30 [ 452 | 3.70 | 1.96 | 16.00 | 14.22 | 10.50 | 6.90

298 | 5<10,Pas | 0.80| 058|042 (035|164 (133|089 056 | 343 | 260 | 1.86 | 0.99
b10°s' |[214|227|322|475|179| 184|290 | 539 | 083 | 0.88 | 1.06 | 1.94

n10°, Pas | 1.62 | 1.57 | 1.43 | 1.24 | 480 [ 3.77 [ 3.10 | 1.79 | 1530 | 1321 | 9.60 | 6.66

303 | 5¢10,Pas | 048(033]031(024|115(074|064| 038 | 220 | 1.49 | 1.19 | 0.69
b10°, s* |285(3.00(382|537|237|324|428| 730 | 1.15 | 1.35 | 144 | 245

ne10°, Pas | 157 [ 1.37 | 1.29 [ 1.22 | 3.97 | 342 | 2.77 | 1.44 | 148 | 11.97 | 9.20 | 6.00

308 | 5<10,Pas | 0.29|025]0.20( 012|072 049|039 024 | 1.56 | 0.95 | 0.69 | 0.45
b10% s* |[333(372|499|785|374|457|612|1012| 1.30 | 1.83 | 198 | 415

These dependences were analyzed with the use of
the following equation [8]:

h=h +h,@- expl- t,/t)/A+exp{- t,/t}) (6
where # is the measurable viscosity of the solution at
given value w, #; is frictional, and 7. is eastic component
of the viscosity #; to is the characterigtic time of the shifted
deformation of the macromolecule conformational

volume and t, is the characteristic time of the external
action of the gradient rate g of the hydrodynamic flow on
the conformational volume of the polymeric chain,
leading to its deformation and rotation.

Since the shifted deformation of the conformational
volume is redlized in accordance with the reptation
mechanism, i.e. via the segmental movement of the
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polymeric chain, t; is aso by the characterigtic time of its

own rotation polymeric chain, i.e. without the action of gs[7].
The expression (6) leads to these two asymptotes:

h=h, +h at, >>t, (7

h=h,at, <<t, )

Thus, if the characteristic time t, of the external

action of the gradient rate g of the hydrodynamic flow on

the macromolecule chain conformational volume is more

than the characteristic time to of its shifted deformation,

the experimental measured viscosity # is equal to the sum
of the frictional and elastic components; on the contrary,

at t, <<t, the shifted deformation of the macromolecule

conformational volume due to the kinetic reasons is not
discovered in time and the measured viscosity # is equal
to the frictional component 7.

The characteristic time t, is the function of the
gradient rate gs of the hydrodynamic flow which is caused
by the working cylinder rotation in the rotary viscometer.
Therefore, we can introduce the following ratio:

t,/t,=b/w (9)
where w isthe rate of the working cylinder rotation, rps.

Taking into account the expression (9) the EQ. (6)
can be represented as follows:

h =h, +h_(1- exp{- bw})/(1+exp{- b/w}) (20)

The conditions (7) and (8) in (10) correspond to
b/w>>1 and b/w<<1 conditions respectively.
Since, the parameter b under determination of (9) does not
depend on w, but depends on the properties of the
polymeric solution and temperature, then the measured
dependence n(w) is the function of three parameters #s, 7
and b.

Thus, measuring experimentally the effective
viscosity of polymeric solution as the function of the
angular rate w (rps) of the working cylinder, we have
found all three parameters #;, 7. and b applying the
optimization method with the use of the Origin 5.0
program.

The dependence of obtained parameters on the
concentration p (¢/m°) of the polymer in the solution, on
the molar weight M of the polymer and on the length of
the polymeric chain N = M/Mo, where Mg is the molar
weight of the monomer, and also on temperature has been
investigated.

As the analysis showed, the numerical values of the
frictional viscosity 1 can be easly determined on a
plateau of the experimental curve 7(w) under the
condition w ® ¥ . However, the optimization method
used by us did not always give the adequate values of the
parameters 5. and b, denoting their relationship. There are
two reasons for this. Firstly, in a range w® O the
measurement error  sharply  increases, since the
measurement moment of the force is small. Secondly, in a
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very important range of the transfer of the curve
h =h(w) from the strong dependence ; on e to the weak
one, the parameters #. and b are merged into a product
n, i.e. they areas asingle parameter.

Indeed, under the condition b/w<1,
decomposing the exponentials in (10), and limiting by two
terms of the range, exp{- b/w} »1- b/w, from (10) we
obtainh =h, +hb/2. Thereby, the optimization method

gives the values 7, and b, depending on each other, but not
giving the global minimum of the functional errors.
Therefore, at the estimation of 7 and b it was necessary to
complete the optimization method by the *manual”
method of the functional errors globa minimum search,
varying mostly by the numerical estimation .

The results of such estimations of the numerical
values 7, #7: and b, for all 48 experimental curves n(w) are
represented in Table 1.

A review of these data shows, that al three
parameters are the functions of the polymeric solution
concentration, the chain length and temperature. But at the
same time, 7 and #¢ increase at the p and N increasing but
they decrease at the T increasing, whereas the b parameter
is varied in the opposite way.

The analysis of these dependences will be given in
Section 3. Here, let us put in the additional parameters
which are necessary for this andysis. v is the volumetric
fraction of the conformational volume of polymeric chains
in the solution; ¢ is the volumetric fraction of the
monomer links in the conformational volume of a
polymeric chain.

In accordance with the definition,

y =cN,R (12)
where ¢ is the molar-volumetric concentration of the
polymer in the solution (mol/m®), R is the most probable
radius of the conformational volume of the non deformed
polymeric ball, i.e. radius Flory:

R, =aN*° (12)
where a isthe statistical length of the chain’ slink.
Sincep = M-c, we have
y =N,R’r /M (13)

At the critical concentration ¢, corresponding to
the beginning of the macromolecules conformation
volumes overlapping, P=1.

This value corresponds to the critical concentration
p* =Mx:

r*:M/NAR‘?:MON/NAR‘;3 (14)

For diluted solutions the convenient form for the ¥
definition is obtained from the Egs. (13) and (14) via the
concentration of the polymer:

y =ri/r’,r£r’ (15)
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Atalr3r’,w=1

The critical concentration r ~ is a function of the
chain length according to the expression:
r'=r,N*° (16)
inwhich
ro=M,/aN, (17)
can be named as the density in the volume of the
monomer link.
The volumetric fraction ¢ of the monomer links in
the conformational volume of polymeric chain is defined
by the expression:

j =V,N/N,R’ (18)

where Vy, is the partially molar volume of links of a
chainin the solution. Comparing (18) and (14) we have:

j =V.r'iM,. (19)

The relation My/Vy, should be similar to the density

pm Of the liquid monomer by the implication. Assuming
this approximation My/Vm = pm, We obtain:

j=r/r, (20)

3. Results and Discussion

3.1.The Frictional Component
of the Effective Viscosity

The whole range of the dependence h; onp, Nand

T we consider as the superposition of three movement
forms giving the endowment into the impulses flow [9],
where the notion of the viscosity coefficient is legibly
determined.

For a solvent such movement formis the Brownian
motion of the macromolecules, i.e. their translational
degree of freedom. We associated this form of movement
with the viscosity coefficient of the solvent xs. An
analogue of the Brownian motion of the solvent molecules
is the transition of polymer chain links from one stateinto
another one, which we call the segmental motion. It is

associated with the viscosity coefficienth . Under the

action of the gradient rate of the hydrodynamic flow the
polymer ball isin arotational mation, which also makes a

contribution intoh , . In accordance with the principle of

superposition, the internal segmental motion and the
external rotational motion of the polymeric ball should be
considered as the independent ones. In this case, the
external rotational motion of the polymeric ball (without
taking into account the segmental motion) is the same as
the rotation of hard wire in the Kuhn’s model; but here the
segmental motion is not disregarded. The rotational

motion of polymeric ball is associated with the viscosity
coefficienth .

The contribution of the above-mentioned motion
forms, respectively, the viscosity coefficients hg, hg,
and hpp, into 7. in the range of the conformational

volume of polymeric chainis determined by the equation:

h, =h,(1-] )+(hsm+hpp) (21)
For the whole volume of the solution we have:
h, =hL-y )+hy (22)
Comparing (21) and (22), we obtain:
he-h,=hg+h,,-h)y (23)

Since oy = plpm, the Eq. (23) gives a linear
dependence of h; on p. However, in accordance with the
data represented in Table 1, a frictional component of the
viscosity h; depends stronger on p, and this dependence
issimilar to the quadratic one.

Besides, the dependence of h; on the chain length

N is also determined by the concentration of the polymer
in the solution: the greater is p, the Stronger is dependence

h; on N. Since, h,, and h per definition should not
depend on p, (at least the diluted solution), the rotational
movement of the polymeric ball, i.e. h op+ 1S responsible

for these peculiarities of p influence on # and the
dependence of latter on N.

In order to explain these experimental facts, we
employ the concept of the hydrodynamic interaction
between the polymeric balls which rotate under the action
of the gradient rate gs of the hydrodynamic flow.

,, |
516 6
@)

Fig. 2. The effect of the hydrodynamic interaction between the
rotating polymeric balls (u isalinear rate of their rotation)

In accordance with the scheme, represented in Fig.
2, at the rotation of polymeric balls under the action of g,
the linear rates of their rotation are directed into the
opposite ways between them in a perigee field (see Fig.
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2). This creates the local additional gradient rate g4 of the
hydrodynamic flow. The total action of all local gy for the
presented polymeric ball creates the effect of its rotation
in the external medium, rotating into the opposite
direction.

Tangential tension G, which is created by frictional
forces under the action of gradients gs and g4 on the
rotational motion of polymeric ball, will be equal to:

G=h,(g,+9,) (24)

However, the measured tangential tension is

correlated with the given external gradient gs, but not with

the total gradient gs + g4, which gives another viscosity
coefficient:

G=h,,>g, (25)
Comparing (24) and (25), we have
hpp_hs:hsgsl_/gs (26)

The effect of hydrodynamic interaction between the
rotating polymeric balls, respectively g , depends on the

volumetric fraction y of the conformational volumes of
macromolecules in the solution. At the first approximation

we can assume the linear dependence of gy on y:

gy ~Y . Under the critical concentration I,
corresponding to the beginning of polymeric chains
conformation volumes overlapping, Q4 achieves

maximum possible value g for diluted solutions. This
value g, a y = 1 is chosen as the frame for the
evaluationof gy :

Oy =0y (27)

Y=0,00812+0.0603X
T=20°C

N=499
007 yN=422
N=317
N=173

(nen,)p, /o, Pa‘s

"do 02 04 06 08 10 12
plp

Y=0.00409+0.0562X
T=30°C

007 aN=499 .
006] TN=422

ON=317
0,05 &N=173
0,04 Ny
0,03

<
0,02
5

0,01 >

0,0

(e e, /o,Pa*s

0,0 0.2 04 06 08 1,0 12
plp
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If to note

hip =h.gq /g, (28)
then taking into account the Eq. (27) we can rewrite (26)
in the following view:

h,-h,=h'y (29
Substituting (29) in (23), we obtain:
hf_hs:(hsm+h;py )>jy (30)

Taking into account the definitions of ¢ and w
according to (20) and (15) respectively, we have:
th,-h)=hgr/r +hr?/rr* (31
In order to testify graphically the above-said it is
necessary to transform the Eq. (31) as:

(hf_hs)rm/r :hsm+hpp*r/r* (32

During the calculations of the Ieft part of the Eq.

(32), the experimental data were taken from Table 1, the
values of h, — from the Ref. [10], (h, = 0.584, 0.552,

0.517, 0.493 Pas at the temperatures of 293, 298, 303 and
308 K, respectively), a density of liquid styrene pn,, was
equal to 0.907 10° g/m® at 293K, but the temperature
dependence of pn, was neglected. During the calculations
of r” according to (16) and (17) we used the values of
Mo = 104.15 g/mol; a = 1.8640™° m.

The results of calculations are represented in Fig. 3.

As we can see, the experimental data, at every
temperature for al values of N, are linearized in the
coordinates of the expression (32) satisfactorily. This permits

to obtain the numerical values of h  and h | according to
the regression equations, shown in Fig. 3. According to these
data, we have h , >h _ >h_, ie the values of h and

h, aemorethanh, in one order moreover.

Y=0,00526+0,0595X
0,08
0,07
0,06
0,05
0,04
0,03

(nen,)p, /o, Pa‘s

0,02
0,01

0,00 +— T T ™ T T T
0.0 02 04 06 08 1,0 1.2

plp’

¥=0,00229+0,054X
T=35°C

N=499
0,064 yN=422
N=317
N=173

0,07

0,05

0,04
0,03

0,02

(nen)p,/p,Pa*s

0,01

0,00

"00 02 04 06 08 10 12
plp

Fig. 3. Interpretation of the experimental values of friction viscosity #; in coordinates of the Eq. (32)
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Fig. 4. Temperature dependences of the coefficients of viscosity h s (@

andh ;p (b) in the Arrhenius equation plots

Since hg, and h, do not depend on N, the
dependence of h; on the chain length is determined by
the second term in (32) viar * =r ,N"*'®. This explains
the experimentally found regularity, in accordance to

which at the concentration of the polymer in the solution
increasing, the influence of N on #¢ increases too.

Temperature dependence of h, and h;p in the
Arrhenius equation plots (see Fig. 4), leads to the
following activation energy values: ESp = 60.6 kJmoal,

E .= 6.0 kJ¥mol. The distinction in one order between
pp

ESm and Epp* indicates the essentially different forms of
the mation, which determine these values. The activation
energy E., calculated on the basis of reference data of s
for toluene gives the value of 8.6kJmol. Taking into
account the determination error of Epp* (see Fig. 4),

Eppk » E, can be accepted thoroughly. This means that

the rotational motion of the polymer ball under the action
of gradient rate of the hydrodynamic flow is realized via
the Brownian motion of the solvent molecules. It justifies
the insertion into (24) the viscosity coefficient #s of the

solvent. Therefore, using the experimental value h ;p in
the Eq. (28) (see Fig. 3) and the reference data 7, we have

calculated the ratio g / g, for every temperature. They

were equal to: 102.7, 106.9, 108.3 and 109.5 at 293, 298,
303 and 308 K, respectively. Taking into account the error
of their estimation, the temperature dependence of the

relation gy / g, can be neglected. According to
experimental conditions let us assume the average value <
g;_/gS > =107, which we will use in Subsection 3.4 for
the analysis of the parameter b. Also in Subsection 3.4 the
explanation of sufficiently great values of thegy /gS

ratio determining the efficiency of the hydrodynamic
interaction of the rotating polymer ballswill be given.

3.2. The Elastic Component #,
of the Effective Viscosity

It follows from the data presented in Table 1, that
the elastic component of the viscosity 7. for the diluted
solution of the polystyrene in toluene is determined as a
function of the polymeric concentration p, the chain length
N and temperature T. At the same time, the dependence of
ne ON p islinear, and the dependence of 7. on N is near to
the linear one.

The elastic properties of the polymer chain
conformation state are displayed in the form of the
conformational volume deformation resistance under the
action of the external force. Therefore, the contribution of
the elastic properties of the polymer chains conformation
into the elastic component of the solution viscosity can be
determined by the equation:

h,=hYy =h'r/r"

in which he0 is the elastic component of the viscosity in
the conformational volume of the polymeric chain.

(33)

Thevalueh eo was determined earlier [7]:

h.? =m,L (34)
where u is the shift module of the macromolecular

conformation volume, ty is the characteristic time of a
shift, L isafactor of the form for the deformed Flory ball.

At that [7]:
m:1.36£3 N8/ (35)
A
t,=2NY (36)

7

wheret is the characteristic time of the segmental motion.
At the deformation of the Flory ball with the radius

Ry into the elipsoid of rotation, elongated or pressed, for

example, along z axis, the factor of the form L is

determined by the equation [7]:
1 4
L=3/12(—+—— 3
15 1) @
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wherel , =1, and | , are repetition factors of the lineer
deformations of the Flory ball along the corresponding axes:
|, =R/R; , where R is the semi-axis of the ellipsoid,

and | , istherepetition factor of the volumetric deformeation:
IV:IXIyIZ:IZI (38)
At any deformations of the Flory ball | , £1
Substituting (35) and (36) in (34), we obtain:
RT
hd=——-N"°Lt (39)
N, a

Using (39) in (33) and exposing the dependence of
p on N in the form of the Egs. (16) and (17), we find the
expression defining the solution viscosity eastic
component:

h, = R N3sLtr
M 0

Thus, according to the experimental data, 7. is the
linear function of p and decreases at the temperature
increasing in accordance with the characteristic time t© of
the segmental mation decreasing.

The dependence of 7. on N is similar to the linear
one. Thisfact indicates that the factor of theformL isalso
a growth function on N. Thisis agreed with the theoretical
analysis of the macromolecules conformation state in the

(40)
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real solution, according to which the work of the
conformational volume deformation at the transition of
the FHory ball with radius R from the ideal solution into
the real one, is numericaly equal (in the system of the
mechanics symbols) to the change of the conformation

freeenergy DF « = F., - Fyq:

real

DF,, =DF’N(a-a,)= g RTN“S(Ii- 1) (41)

\Y

where DR = DR, - DR, isadifference of the normal
free energies of two adjacent link’s states of the polymeric

chainn § andS, -----; aand aq are
fractions of the states S, and S in real and ideal solutions
respectively. At this:

oY T

The § and S, states are the energy-wise
equivalent, and then DR’ = 0 , therefore
=9/(1+9) 43
where g = g,/ 0, istheratio of the statistical weights of
thestates S, and S,: 9, =4, g, =1.

(42)

Table2

Calculated valuesLz, 7/L, T and L based on the experimental values of #.and b

p-10°, gm’ 0.5

1.0 2.0

T,K | M10*, ¢g/mol | 52 | 44 | 33 | 1.8 | 52

’El
44 | 33|18 | 52| 44| 33| 18| 10°s

(L2),e10 s | 224 | 205 | 194 | 182 | 226

2201 196|180 | 226|209 | 189 | 174

(dL),y10° s | 146 | 1.88 | 1.71 | 1.72 | 1.06

293

117|130|129| 114|128 | 1.39 | 148

r10° s | 570 | 6.20 | 5.80 | 5.60 | 4.90

510| 510|480 | 510|520 | 510 | 510 531

L 390 | 330|340 | 330 | 460

430|390 | 3.70 | 450 | 400 | 3.70 | 3.40

(L1),e10° s | 162 | 129 | 112 | 131 | 166

148 | 11.7 | 105 | 162 | 145 | 124 | 9.40

(dL),y10" s | 1.31 | 1.44 | 1.59 | 1.38 | 0.86

298

096 | 0.75| 0.65 | 1.01 | 1.05 | 1.09 | 0.97

10 s | 4.60| 430 | 420 | 430 | 3.80

3.80 | 290 | 2.60 | 400 | 3.90 | 3.70 | 3.00 3.76

L 350|290 | 260|310 | 440

390 | 390 | 4.00 | 400 | 3.70 | 3.40 | 3.10

(L7),e10° s | 959 | 7.21 | 820 | 875 | 114

8.00 | 820 | 7.08 | 104 | 8.20 | 7.80 | 6.40

(dL),10" s | .00 | 1.09 | 1.08 | 1.22 | 0.65

303

054 052|048 | 075| 0.68 | 0.79 | 0.76

r10° s | 310|280 290|330 270

210| 210|190 | 280 | 240 | 250 | 2.20 257

L 310| 260|270 | 270 | 420

3.80 390|380 370|350 310 | 290

(L7),e10 s | 5.80 | 5.78 | 5.70 | 438 | 7.00

530|500 |433| 770|510 | 450 | 410

(dL),y10" s | 0.86 | 0.93 | 0.91 | 0.84 | 0.41

308

038 036|035 | 055|051 059|044

r10° s | 220|230|220|1.90| 1.70

140|140|120| 210| 1.60 | 1.60 | 1.30 174

L 260 | 250|250 | 230 | 410

370 | 370|350 | 3.70 | 3.20 | 280 | 3.10
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It follows from the analysis of Egs. (41) and (42),
that the work of the conformational volume deformation

has the positive value at every sign of DR (if DR, <O,

thena <a,,; ifDR, >0, thena >a,,). It leads to the

compression of the conformation volume, i.e. to the
decreasing of A,. Thus, the factor of the form L increases.
Since the work of the deformation is proportional to
N, then at the length of the chain increasing the factor of
the form increases. The dependence of L on N should be

numerically estimated for known values DR, . These

calculations show a rather complicated and strong
dependence of L on N. In this work we obtain the
numerical values of L via the experimental values of 7.
and parameter b.

Asiit can be seen from the Eq. (40), the parameters
L and 7 are inseparable, and we can calculate only their
product via the values #e:

(Lt ), =he% N-%er (44)

The results of the calculation (Lt )h are present in

Table 2. We make sure, that the values of (Lt )h depend

on the length of the chain and temperature only. It
thoroughly corresponds to the physical sense of the
parameters L and z.

3.3. Parameter b

Accordingly to the ratio (9) the parameter b is a
measure of the influence of the gradient rate of the
hydrodynamic flow (caused by the rotation of the working
cylinder) on the characteristic time t,, on the action gs, on
the deformation of shift of the polymeric ball and its
rotation movement. The own characteristic time to of the
shift deformation and rotation of the polymer chain
accordingly to (36) dependson N and z.

Thus, as it follows from the experimental
estimations (see Table 1), the parameter b is the function
on all threearguments p, N and T, but at thisit isincreased
at the temperature increasing and it is decreased at p and N
increasing. In order to describe these dependencies let us

determine previoudly the angular rate W? (c™) of the

rotation of the deformed polymeric ball with the effective
radius Ry L, contacting with the surface of the working
cylinder with the diameter d.

w? =pdw/R L (45)
Here © appeares due to the distinction of the
dimensionalities W’ (s and w (1/9).
Then t\,0 can be determined as the inverse value
ofw? :

t; = R, L/pdw (46)

According to the definition (46), t\? is the time
during which the polymeric ball with the effective radius
R; L under the action of the rotating working cylinder

with the diameter d rotates on the unit angle equal to one
radian. Let us note that own characterigtic time of the shift
and rotation to of the polymeric ball at the expense of the
segmental motion was determined [7], in calculation on

the same unit angle. Thus, the ratio t° /t0 should not
depend on the choice of the standard in defining the
notion “ characteristic time”.

Since in our experiments the working cylinder had
two rotating surfaces with the diameters d; and d,, then

the value ofW? in (45) was averaged in accordance with

the condition d = (d;+dy)/2. The expresson for t\? is
changed respectively:

t; =2R,L/p(d, +d,)w (47)

Thus, t,° isinversely proportional tow ; therefore, it

is inversely proportional to gs via the constant of the
instrument:
t - (49)

As we have suggested in Section 3, the hyd-
rodynamic interaction takes place between the rotating
polymeric balls, which leads to the appearance of the
additional to gslocal gradient rate gy of the hydrodynamic
flow. This local gradient gy does not act on the
conformational volume of the polymeric chain, but it has
an influence on its monomer frame (Kuhn’'s model of the
hard wire ). Therefore the contribution of the local
gradient rate into characteristic time t, depends on the
volumetric fraction ¢ of the polymeric chain links in its
conformational volume.

Thus, the characteristic time t, depends on the total
effect of gs and gy ¢, therefore, we can write:

t,~ (9494 )" (49)
Taking into account the ratio gy =g,y and
combining (48) and (49), we obtain:

t/t =9,/(g,+9d y) (50)
Finally, we have:
t, = té’/ghg*rg (50
s T'm g

Accordingly to (47), (51) and definition (9), we
obtain a general expression for the parameter b:

_ 7RfL N?/St §_+g;_r_

S — _ (52)
2p(d1+d2) Os rmﬂ
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As it was stated earlier (see Section 3), the ratio
g; / g, amost does not depend on temperature, and so
a the calculations we use its average vaue
0. /9, =107. Assuming the known values a = 1.8640™°

m, dy = 3.440% m and d, = 3.940% m and combining the
constants, we obtain:

b= 2.84&0‘9:' / N‘”5(1+107rL)
Thus, accordingly to the experimental data (see
Table 1), the parameter b is a decreasing function on N
and p and theincreasing function of temperature.
Since T and L are unknown, the Eq. (53) can be
used for the calculation of theratio z/L at the experimental
values of b:

g—— = 2,840 /N‘”5§+1O7 (54)

The results of the calculations are reprmmted in
Table 2.

According to the independent estimates of (t L)he

(53)

and(t /L)b, we found the values of z and L, which are

also presented in Table 2. As follows from these data,
taking into account the experimental error, the
characteristic time ¢ of the segmental motion into the
diluted polymeric solution does not depend on p and N,
but it is the function of temperature.

The temperature dependence of {, obtained by
averaging of 7 at the given temperature for al values of p
and N, in the Arrhenius equation plots presented in Fig. 5.
This dependence allows to estimate the activation energy
of the polymeric chain segmental motion: E, = 55.34
kJ/mol.

-21,2

2149 |Y=-44,072+6659X

-21,6

21,84

Int

-22,0
-22,2

2244

22,6 +— T T T T
0,00324 0,00328 0,00332 0,00336 0,00340
1T, K"
Fig. 5. Temperature dependence of the average values of

characteristictimef of the segmental movement of polymeric
chain in the Arrhenius equation plots

Comparing Esqn = 60.64 kJmol with E, =
=55.34 kJ/mol, we can conclude, that within the limits of
errors of their estimations, they are equal: Eqn = E,. This
gives the evidence that the frictional coefficient of the
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viscosity e is defined by the segmental motion of the
polymeric chain.

The analysis of the factor of the form values (see
Table 2) indicates, that L does not depend on p, but
increases with the N increasing and decreases with the T
increasing. The dependence of L on N was discussed
earlier (see Section 3). Here we indicate, that the
experimentally determined decreasing of L with T
increasing is also agreed with the theoretical analysis of
the temperature influence on the conformational state of
the macromolecules in the real solution. Thus, let us use
the Eq. (41) and find its derivative:

Fw _ (RS}, gedlDRI/KT (g
T KT2 1+ gexp\DR’/KT}
. . .. T[ Fdef
Hence, the differential coefficient ——— < O at

any sign of DFVO. Consequently, the work of the
conformational volume deformation decreases with the
temperature increasing and the factor of the form L
decreases correspondingly.
3.4. The Intrinsic Viscosity
of the Polymeric Solution

The effective viscosity of the polymeric solution,
taking into account its gradient dependence, is determined by
the Eq. (6). By subgtituting in this equation of the determined
expressions (31) for #s and (40) for #e, we obtain:

h-hg=hgr/r +hr?/r.r +M—LtN3’5><

0

(1 expl- t,/6})/(L+ expf- t,/t})

Let us transform this expression into a form of the
relative viscosity:

(56)

h-h, _ hg, mwo T
== 4+ X *+
rhy r.hy hg r.r
+EL N3/51' exp{- tv/to} (57)

Ile hs 1+ exp{- tv/to}

Accordingly to the condition r ® O it is easy to

obtain an analytical expression for the intrinsic viscosity
of the polymeric solution:

] =ha/r h, oL

0 s

(L expl- t,/to})/ L+ expl- t,/t})

Thus, the intrinsic viscosity [#] of the polymeric
solution is also represented by the frictional [7]s and
elastic [#]e components:

[h]1=[h]; +[h].

N3/5x

(58)

(59)
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Here

[h]f :hsm/hsrm (60)
depends on the segmental motion of the polymeric chain
only, and the Eq. (61) isafunction of the elastic properties
of the polymeric chain conformational volume and is a

gradient dependent quantity.
], = LN el /) el 1 1)) (6D

0 s

As it was determined, #s does not depend on the
length of the polymeric chain. The frictional component
[#]f of the intrinsic viscosity does not depend on N either.
Therefore, the empirica Mark-Kuhn-Houwink equation
represents only the elastic [#]e component. Probably, that
is why, all the attempts to obtain the theoretical form of
the Mark-Kuhn-Houwink’s equation from the analysis of
the forces of friction in a model of the beads did not lead
to the positive results. Besides, due to the presence of the
frictional [#]s component of the intrinsic viscosity not
depending on N, the linear dependence of In[#] onInM (in
Mark-Kuhn-Hauwink’ s eguation) is an approximate and
will be disfigured in a field of lesser values of M; this fact
is observed experimentally.

In connection with this fact, let us edtimate the
contributions of frictional and eastic components to the
intrinsic viscosity of the solution of polystyrene in toluene at
N =500, T=298 K, using the experimental values 4, = and
L obtained by us. We will compare the results of the
calculation of [#7] with the experimental value [#7]e, presen-
ted in the form of the Mark-Kuhn-Hauwink’ s equation:

[h]ep =1.18%10°%(M)°*™ (62)

For M = 500-104.15 we obtain
[7]exp = 2.94-10* m*/g.

The frictional component [#]; is calculated

according to the Eq. (602, assuming #g = 5.26:10° Pas
(seeFig. 3); 7s= 0.5510° Pas; pm = 0.906:10° g/m?; [] =
1.06:10° m’g.

For convenience of the analysis the elastic
component of the intrinsic viscosity is present according
to the Eq. (61) in the form of two co-factors:

[h]. =12 >g(t, .to) (63)

Here

h2= RTt LN¥®
M 0 hs
represents the maximum possible contribution of the
elastic properties of the polymeric chain into intrinsic
viscosity under condition t, >>t, inthe function
olt, to) = (1- expl- t,/to})/(L+expl- t, /to}) (65)
which reflects the gradient dependence [#]..
Calculation of [n]2 according to the Eq. (64) at the

average values { =3.76 X0 "%s, L = 4.0 (see Table 2)

(64)
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gives the value [h]? =2.7140°m%g. As we can see,
[h]; is greater than [h],, in two orders. This fact

indicates the considerable effect of the gradient
dependence [#]., which is displayed as the low value of

the function g(t., to), under condition t, <<t .

The characteristic time of the shift t; of the
polymeric ball is calculated according to the Eq. (36): at
N =500 and { =3.76 0 °s we have t;=1.29-10° s.

Let us estimate the characteristic time of the
external action t, of the hydrodynamic flow on the
polymeric ball for Ostwald's capillary viscometer used by
us, since, as a rule, exactly these viscometers are applied
for the experimental estimation of [#].

We calculate t, without taking into account the
hydrodynamic interaction between the polymeric balls

accordingly to the conditionr =0.

The same as it was shown earlier (see Egs. (45) and
(46)), t, was defined as a quantity inversed to the rate of
rotation of the polymeric ball, touching the wall of the
capillary with theradius R. For this, we use the rate of the
shift wg, which is determined by the expression [5]:

w, = 4Q/pR®
where Q isthe volumetric liquid consumption, ms.

The shift tension on the capillary wall is determined
exactly via wg. However, by implication, wr is aso the
rate of the rotational motion of a particle with radius R
under the action of the gradient rate of the hydrodynamic
flow in the capillary. That is why, the angular rate of the

rotation W, of the polymeric ball near the capillary wall
can be found according to the equation:

(66)

R
W, =W, —— 6
W (67)
where RL is an average radius of the polymeric ball.
Hence, by definition t, =w;" we have:
t, =pR°R,L/4Q (68)

The radius of our viscometer R = 0.3140° m, the
volume of the flowing fluid V = 440° m?®, time of the
solvent outflow 65 s, and so Q = 6.1540% m¥/s and t, =
=3.8540°® s. Substituting the obtained values of t, and tq
into (65), we find g(t,t)) = 0.0149. Thus, only 1.5 % of
the maximum possible contribution of the elastic
properties of the polymeric ball 1o is displayed in the
glastic component of the intrinsic viscosity[h],:

[h], =2.7140°>0.0149=4.0440°m’/s. Total calcu-

lated value of the intrinsic viscosity of the polystyrene in
toluene solution at N=500 and T =298 K is equal to:

[N]=1.06X0° +4.04X0° =5.140°m*/ ¢
We consider, that the value of [#] is sufficiently
agreed with [h], =2.94x0°m’/g.
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Based on the above-mentioned edtimation of
t, =3.85X10 °s, we can answer the question: why the effect

of the hydrodynamic interaction of rotating polymeric balls

(i.e. square term per p in the Eq. (31) has an essentia

endowment into the frictional component of the viscosity.
Since the angular rate of rotation W, of the

polymeric ball is inversely proportional to t,, we have

w, =2.6%0s". Exactly a grest angular rate of the

polymeric balls rotation creates a significant effect of the
hydrodynamic interaction between them and makes the
greatest contribution into the frictional component of the
viscosity. However, despite the Kuhn's model, the
contribution of the polymeric balls segmental motion can
not be neglected, at least, in theoretical aspect, especially
at the determination of [#].

4. Conclusions

The investigation of the gradient dependence of the
effective viscosity of diluted solution of polystyrene in
toluene permitted to mark out the frictional #; and elastic
ne components of the viscosity and to study their
dependences on the concentration p of the polymer into
solution, on the length of the chain N and on the
temperature T. The frictional component of the viscosity
ns is determined by three coefficients of the viscosity 7s,
1sm and #p, representing three forms of motion: Brownian
moation of the solvent molecules, the segmental motion of
polymeric chain and the rotational motion of its frame,
respectively. High angular rate of the rotation of the
polymeric balls creates a hydrodynamic interaction
between them and | eads to the appearance of the quadratic
term of the dependence of #; on p, exactly the hydro-
dynamic interaction makes a basic contribution into #;.

The dastic component of the viscosity #e is
determined by the elastic properties of the polymeric ball
conformational volume under its shifted deformation. Due
to the kinetic reasons, i.e. due to the distinction between
the characterigic time of the external action t, and own
characteristic time of the shifted deformation ty; of the
polymeric chain the endowment of the elastic component
into effective viscosity of the solution depends on the
gradient rate of the hydrodynamic flow, and respectively,
on the angular rate w of the rotary viscometer working
cylinder rotation. A measure of this dependence is the
parameter b, described by the equation b=t /tw . It
was determined, that # and b have the opposite functional
dependence on p, N and T. The numerical estimates of the
factor of the form L for the deformed polymeric ball and
the characteristic time of the segmental motion z were
obtained based on the experimental values of #. and b.
These estimations showed that = does not depend on p and
N, but depends only on T. Moreover, the activation energy
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of the segmental mation is equal to the activation energy,
defined from the temperature dependence of the
coefficient viscosity 7gm.

The factor of the form L does not depend onp ina
diluted solution. It increases with the N increasing and
dlightly decreases with the T increasing. These regularities
agree with the theoretical analyss of the work of the
polymer chain conformational volume deformation at its
transforming from the ideal solution into the real one.

We have obtained the equation for defining the
intrinsic viscodity of the polymeric solution. It was shown
that the basic contribution into the intrinsic viscosity gives
the elastic component of the viscosity taking into account
the gradient dependence of #e.
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®PUKIIITHA TA IPYKHA KOMIIOHEHTH
B’AA3KOCTI PO3BEJJEHUX PO3YHNHIB
MMOJIICTUPOJI-TOJIYOJI

Anomauin. Busuena epadichmna 3anedichicmv  egex-
MUBHOT 6 AKOCMI 1] PO36E0EHO20 PO3UUHY NOAICIUPOLY 8 MOLYOTLi
onst mpvox Kkonyenmpayiti p = 0510°, 1:10°, 2:10° 2la®, womupvox
paxyiii nonicmupony 3 cepeduimu monsprumu macau M = 5.2-10°,
4.410% 3.310% 1.810" 2lvons, npu womupwox memnepamypax 6
inmepeani  293-308K. Jlocniou nposoounu ma - pomayitinomy
sickosumempi Rheotest 2.1 3a pisnux kymosux wisuokocmeii @ (06lc)
obepmanHs pobouozo yuninopa. Awaniz sanexcrocmeti n(w) das
MOMHCIUGICMb BUOLTUMU DPUKYILIHY 1t MA NPYIHCHY 1o KOMIOHEHMU
6’ sizocmi ma  euguumu ix 3anexcuicmo 6i0 memnepamypu T,
KoHyenmpayii p ma ooedcunu nanyioea N. OOepowcano mamema-
MudHUl 8Upa3 Osl XapaKmepucmuyHoi 6 A3Kocmi NoLmMepHo20 po3-
YUHY MA NOKA3AHO, WO OCHOBHY POIlb 8 Hill 8idiepac NPyHCcHA KOMNO-
HeHma 6’ s13K0Ci e 3 PAXYBAHHSM il 2DAOIEHMHOI 3A/EIHCHOCHII.

Knrouosi cnosa. egpexmuena & si3kicmo, pakyivina ma
nPYACHA KOMROHeHmu @ s13kocmi, Kon@Opmayitinuil 06’ em, degop-
Mayis, ceeMeHMAanbHUll pyx, eHepeis akmusayii.



