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Abstract. We studied the gradient dependence of the 
effective viscosity η for the diluted solution of the 
polystyrene in toluene under three concentrations ρ =  
= 0.5∙105, 1∙105 and 2∙105 g/m3 and for four polystyrene 
fractions with average molar weights М = 5.2∙104, 4.4∙104, 
3.3∙104 and 1.8∙104 g/mol, in the temperature range of 
293–308 K. The experiments have been carried out with 
the use of rotary viscometer “Rheotest 2.1” at various 
cylinder rotation angular rate ω (r/s). The analysis of the 
dependences η(ω) permitted to mark out the frictional ηf 
and elastic ηe components of the viscosity and to study 
their dependences on the concentration ρ of the polymer 
into the solution, on the length of the chain N and on the 
temperature T. We have obtained the equation for defining 
the intrinsic viscosity of the polymer solution. It was 
shown that the basic contribution into the intrinsic 
viscosity gives the elastic component of the viscosity with 
taking into account the gradient dependence of ηe.  
 
Keywords: effective viscosity, frictional and elastic 
components of the viscosity, conformational volume, 
deformation, segmental motion, activation energy.  

1. Introduction 

The viscosity η of polymer solutions is the object of 
special attention of numerous experimental and theoretical 
investigations, generalized for example, in monographs [1-
5]. This is connected both by the practical importance of 
this property of polymeric solutions in series of 
technological processes and by a variety of factors having 
an influence on the value η. On the other hand, such interest 
can be explained by a wide range of its change at the 
transition from the diluted solutions to the concentrated 
ones and also to melts. All above-mentioned gives the 
considerable informative data for testing different 
theoretical imaginations about equilibrium and dynamical 
properties of polymeric chains into the solution. 

In general, the viscosity of the polymer solution is a 
function ),,( TMρηη =  of concentration ρ of the 
polymer (the density of the solution by polymer, g/m3), its 
molar weight M and temperature T. However, even for the 
diluted polymeric solutions, which are considered only in 
this paper, the view of the function ),,( TMρηη = is 
determined only by the empirical approximate equations 
such as the Mark-Kuhn-Houwink . 

αη KM=][                 (1) 
and Huggins’s equation  

( ) ...][][ 22 +′+=− ρηκρηηηη ss  (2) 
where ηs is the viscosity of the solvent; 

( ) ρηηηη ss−=][  is the intrinsic viscosity at ρ → 0; К, 
α and κ΄are empirical constants for the homologous series 
of polymer. 

The main attention of numerous theoretical 
investigations (see [1-5], and also [6]), performed, as a 
rule, in the middle of the last century, has been paid into 
physical interpretation of the Mark-Kuhn-Houwink’s 
equation (1). 

Only the forces of friction of the polymer chain 
links, which are considered as the “beads” into 
“necklace”, against the solvent, are taking into account in 
the majority of these investigations. An additional 
assumption about the locality of the bead response on 
hydrodynamic flow leads to the concept of the 
hydrodynamically penetrable Gaussian ball. Under this 
conception the intrinsic viscosity of the diluted polymeric 
solution is proportional to the square of the hydrodynamic 
radius Rg of the polymeric chain: 

2~][ gRη      (3) 

The identification of Rg with the radius of the Flory 
ball in θ-solvent 2/1~ MRg or in a “good” solvent 

5/3~ MRg  leads to the Mark-Kuhn-Houwink equation 
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(1) with the index 1≥α , whereas in accordance with the 
experimental data, such index is 15.0 ≤≤ α . 

Taking into account the hydrodynamic interaction, 
according to which the local hydrodynamic flow around 
the given bead essentially depends on the position of other 
beads into necklace, leads to the dependence: 

MRg /~][ 3η        (4) 

which gives the values of the index α in the Mark-Kuhn-
Houwink equation (1) under limits 0.5–0.8. This is in 
good agreement with the experimental data.  

The expression (4) is similar to the Einstein 
equation by the form 

ψη 5.2][ =      (5) 
proposed for the diluted solution containing the solid 
spherical particles of the radius R. Since the volumetric 
fraction ψ of these particles in the solution is proportional 
to R3/m (where m is the particle’s weight), then the 
conception about the hydrodynamic impenetrability of the 
polymer ball has appeared from the analogy (4) and (5).  

Introduction of the additional factor considering the 
partial permeability of a polymeric ball does not change 
the functional dependence (4), although when compared 
to the experimental data leads to the conclusion, 
accordingly to which, at the molar weight M increasing 
the hydrodynamic permeability of the polymer ball 
decreases. 

This conclusion contradicts to the fact that the 
volumetric fraction ψ of the monomer links into 
conformational volume of the polymer ball is proportional 
to М-4/5, therefore while molar weight increases the 
hydrodynamic permeability of the polymeric ball should 
also increase. 

Let us also remark that the consideration only of the 
friction forces of the monomer links against the solvent, 
even taking into account their hydrodynamic interaction 
into conformational volume of the polymer ball, cannot 
explain the presence of the quadratic term upon ρ in the 
Huggins’s equation (2). 

The “anomalous” character of the viscosity at the 
gradient rate gs of the hydrodynamic flow change is 
another problem of the polymeric solutions viscosity. 

This can be visualized in the decrease of measured 
viscosity η of polymeric solution at gs increasing. It is 
observed even in the case of the diluted solutions, so the 
intrinsic viscosity [η] and parameters of the Eqs. (1) and 
(2) become gradient dependent quantities. As to the 
solutions containing the asymmetrical macromolecules 
(accordingly to the models – hard strokes, dumbbells, 
ellipsoids) the reason of [η] decrease at gs increase is the 
orientation of asymmetrical macromolecules along the 
direction of the hydrodynamic flow, that decreases the 
friction of macromolecules against the solvent under its 
Brownian rotation movement. 

For the solutions of flexible polymeric chains 
having the spherical conformation, the gradient 
dependence [η] is explained by the anisotropy of 
hydrodynamic interaction, which in turn creates the 
orientation effect. 

Finally, it can be noted, that exactly not uniform 
deformation of polymeric ball causes the change of the 
hydrodynamic interaction between the beads into 
necklace, therefore, leads to the oriental effect 
reinforcement. However, there is the opinion, that with the 
increase of the hydrodynamic flow gradient rate gs the 
shifted deformation degree of the conformational volume 
of polymeric chain also increases, and it would seem to 
lead to the inverse effect, namely η increases at gs 
increasing. Such contradiction can be overcome. If we 
take into account, that although with the increase of the 
gradient rate g of the hydrodynamic flow the external 
action leading to the shifted deformation of the 
conformational volume of the polymeric chain increases, 
but at the same time, the characteristic time tv of the 
external action on the polymeric ball decreases. This fact 
decreases but not increases the shifted deformation degree 
on account of the kinetic reasons.  

The dependence of the viscosity of polymeric 
solutions on the elastic properties of the conformational 
volume of the polymeric chain and its gradient 
dependence were analyzed in [7, 8]. 

Here the experimental data on viscosity for diluted 
solutions of polystyrene in toluene are proposed and also 
their interpretation is presented on the basis of the above 
mentioned works. 

2. Experimental 

In order to obtain the statistically important 
experimental data we studied the gradient dependence of 
the viscosity for the diluted solution of the polystyrene in 
toluene under three concentrations ρ = 0.5∙105, 1∙105 and 
2∙105 g/m3 and for four polystyrene fractions with average 
molar weights М = 5.2∙104, 4.4∙104, 3.3∙104 and  
1.8∙104 g/mol.  

Molar weights M of the polystyrene were 
determined by the viscosimetric method with the use of 
the Ostwald viscometer having the capillary diameter  
dc = 0.62∙10-3m. The gradient dependence of the viscosity 
for four temperatures 293, 298, 303 and308 K were 
studied for every pair of the values M-ρ. 

The experiments have been carried out with the use 
of rotary viscometer “Rheotest 2.1” by VEB MLW 
production with the working cylinder containing two 
rotation surfaces with the diameters d1 = 3.4∙10-2m and  
d2 = 3.9∙10-2m. 

The typical viscosity dependences η on the used 
cylinder rotation angular rate ω (r/s) represented in Fig. 1. 
We have obtained 48 curves η(ω). 
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Fig. 1. The typical experimental (points) and calculated according to the Eq. (10) (full line graph)  
dependences of the effective viscosity η on the rotation rate of the working cylinder ω 

 
Table 1 

Optimization parameters ηf, ηe and b according to the Eq. (10) 

ρ∙10-5, g/m3 0.5 1.0 2.0 

T, K M∙104, g/mol 5.2 4.4 3.3 1.8 5.2 4.4 3.3 1.8 5.2 4.4 3.3 1.8 

ηf∙103, Pa∙s 1.88 1.79 1.66 1.49 5.39 4.91 4.40 2.50 16.3 15.32 11.70 7.55 

ηe∙10, Pa∙s 1.09 0.90 0.72 0.47 2.20 1.95 1.45 0.94 4.40 3.68 2.80 1.81 293 

b∙102,s-1 1.95 1.73 2.40 3.80 1.45 1.49 1.70 2.73 0.72 0.71 0.83 1.24 

ηf∙103, Pa∙s 1.72 1.65 1.58 1.28 5.30 4.52 3.70 1.96 16.00 14.22 10.50 6.90 

ηe∙10, Pa∙s 0.80 0.58 0.42 0.35 1.64 1.33 0.89 0.56 3.43 2.60 1.86 0.99 298 

b∙102,s-1 2.14 2.27 3.22 4.75 1.79 1.84 2.90 5.39 0.83 0.88 1.06 1.94 

ηf∙103, Pa∙s 1.62 1.57 1.43 1.24 4.80 3.77 3.10 1.79 15.30 13.21 9.60 6.66 

ηe∙10, Pa∙s 0.48 0.33 0.31 0.24 1.15 0.74 0.64 0.38 2.20 1.49 1.19 0.69 303 

b∙102, s-1 2.85 3.00 3.82 5.37 2.37 3.24 4.28 7.30 1.15 1.35 1.44 2.45 

ηf∙103, Pa∙s 1.57 1.37 1.29 1.22 3.97 3.42 2.77 1.44 14.8 11.97 9.20 6.00 

ηe∙10, Pa∙s 0.29 0.25 0.20 0.12 0.72 0.49 0.39 0.24 1.56 0.95 0.69 0.45 308 

b∙102, s-1 3.33 3.72 4.99 7.85 3.74 4.57 6.12 10.12 1.30 1.83 1.98 4.15 
 

These dependences were analyzed with the use of 
the following equation [8]: 

{ } { })exp1/()exp1( 00 tttt vvef −+−−+= ηηη  (6)  
where η is the measurable viscosity of the solution at 
given value ω, ηf is frictional, and ηe is elastic component 
of the viscosity η; t0 is the characteristic time of the shifted 
deformation of the macromolecule conformational 

volume and tv is the characteristic time of the external 
action of the gradient rate gs of the hydrodynamic flow on 
the conformational volume of the polymeric chain, 
leading to its deformation and rotation. 

Since the shifted deformation of the conformational 
volume is realized in accordance with the reptation 
mechanism, i.e. via the segmental movement of the 
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polymeric chain, t0 is also by the characteristic time of its 
own rotation polymeric chain, i.e. without the action of gs [7]. 

The expression (6) leads to these two asymptotes: 

ef ηηη +=  at 0ttv >>   (7) 

fηη = at 0ttv <<   (8) 
Thus, if the characteristic time tv of the external 

action of the gradient rate gs of the hydrodynamic flow on 
the macromolecule chain conformational volume is more 
than the characteristic time t0 of its shifted deformation, 
the experimental measured viscosity η is equal to the sum 
of the frictional and elastic components; on the contrary, 
at 0ttv <<  the shifted deformation of the macromolecule 
conformational volume due to the kinetic reasons is not 
discovered in time and the measured viscosity η is equal 
to the frictional component ηf. 

The characteristic time tv is the function of the 
gradient rate gs of the hydrodynamic flow which is caused 
by the working cylinder rotation in the rotary viscometer. 
Therefore, we can introduce the following ratio: 

ω// 0 bttv =   (9) 
where ω is the rate of the working cylinder rotation, rps. 

Taking into account the expression (9) the Eq. (6) 
can be represented as follows: 

 { }( ) { }( )ωωηηη bbef −+−−+= exp1exp1  (10) 
The conditions (7) and (8) in (10) correspond to 

1/ >>ωb  and 1/ <<ωb  conditions respectively. 
Since, the parameter b under determination of (9) does not 
depend on ω, but depends on the properties of the 
polymeric solution and temperature, then the measured 
dependence η(ω) is the function of three parameters ηf, ηe 
and b. 

Thus, measuring experimentally the effective 
viscosity of polymeric solution as the function of the 
angular rate ω (rps) of the working cylinder, we have 
found all three parameters ηf, ηe and b applying the 
optimization method with the use of the Origin 5.0 
program.  

The dependence of obtained parameters on the 
concentration ρ (g/m3) of the polymer in the solution, on 
the molar weight M of the polymer and on the length of 
the polymeric chain N = M/M0, where M0 is the molar 
weight of the monomer, and also on temperature has been 
investigated. 

As the analysis showed, the numerical values of the 
frictional viscosity ηf can be easily determined on a 
plateau of the experimental curve η(ω) under the 
condition ∞→ω . However, the optimization method 
used by us did not always give the adequate values of the 
parameters ηe and b, denoting their relationship. There are 
two reasons for this. Firstly, in a range 0→ω  the 
measurement error sharply increases, since the 
measurement moment of the force is small. Secondly, in a 

very important range of the transfer of the curve 
)(ωηη =  from the strong dependence η on ω to the weak 

one, the parameters ηe and b are merged into a product 
ηeb, i.e. they are as a single parameter. 

Indeed, under the condition 1/ <ωb , 
decomposing the exponentials in (10), and limiting by two 
terms of the range, ωω bb −≈− 1}exp{ , from (10) we 
obtain 2bef ηηη += . Thereby, the optimization method 
gives the values ηe and b, depending on each other, but not 
giving the global minimum of the functional errors. 
Therefore, at the estimation of ηe and b it was necessary to 
complete the optimization method by the “manual” 
method of the functional errors global minimum search, 
varying mostly by the numerical estimation ηe.  

The results of such estimations of the numerical 
values ηe, ηf and b, for all 48 experimental curves η(ω) are 
represented in Table 1. 

A review of these data shows, that all three 
parameters are the functions of the polymeric solution 
concentration, the chain length and temperature. But at the 
same time, ηe and ηf increase at the ρ and N increasing but 
they decrease at the T increasing, whereas the b parameter 
is varied in the opposite way.  

The analysis of these dependences will be given in 
Section 3. Here, let us put in the additional parameters 
which are necessary for this analysis: ψ is the volumetric 
fraction of the conformational volume of polymeric chains 
in the solution; φ is the volumetric fraction of the 
monomer links in the conformational volume of a 
polymeric chain. 

In accordance with the definition, 
3
fARсN=ψ    (11) 

where c is the molar-volumetric concentration of the 
polymer in the solution (mol/m3), Rf is the most probable 
radius of the conformational volume of the non deformed 
polymeric ball, i.e. radius Flory: 

5/3aNR f =   (12) 
where а is the statistical length of the chain’s link. 

Since ρ = М∙с, we have 
MRN fA /3 ρψ =   (13) 

At the critical concentration с*, corresponding to 
the beginning of the macromolecules conformation 
volumes overlapping, Ψ=1. 

This value corresponds to the critical concentration 
ρ* = М⋅с*: 

3
0

3* // fAfA RNNMRNM ==ρ   (14) 
For diluted solutions the convenient form for the Ψ 

definition is obtained from the Eqs. (13) and (14) via the 
concentration of the polymer:  

*/ ρρψ = , ∗≤ ρρ       (15) 
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At all ∗≥ ρρ , Ψ = 1. 

The critical concentration ∗ρ  is a function of the 
chain length according to the expression: 

5/4
0

* −= Nρρ       (16) 
in which 

ANaM 3
00 /=ρ    (17) 

can be named as the density in the volume of the 
monomer link. 

The volumetric fraction φ of the monomer links in 
the conformational volume of polymeric chain is defined 
by the expression: 

3/ fAm RNNV=ϕ         (18) 
where Vm is the partially molar volume of links of a 

chain in the solution. Comparing (18) and (14) we have:  

0
* / MVmρϕ = .       (19) 

The relation М0/Vm should be similar to the density 
ρm of the liquid monomer by the implication. Assuming 
this approximation М0/Vm ≈ ρm, we obtain: 

mρρϕ *=      (20) 

3. Results and Discussion 

3.1.The Frictional Component  
of the Effective Viscosity 

The whole range of the dependence fη  on ρ, N and 
T we consider as the superposition of three movement 
forms giving the endowment into the impulses flow [9], 
where the notion of the viscosity coefficient is legibly 
determined. 

For a solvent such movement form is the Brownian 
motion of the macromolecules, i.e. their translational 
degree of freedom. We associated this form of movement 
with the viscosity coefficient of the solvent ηs. An 
analogue of the Brownian motion of the solvent molecules 
is the transition of polymer chain links from one state into 
another one, which we call the segmental motion. It is 
associated with the viscosity coefficient smη . Under the 
action of the gradient rate of the hydrodynamic flow the 
polymer ball is in a rotational motion, which also makes a 
contribution into fη . In accordance with the principle of 
superposition, the internal segmental motion and the 
external rotational motion of the polymeric ball should be 
considered as the independent ones. In this case, the 
external rotational motion of the polymeric ball (without 
taking into account the segmental motion) is the same as 
the rotation of hard wire in the Kuhn’s model; but here the 
segmental motion is not disregarded. The rotational 

motion of polymeric ball is associated with the viscosity 
coefficient ppη . 

The contribution of the above-mentioned motion 
forms, respectively, the viscosity coefficients sη , smη  

and ppη , into ηс in the range of the conformational 
volume of polymeric chain is determined by the equation:  

( ) ( )ϕηηϕηη ppsmsс ++−= 1       (21) 
For the whole volume of the solution we have: 

( ) ψηψηη csf +−= 1                (22) 
Comparing (21) and (22), we obtain: 

( )ϕψηηηηη sppsmsf −+=−         (23) 
Since φψ = ρ/ρm, the Eq. (23) gives a linear 

dependence of fη  on ρ. However, in accordance with the 
data represented in Table 1, a frictional component of the 
viscosity fη  depends stronger on ρ, and this dependence 
is similar to the quadratic one. 

Besides, the dependence of fη  on the chain length 
N is also determined by the concentration of the polymer 
in the solution: the greater is ρ, the stronger is dependence 

fη  on N. Since, smη  and sη  per definition should not 
depend on ρ, (at least the diluted solution), the rotational 
movement of the polymeric ball, i.e. ppη , is responsible 
for these peculiarities of ρ influence on ηf and the 
dependence of latter on N. 

In order to explain these experimental facts, we 
employ the concept of the hydrodynamic interaction 
between the polymeric balls which rotate under the action 
of the gradient rate gs of the hydrodynamic flow.  

 

 
 

Fig. 2. The effect of the hydrodynamic interaction between the 
rotating polymeric balls (u is a linear rate of their rotation) 

 
In accordance with the scheme, represented in Fig. 

2, at the rotation of polymeric balls under the action of gs, 
the linear rates of their rotation are directed into the 
opposite ways between them in a perigee field (see Fig. 
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2). This creates the local additional gradient rate gsL of the 
hydrodynamic flow. The total action of all local gsL for the 
presented polymeric ball creates the effect of its rotation 
in the external medium, rotating into the opposite 
direction. 

Tangential tension G, which is created by frictional 
forces under the action of gradients gs and gsL on the 
rotational motion of polymeric ball, will be equal to:  

( )sLss ggG += η        (24) 
However, the measured tangential tension is 

correlated with the given external gradient gs, but not with 
the total gradient gs + gsL, which gives another viscosity 
coefficient: 

spp gG ⋅= η      (25) 
Comparing (24) and (25), we have 

ssLsspp ggηηη =−   (26) 

The effect of hydrodynamic interaction between the 
rotating polymeric balls, respectively sLg , depends on the 
volumetric fraction ψ of the conformational volumes of 
macromolecules in the solution. At the first approximation 
we can assume the linear dependence of sLg  on ψ: 

ψ~sLg . Under the critical concentration ∗ρ , 
corresponding to the beginning of polymeric chains 
conformation volumes overlapping, sLg  achieves 

maximum possible value ∗
sLg  for diluted solutions. This 

value ∗
sLg  at ψ = 1 is chosen as the frame for the 

evaluation of sLg : 

ψ*
sLsL gg =              (27) 

If to note 

ssLspp gg ** ηη =                (28) 
then taking into account the Eq. (27) we can rewrite (26) 
in the following view: 

ψηηη *
ppspp =−               (29) 

Substituting (29) in (23), we obtain: 
( ) ϕψψηηηη ⋅+=− *

ppsmsf            (30) 
Taking into account the definitions of φ and ψ 

according to (20) and (15) respectively, we have:  
*2*)( ρρρηρρηηη mppmsmsf +=−  (31) 

In order to testify graphically the above-said it is 
necessary to transform the Eq. (31) as: 

**)( ρρηηρρηη ppsmmsf +=−         (32) 
During the calculations of the left part of the Eq. 

(32), the experimental data were taken from Table 1, the 
values of sη  – from the Ref. [10], ( sη  = 0.584, 0.552, 
0.517, 0.493 Pa∙s at the temperatures of 293, 298, 303 and 
308 K, respectively), a density of liquid styrene ρm was 
equal to 0.907 106 g/m3 at 293 K, but the temperature 
dependence of ρm was neglected. During the calculations 
of ∗ρ  according to (16) and (17) we used the values of 
M0 = 104.15 g/mol; a = 1.86⋅10-10 m. 

The results of calculations are represented in Fig. 3. 
As we can see, the experimental data, at every 

temperature for all values of N, are linearized in the 
coordinates of the expression (32) satisfactorily. This permits 
to obtain the numerical values of smη  and ∗

ppη  according to 
the regression equations, shown in Fig. 3. According to these 
data, we have ∗

ppη > smη > sη , i.e. the values of ∗
ppη  and 

smη  are more than sη , in one order moreover. 
 

 
Fig. 3. Interpretation of the experimental values of friction viscosity ηf in coordinates of the Eq. (32) 
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Fig. 4. Temperature dependences of the coefficients of viscosity smη  (a)  

and *
ppη  (b) in the Arrhenius equation plots 

 

Since smη  and ∗
ppη  do not depend on N, the 

dependence of fη  on the chain length is determined by 

the second term in (32) via 5/4
0

* −= Nρρ . This explains 
the experimentally found regularity, in accordance to 
which at the concentration of the polymer in the solution 
increasing, the influence of N on ηf increases too. 

Temperature dependence of smη  and ∗
ppη  in the 

Arrhenius equation plots (see Fig. 4), leads to the 
following activation energy values: spE  = 60.6 kJ/mol, 

*pp
E = 6.0 kJ/mol. The distinction in one order between 

smE  and *pp
E  indicates the essentially different forms of 

the motion, which determine these values. The activation 
energy sE , calculated on the basis of reference data of ηs 
for toluene gives the value of 8.6kJ/mol. Taking into 
account the determination error of *pp

E (see Fig. 4), 

spp
EE ≈* can be accepted thoroughly. This means that 

the rotational motion of the polymer ball under the action 
of gradient rate of the hydrodynamic flow is realized via 
the Brownian motion of the solvent molecules. It justifies 
the insertion into (24) the viscosity coefficient ηs of the 
solvent. Therefore, using the experimental value ∗

ppη  in 
the Eq. (28) (see Fig. 3) and the reference data ηs, we have 
calculated the ratio ssL gg ∗  for every temperature. They 
were equal to: 102.7, 106.9, 108.3 and 109.5 at 293, 298, 
303 and 308 K, respectively. Taking into account the error 
of their estimation, the temperature dependence of the 
relation ssL gg ∗  can be neglected. According to 
experimental conditions let us assume the average value < 

ssL gg ∗ > = 107, which we will use in Subsection 3.4 for 
the analysis of the parameter b. Also in Subsection 3.4 the 
explanation of sufficiently great values of the ssL gg ∗  
ratio determining the efficiency of the hydrodynamic 
interaction of the rotating polymer balls will be given. 

3.2. The Elastic Component ηe  
of the Effective Viscosity 

It follows from the data presented in Table 1, that 
the elastic component of the viscosity ηe for the diluted 
solution of the polystyrene in toluene is determined as a 
function of the polymeric concentration ρ, the chain length 
N and temperature T. At the same time, the dependence of 
ηe on ρ is linear, and the dependence of ηe on N is near to 
the linear one. 

The elastic properties of the polymer chain 
conformation state are displayed in the form of the 
conformational volume deformation resistance under the 
action of the external force. Therefore, the contribution of 
the elastic properties of the polymer chains conformation 
into the elastic component of the solution viscosity can be 
determined by the equation: 

*00 ρρηψηη eee ==   (33) 

in which 0
eη  is the elastic component of the viscosity in 

the conformational volume of the polymeric chain. 
The value 0

eη  was determined earlier [7]: 

Lte 0
0 µη =      (34) 

where μ is the shift module of the macromolecular 
conformation volume, t0 is the characteristic time of a 
shift, L is a factor of the form for the deformed Flory ball.  

At that [7]: 

5/8
336.1 −= N

aN
RT

A

µ   (35) 

τ5/7
0 7

4 Nt =             (36) 

where τ is the characteristic time of the segmental motion. 
At the deformation of the Flory ball with the radius 

Rf into the ellipsoid of rotation, elongated or pressed, for 
example, along z axis, the factor of the form L is 
determined by the equation [7]: 

)
)(

41(3 2

zxx
vL

λλλ
λ

+
+=          (37) 
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where yx λλ =  and zλ  are repetition factors of the linear 
deformations of the Flory ball along the corresponding axes: 

fii RR=λ , where iR  is the semi-axis of the ellipsoid, 

and vλ  is the repetition factor of the volumetric deformation: 

zxzyxv λλλλλλ 2==   (38) 

At any deformations of the Flory ball 1≤vλ . 
Substituting (35) and (36) in (34), we obtain: 

τη LN
aN

RT
A

e
5/1

3
0 −=   (39) 

Using (39) in (33) and exposing the dependence of 
ρ* on N in the form of the Eqs. (16) and (17), we find the 
expression defining the solution viscosity elastic 
component: 

τρη LN
M
RT

e
5/3

0

=          (40) 

Thus, according to the experimental data, ηe is the 
linear function of ρ and decreases at the temperature 
increasing in accordance with the characteristic time τ of 
the segmental motion decreasing. 

The dependence of ηe on N is similar to the linear 
one. This fact indicates that the factor of the form L is also 
a growth function on N. This is agreed with the theoretical 
analysis of the macromolecules  conformation state  in the 

real solution, according to which the work of the 
conformational volume deformation at the transition of 
the Flory ball with radius Rf from the ideal solution into 
the real one, is numerically equal (in the system of the 
mechanics symbols) to the change of the conformation 
free energy idrealdef FFF −=∆ : 

)11(
2
5)( 5/10 −=−∆=∆

V
idVdef RTNNFF

λ
αα  (41) 

where 0
1

0
2

0
VVV FFF ∆−∆=∆  is a difference of the normal 

free energies of two adjacent link’s states of the polymeric 

chain: 1S  

     • 
•   •  and 2S  •−•−• ; α and αid are 

fractions of the states S1 and S2 in real and ideal solutions 
respectively. At this: 
















∆

+






∆

=
RT
Fg

RT
Fg VV

00

exp1expα      (42) 

The 1S  and 2S  states are the energy-wise 

equivalent, and then 00 =∆ VF  , therefore 

( )ggid += 1α                  (43) 

where 21 / ggg =  is the ratio of the statistical weights of 
the states 1S  and 2S : 41 =g , 12 =g . 

Table 2 
Calculated values Lτ, τ/L, τ and L based on the experimental values of ηe and b 

ρ∙10-5, g/m3 0.5 1.0 2.0 
T, K M∙104, g/mol 5.2 4.4 3.3 1.8 5.2 4.4 3.3 1.8 5.2 4.4 3.3 1.8 

τ, 
10-10, s 

(Lτ)ηe∙1010, s 22.4 20.5 19.4 18.2 22.6 22.0 19.6 18.0 22.6 20.9 18.9 17.4 
(τ/L)b∙1010, s 1.46 1.88 1.71 1.72 1.06 1.17 1.30 1.29 1.14 1.28 1.39 1.48 

 

τ∙1010, s 5.70 6.20 5.80 5.60 4.90 5.10 5.10 4.80 5.10 5.20 5.10 5.10 5.31 
293 

L 3.90 3.30 3.40 3.30 4.60 4.30 3.90 3.70 4.50 4.00 3.70 3.40 
(Lτ)ηe∙1010, s 16.2 12.9 11.2 13.1 16.6 14.8 11.7 10.5 16.2 14.5 12.4 9.40 
(τ/L)b∙1010, s 1.31 1.44 1.59 1.38 0.86 0.96 0.75 0.65 1.01 1.05 1.09 0.97 

 

τ∙1010, s 4.60 4.30 4.20 4.30 3.80 3.80 2.90 2.60 4.00 3.90 3.70 3.00 3.76 
298 

L 3.50 2.90 2.60 3.10 4.40 3.90 3.90 4.00 4.00 3.70 3.40 3.10 
(Lτ)ηe∙1010, s 9.59 7.21 8.20 8.75 11.4 8.00 8.20 7.08 10.4 8.20 7.80 6.40 
(τ/L)b∙1010, s 1.00 1.09 1.08 1.22 0.65 0.54 0.52 0.48 0.75 0.68 0.79 0.76 

 

τ∙1010, s 3.10 2.80 2.90 3.30 2.70 2.10 2.10 1.90 2.80 2.40 2.50 2.20 2.57 
303 

L 3.10 2.60 2.70 2.70 4.20 3.80 3.90 3.80 3.70 3.50 3.10 2.90 
(Lτ)ηe∙1010, s 5.80 5.78 5.70 4.38 7.00 5.30 5.00 4.33 7.70 5.10 4.50 4.10 
(τ/L)b∙1010, s 0.86 0.93 0.91 0.84 0.41 0.38 0.36 0.35 0.55 0.51 0.59 0.44 

 

τ∙1010, s 2.20 2.30 2.20 1.90 1.70 1.40 1.40 1.20 2.10 1.60 1.60 1.30 1.74 
308 

L 2.60 2.50 2.50 2.30 4.10 3.70 3.70 3.50 3.70 3.20 2.80 3.10  
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It follows from the analysis of Eqs. (41) and (42), 
that the work of the conformational volume deformation 
has the positive value at every sign of 0

VF∆ (if 00 <∆ VF , 

then idαα < ; if 00 >∆ VF , then idαα > ). It leads to the 
compression of the conformation volume, i.e. to the 
decreasing of λv. Thus, the factor of the form L increases.  

Since the work of the deformation is proportional to 
N, then at the length of the chain increasing the factor of 
the form increases. The dependence of L on N should be 
numerically estimated for known values 0

VF∆ . These 
calculations show a rather complicated and strong 
dependence of L on N. In this work we obtain the 
numerical values of L via the experimental values of ηe 
and parameter b.  

As it can be seen from the Eq. (40), the parameters 
L and τ are inseparable, and we can calculate only their 
product via the values ηe:  

( ) 15/30 −−= ρητ η N
RT
ML e       (44) 

The results of the calculation ( )ητL  are present in 

Table 2. We make sure, that the values of ( )ητL  depend 
on the length of the chain and temperature only. It 
thoroughly corresponds to the physical sense of the 
parameters L and τ. 

3.3. Parameter b 

Accordingly to the ratio (9) the parameter b is a 
measure of the influence of the gradient rate of the 
hydrodynamic flow (caused by the rotation of the working 
cylinder) on the characteristic time tv, on the action gs, on 
the deformation of shift of the polymeric ball and its 
rotation movement. The own characteristic time t0 of the 
shift deformation and rotation of the polymer chain 
accordingly to (36) depends on N and τ. 

Thus, as it follows from the experimental 
estimations (see Table 1), the parameter b is the function 
on all three arguments ρ, N and T, but at this it is increased 
at the temperature increasing and it is decreased at ρ and N 
increasing. In order to describe these dependencies let us 
determine previously the angular rate 0

fω  (с-1) of the 
rotation of the deformed polymeric ball with the effective 
radius Rf L, contacting with the surface of the working 
cylinder with the diameter d. 

LRd ff ωπω =0        (45) 
Here π appeares due to the distinction of the 

dimensionalities 0
fω  (s-1) and ω  (r/s). 

Then tv
0 can be determined as the inverse value 

of 0
fω : 

ωπdLRt fv =0             (46) 

According to the definition (46), 0
vt is the time 

during which the polymeric ball with the effective radius 
LR f  under the action of the rotating working cylinder 

with the diameter d rotates on the unit angle equal to one 
radian. Let us note that own characteristic time of the shift 
and rotation t0 of the polymeric ball at the expense of the 
segmental motion was determined [7], in calculation on 
the same unit angle. Thus, the ratio 0

0 ttv  should not 
depend on the choice of the standard in defining the 
notion “characteristic time”. 

Since in our experiments the working cylinder had 
two rotating surfaces with the diameters d1 and d2, then 
the value of 0

fω  in (45) was averaged in accordance with 

the condition d = (d1+d2)/2. The expression for 0
vt  is 

changed respectively: 
ωπ )(2 21

0 ddLRt fv +=        (47) 
Thus, tv

0 is inversely proportional toω ; therefore, it 
is inversely proportional to gs via the constant of the 
instrument: 

10 ~ −
sv gt    (48) 

As we have suggested in Section 3, the hyd-
rodynamic interaction takes place between the rotating 
polymeric balls, which leads to the appearance of the 
additional to gs local gradient rate gsL of the hydrodynamic 
flow. This local gradient gsL does not act on the 
conformational volume of the polymeric chain, but it has 
an influence on its monomer frame (Kuhn’s model of the 
hard wire ). Therefore the contribution of the local 
gradient rate into characteristic time tv depends on the 
volumetric fraction φ of the polymeric chain links in its 
conformational volume.  

Thus, the characteristic time tv depends on the total 
effect of gs and gsLφ, therefore, we can write:  

1)(~ −+ ϕsLsv ggt                  (49) 

Taking into account the ratio ψ*
sLsL gg =  and 

combining (48) and (49), we obtain: 
)( *0 ϕψsLssVV gggtt +=       (50) 

Finally, we have: 









+=

ms

sL
vv g

gtt
ρ
ρ*

0 1        (51) 

Accordingly to (47), (51) and definition (9), we 
obtain a general expression for the parameter b: 









+

+
=

ms

sLf

g
gN

dd
LR

b
ρ
ρ

τ
π

*
5/7

21

1
)(2

7
 (52) 
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As it was stated earlier (see Section 3), the ratio 

ssL gg*  almost does not depend on temperature, and so 
at the calculations we use its average value: 

ssL gg* =107. Assuming the known values a = 1.86⋅10-10 
m, d1 = 3.4⋅10-2 m and d2 = 3.9⋅10-2 m and combining the 
constants, we obtain: 

)1071(1084.2 5/49

m

NLb
ρ
ρ

τ
+⋅= −  (53) 

Thus, accordingly to the experimental data (see 
Table 1), the parameter b is a decreasing function on N 
and ρ and the increasing function of temperature. 

Since τ and L are unknown, the Eq. (53) can be 
used for the calculation of the ratio τ/L at the experimental 
values of b: 

bN
L mb









+⋅=






 −

ρ
ρτ 10711084.2 5/49      (54) 

The results of the calculations are represented in 
Table 2. 

According to the independent estimates of ( )
e

L ητ  

and ( )bLτ , we found the values of τ and L, which are 
also presented in Table 2. As follows from these data, 
taking into account the experimental error, the 
characteristic time τ of the segmental motion into the 
diluted polymeric solution does not depend on ρ and N, 
but it is the function of temperature.  

The temperature dependence of τ , obtained by 
averaging of τ at the given temperature for all values of ρ 
and N, in the Arrhenius equation plots presented in Fig. 5. 
This dependence allows to estimate the activation energy 
of the polymeric chain segmental motion: Eτ = 55.34 
kJ/mol. 

 
 

Fig. 5. Temperature dependence of the average values of 
characteristic time τ~  of the segmental movement of polymeric 

chain in the Arrhenius equation plots 

Comparing Esm = 60.64 kJ/mol with Eτ =  
=55.34 kJ/mol, we can conclude, that within the limits of 
errors of their estimations, they are equal: Esm = Eτ. This 
gives the evidence that the frictional coefficient of the 

viscosity ηsm is defined by the segmental motion of the 
polymeric chain. 

The analysis of the factor of the form values (see 
Table 2) indicates, that L does not depend on ρ, but 
increases with the N increasing and decreases with the T 
increasing. The dependence of L on N was discussed 
earlier (see Section 3). Here we indicate, that the 
experimentally determined decreasing of L with T 
increasing is also agreed with the theoretical analysis of 
the temperature influence on the conformational state of 
the macromolecules in the real solution. Thus, let us use 
the Eq. (41) and find its derivative: 

( ) { }
{ }kTFg

kTFg
kT
F

T
F

V

VVdef
0

0

2

20

exp1
exp

∆+
∆

⋅
∆

−=
∂
∆∂          (55) 

Hence, the differential coefficient 
T
Fdef

∂

∆∂
 < 0 at 

any sign of 0
VF∆ . Consequently, the work of the 

conformational volume deformation decreases with the 
temperature increasing and the factor of the form L 
decreases correspondingly. 

3.4. The Intrinsic Viscosity  
of the Polymeric Solution 

The effective viscosity of the polymeric solution, 
taking into account its gradient dependence, is determined by 
the Eq. (6). By substituting in this equation of the determined 
expressions (31) for ηf and (40) for ηe, we obtain: 

5/3

0

*2* NL
M
RT

mppmsms ++=− τρρρηρρηηη ⋅ 

⋅ { }( ) { }( )00
5 exp1exp1 tttt vv −+−−ρ  (56) 

Let us transform this expression into a form of the 
relative viscosity: 

*

*

ms

pp

sm

sm

s

s +⋅+=
−

ρρ
ρ

η

η

ηρ
η

ρη
ηη  

{ }
{ }0

05/3

0 exp1
exp1

tt
ttNL

M
RT

v

v

s −+
−−

+
η
τ         (57) 

Accordingly to the condition 0→ρ  it is easy to 
obtain an analytical expression for the intrinsic viscosity 
of the polymeric solution:  

5/3

0

][ NL
M
RT

s
smsm +=

η
τ

ηρηη ⋅ 

⋅ { }( ) { }( )00 exp1exp1 tttt vv −+−−             (58) 

Thus, the intrinsic viscosity [η] of the polymeric 
solution is also represented by the frictional [η]f and 
elastic [η]e components: 

ef ][][][ ηηη +=          (59) 
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Here 
mssmf ρηηη =][            (60) 

depends on the segmental motion of the polymeric chain 
only, and the Eq. (61) is a function of the elastic properties 
of the polymeric chain conformational volume and is a 
gradient dependent quantity. 

{ }( ) { }( )00
5/3

0

exp1exp1][ ttttNL
M
RT

vv
s

e −+−−=
η
τ

η   (61) 

As it was determined, ηsm does not depend on the 
length of the polymeric chain. The frictional component 
[η]f of the intrinsic viscosity does not depend on N either. 
Therefore, the empirical Mark-Kuhn-Houwink equation 
represents only the elastic [η]e component. Probably, that 
is why, all the attempts to obtain the theoretical form of 
the Mark-Kuhn-Houwink’s equation from the analysis of 
the forces of friction in a model of the beads did not lead 
to the positive results. Besides, due to the presence of the 
frictional [η]f component of the intrinsic viscosity not 
depending on N, the linear dependence of ln[η] on lnM (in 
Mark-Kuhn-Hauwink’s equation) is an approximate and 
will be disfigured in a field of lesser values of M; this fact 
is observed experimentally.  

In connection with this fact, let us estimate the 
contributions of frictional and elastic components to the 
intrinsic viscosity of the solution of polystyrene in toluene at 
N = 500, T = 298 K, using the experimental values ηsm, τ and 
L obtained by us. We will compare the results of the 
calculation of [η] with the experimental value [η]exp, presen-
ted in the form of the Mark-Kuhn-Hauwink’s equation: 

72.08
exp )(1018.1][ M−⋅=η                    (62) 

For М = 500∙104.15 we obtain  
[η]exp = 2.94∙10-4 m3/g. 

The frictional component [η]f is calculated 
according to the Eq. (60), assuming ηsp = 5.26∙10-3 Pa∙s 
(see Fig. 3); ηs = 0.55∙10-3 Pa·s; ρm = 0.906∙106 g/m3; [η]f = 
1.06∙10-5 m3/g. 

For convenience of the analysis the elastic 
component of the intrinsic viscosity is present according 
to the Eq. (61) in the form of two co-factors: 

( )0
0 ,][][ ttg Vee ⋅= ηη   (63) 

Here  

5/3

0

0][ LN
M
RT

s
e η

τ
η =   (64) 

represents the maximum possible contribution of the 
elastic properties of the polymeric chain into intrinsic 
viscosity under condition 0ttv >>  in the function  

( ) { }( ) { }( )000 exp1exp1, ttttttg vvv −+−−=  (65) 
which reflects the gradient dependence [η]е. 

Calculation of 0][ eη  according to the Eq. (64) at the 
average values s101076.3~ −⋅=τ , L = 4.0 (see Table 2) 

gives the value 30 1071.2][ −⋅=eη m3/g. As we can see, 
0][ eη  is greater than exp][η  in two orders. This fact 

indicates the considerable effect of the gradient 
dependence [η]е, which is displayed as the low value of 
the function g(tv, t0), under condition 0ttv << . 

The characteristic time of the shift t0 of the 
polymeric ball is calculated according to the Eq. (36): at  
N = 500 and s101076.3~ −⋅=τ  we have t0=1.29∙10-6 s. 

Let us estimate the characteristic time of the 
external action tv of the hydrodynamic flow on the 
polymeric ball for Ostwald’s capillary viscometer used by 
us, since, as a rule, exactly these viscometers are applied 
for the experimental estimation of [η]. 

We calculate tv without taking into account the 
hydrodynamic interaction between the polymeric balls 
accordingly to the condition 0=ρ . 

The same as it was shown earlier (see Eqs. (45) and 
(46)), tv was defined as a quantity inversed to the rate of 
rotation of the polymeric ball, touching the wall of the 
capillary with the radius R. For this, we use the rate of the 
shift ωR, which is determined by the expression [5]: 

3/4 RQR πω =      (66) 
where Q  is the volumetric liquid consumption, m3/s. 

The shift tension on the capillary wall is determined 
exactly via ωR. However, by implication, ωR is also the 
rate of the rotational motion of a particle with radius R 
under the action of the gradient rate of the hydrodynamic 
flow in the capillary. That is why, the angular rate of the 
rotation fω  of the polymeric ball near the capillary wall 
can be found according to the equation:  

LR
R
f

Rf ωω =            (67) 

where RfL is an average radius of the polymeric ball. 
Hence, by definition 1−= fvt ω  we have: 

QLRRt fv 42π=            (68) 
The radius of our viscometer R = 0.31⋅10-3 m, the 

volume of the flowing fluid V = 4⋅10-6 m3, time of the 
solvent outflow 65 s, and so Q = 6.15⋅10-8 m3/s and tv = 
= 3.85⋅10-8 s. Substituting the obtained values of tv and t0 
into (65), we find g(tv,t0) = 0.0149. Thus, only 1.5 % of 
the maximum possible contribution of the elastic 
properties of the polymeric ball 0][ eη  is displayed in the 
elastic component of the intrinsic viscosity e][η : 

sme /1004.40149.01071.2][ 353 −− ⋅=⋅⋅=η . Total calcu-
lated value of the intrinsic viscosity of the polystyrene in 
toluene solution at N = 500 and T = 298 К is equal to:  

gm /101.5104.04101.06][ 35-5-5 −⋅=⋅+⋅=η  
We consider, that the value of [η] is sufficiently 

agreed with 5
exp 1094.2][ −⋅=η m3/g . 
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Based on the above-mentioned estimation of 
81085.3 −⋅=vt s, we can answer the question: why the effect 

of the hydrodynamic interaction of rotating polymeric balls 
(i.e. square term per ρ in the Eq. (31)) has an essential 
endowment into the frictional component of the viscosity. 

Since the angular rate of rotation fω  of the 

polymeric ball is inversely proportional to vt , we have 
7106.2 ⋅=fω s-1. Exactly a great angular rate of the 

polymeric balls rotation creates a significant effect of the 
hydrodynamic interaction between them and makes the 
greatest contribution into the frictional component of the 
viscosity. However, despite the Kuhn’s model, the 
contribution of the polymeric balls segmental motion can 
not be neglected, at least, in theoretical aspect, especially 
at the determination of [η]. 

4. Conclusions 

The investigation of the gradient dependence of the 
effective viscosity of diluted solution of polystyrene in 
toluene permitted to mark out the frictional ηf and elastic 
ηe components of the viscosity and to study their 
dependences on the concentration ρ of the polymer into 
solution, on the length of the chain N and on the 
temperature T. The frictional component of the viscosity 
ηf is determined by three coefficients of the viscosity ηs, 
ηsm and ηpp, representing three forms of motion: Brownian 
motion of the solvent molecules, the segmental motion of 
polymeric chain and the rotational motion of its frame, 
respectively. High angular rate of the rotation of the 
polymeric balls creates a hydrodynamic interaction 
between them and leads to the appearance of the quadratic 
term of the dependence of ηf on ρ, exactly the hydro-
dynamic interaction makes a basic contribution into ηf. 

The elastic component of the viscosity ηe is 
determined by the elastic properties of the polymeric ball 
conformational volume under its shifted deformation. Due 
to the kinetic reasons, i.e. due to the distinction between 
the characteristic time of the external action tv and own 
characteristic time of the shifted deformation t0 of the 
polymeric chain the endowment of the elastic component 
into effective viscosity of the solution depends on the 
gradient rate of the hydrodynamic flow, and respectively, 
on the angular rate ω of the rotary viscometer working 
cylinder rotation. A measure of this dependence is the 
parameter b, described by the equation ω0ttb v= . It 
was determined, that η and b have the opposite functional 
dependence on ρ, N and T. The numerical estimates of the 
factor of the form L for the deformed polymeric ball and 
the characteristic time of the segmental motion τ were 
obtained based on the experimental values of ηe and b. 
These estimations showed that τ does not depend on ρ and 
N, but depends only on T. Moreover, the activation energy 

of the segmental motion is equal to the activation energy, 
defined from the temperature dependence of the 
coefficient viscosity ηsm.  

The factor of the form L does not depend on ρ in a 
diluted solution. It increases with the N increasing and 
slightly decreases with the T increasing. These regularities 
agree with the theoretical analysis of the work of the 
polymer chain conformational volume deformation at its 
transforming from the ideal solution into the real one.  

We have obtained the equation for defining the 
intrinsic viscosity of the polymeric solution. It was shown 
that the basic contribution into the intrinsic viscosity gives 
the elastic component of the viscosity taking into account 
the gradient dependence of ηe.  
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ФРИКЦІЙНА ТА ПРУЖНА КОМПОНЕНТИ 
В’ЯЗКОСТІ РОЗВЕДЕНИХ РОЗЧИНІВ  

ПОЛІСТИРОЛ–ТОЛУОЛ 
Анотація. Вивчена градієнтна залежність ефек-

тивної в’язкості η розведеного розчину полістиролу в толуолі 
для трьох концентрацій ρ = 0.5∙105, 1∙105, 2∙105 г/м3, чотирьох 
фракцій полістиролу з середніми молярними масами М = 5.2∙104, 
4.4∙104, 3.3∙104, 1.8∙104 г/моль, при чотирьох температурах в 
інтервалі 293–308 K. Досліди проводили на ротаційному 
віскозиметрі Rheotest 2.1 за різних кутових швидкостей ω (об/с) 
обертання робочого циліндра. Аналіз залежностей η(ω) дав 
можливість виділити фрикційну ηf та пружну ηe компоненти 
в’язкості та вивчити їх залежність від температури Т, 
концентрації ρ та довжини ланцюга N. Одержано матема-
тичний вираз для характеристичної в’язкості полімерного роз-
чину та показано, що основну роль в ній відіграє пружна компо-
нента в’язкості ηe з врахуванням її градієнтної залежності. 

 

Ключові слова: ефективна в’язкість, фракційна та 
пружна компоненти в’язкості, конфoрмаційний об’єм, дефор-
мація, сегментальний рух, енергія активації. 

 


