УДК 528.721.287:537.533.35

О. Іванчук¹, Т. Барфельс², Я. Геег², В. Гегєр³ ¹Національний університет "Львівська політехніка" ²Вища школа м. Вісмар (Німеччина) ³Вища школа м. Нойбранденбург (Німеччина)

ДОСЛІДЖЕННЯ ВЕЛИЧИН ГЕОМЕТРИЧНИХ СПОТВОРЕНЬ ЦИФРОВИХ РЕМ-ЗОБРАЖЕНЬ, ОТРИМАНИХ НА РЕМ DSM-960A (CARL ZEISS, HIMEЧЧИНА) ТА ТОЧНОСТІ ЇХ ВРАХУВАННЯ

© Іванчук О., Барфельс Т., Геет Я., Гетер В., 2013

По результатам измерений цифровых РЭМ-изображений тест-сетки с разрешением 1425лин/мм, полученных на цифровом РЭМ DSM-960A (Carl Zeiss, Германия), определены их масштабные и геометрические искажения в диапазоне увеличений РЭМ от 1000^x до 20000^x. Установлено, что масштабным искажениям цифровых РЭМ-изображений, полученных на этом типе РЭМ, свойственен систематический характер, независимо от величины увеличения они составляют примерно -2 % вдоль оси х снимка и -4 % вдоль оси у снимка. Величины геометрических искажений РЕМ-изображений значительны, возрастают с увеличением масштаба, также имеют систематический характер и могут быть учтены с помощью полиномиальной аппроксимации.

For measurements of digital SEM images of test grid with a resolution 1425 lin/mm taken on a digital SEM DSM-960A (Carl Zeiss, Germany), are defined by their scale and geometric distortion of the SEM magnification range from 1000h to 20000h. Found that the large-scale distortions of digital SEM images obtained in this type of SEM is systematic, regardless of the increase and is approximately -2 % along the x-axis image and -4 % along the y-axis with a picture. The geometrical distortion SEM images are significant, increase with increasing scale, as is systematic and can be considered by polynomial approximation.

Постановка проблеми. Електронно-мікроскопічним цифровим зображенням, отриманим на растрових електронних мікроскопах (РЕМ), притаманні спотворення, викликані різними факторами в процесі їх отримання. Сучасні високонаукоємні технології виробництва (мікроелектроніка, машинобудування, космічне та військове виробництво тощо) потребують отримання кількісної інформації про мікроповерхні дослідних об'єктів з високою точністю на мікронному і субмікронному рівнях. Тому важливою є проблема встановлення дійсних величин масштабних та геометричних спотворень, притаманних цифровим РЕМ-зображенням, а також можливість їх ефективного врахування результатів. Досліджень метричних характеристик цифрових РЕМ-зображень, отриманих на одному з перших у світі РЕМ DSM-960A (Carl Zeiss, Німеччина) з цифровим записом зображень, у науковій літературі не виявлено.

Зв'язок із важливими науковими і практичними завданнями. Одним із важливих напрямів наукової тематики кафедри фотограмметрії та геоінформатики Інституту геодезії Львівської політехніки, де автор один із авторів працює, є розроблення теорії та практики цифрової РЕМ-фотограмметрії. Автору (О. Іванчуку) було поставлено завдання у межах наукового стажування в Вищій школі м. Нойбранденбург, Німеччина апробувати технологію опрацювання цифрових РЕМ-зображень, отриманих на сучасних РЕМ, виконати метрологічні дослідження РЕМ- зображень на різних типах РЕМ та дослідити ефективність врахування їх геометричних спотворень за допомогою тест-сітки з високою роздільною здатністю (r=1425 лін/мм) та розроблених математичних способів їх апроксимації.

Аналіз останніх досліджень та публікацій, присвячених розв'язанню цієї проблеми. Дослідженнями величин та характеру масштабних і геометричних спотворень PEM-зображень займалися і займаються науковці як за кордоном, так і в Україні. Зокрема, А. Boyde, R. Burkhardt, S.K. Ghosh, P. Howell, D.F. Maune, S. Murruy, H. Nagaraja, H.F. Ross [1–5], в Росії – Є.І. Калантаров, М.Ж. Сагиндикова, В.М. Соколов, М.П. Шебатінов [9, 10], в Україні – В.М. Мельник, В.Я. Фінковський, А.В. Шостак [6, 10–13] та інші. Дослідження вітчизняних вчених показали, що найпростішим і водночас найефективнішим методом врахування геометричних спотворень РЕМ-зображень є їх апроксимація поліномами, зокрема поліномом загального виду 3-ї степені [10].

Невирішені частини загальної проблеми. Оскільки досліджень метричних характеристик цифрових РЕМ-зображень, отриманих на РЕМ DSM-960A, у науковій та технічній літературі не виявлено, перед авторами постало завдання всебічно дослідити метричні характеристики цифрових РЕМ-зображень, отриманих на РЕМ DSM-960A і дати практичні рекомендації, які би підвищили точність та ефективність наукових досліджень на ньому.

Постановка завдання. Отримати цифрові РЕМ-зображення еталонного тест-об'єкта з роздільною здатністю r=1425 лін/мм на РЕМ DSM-960A у діапазоні збільшень від 1000^x до 40000^x (крат), а також за різних кутів нахилу гоніометричного столика та різних значень робочої відстані знімання. Встановити характер і величини масштабних і геометричних спотворень цих зображень, а також точність їх врахування з використанням пакета програм «Dimicros» [7].

Виклад основного матеріалу та результати досліджень

1. Основні технічні характеристики РЕМ DSM-960A

DSM-960A – цифровий растровий електронний мікроскоп, який створила фірма «Carl Zeiss» (Оберкохен, Німеччина) у 90-ті роки минулого століття, поширений у наукових лабораторіях та на виробництві у багатьох країнах світу. РЕМ має високу роздільну здатність, велику глибину фокусування та достатньо простий у користуванні. Основні характеристики приладу наведено у табл. 1.

Puc. 1 PEM DSM-960A

Режими роботи	високовакуумний режим, низьковакуумный режим
Прискорювальна напруга	від 1 до 30 кВ
Діапазон збільшень	від 10 ^х до 30 000 ^х (крат)
Максимальний розмір зразка	діаметр до 70 мм, висота до 50 мм
Катод	W (вольфрам), касетного типу
Система відкачування повітря	турбомолекулярний насос
Програмне забезпечення	для MS Windows
Формат запису файлів	TIFF або JPEG
Режими отримання зображення	у режимах відбитих та вторинних електронів
Енергоспоживання	не більше 2 кВА

2. Коротка характеристика тест-об'єкта

Для отримання PEM-зображень і виконання експериментальних робіт було використано тестсітку, яка являє собою так звану «голографічну гратку» рівномірно розміщених кулеподібних напівсфер (сплав «напівпровідник–метал»), нанесених на скляну пластину (рис. 2) з розділенням 1425 лін/мм [6, 8, 11].

3. РЕМ-знімання

РЕМ-знімання виконували у науковій лабораторії Вищої школи м. Вісмар (Німеччина). Загалом було отримано 12 знімків тест-об'єкта у цифровому форматі ЈРЕG: 6 знімків з фіксованими значеннями збільшень, встановлених на шкалі приладу: 1000^x , 2000^x , 3000^x , 5000^x , 10000^x , 2000^x при горизонтальному положенні гоніометричного столика (α =0°) і робочій відстані знімання z=11 мм, 2 знімки при фіксованому збільшенні РЕМ М= 10000^x , z=11 мм і двох кутах нахилу столика – α =5° і α =10°. Ще 4 знімки отримано при М= 10000^x , кутах нахилу столика α =0°, двічі 5°и 10° при меншій робочій віддалі знімання – z=7 мм. Розміри РЕМ-зображень 211,60 мм х 158,70 мм (800 х 600 пікселів). Розмір піксела – 0,2645 мм.

4. Вимірювання РЕМ-зображень тест-об'єкта

4.1. Встановлення дійсних значень збільшень РЕМ-зображень вздовж осей х і у

Вимірювали РЕМ-зображення тест-сітки на ПК у програмному середовищі «Dimicros» за програмою «Test-Measuring». Величини дійсних збільшень РЕМ-зображень тест-об'єкта вимірювали тричі вздовж осей x і y знімка за схемою, приведеною у роботах [6, 7]. У результаті отримано середні значення збільшень та їхні відхилення від встановлених на шкалі РЕМ. Результати експерименту наведено в табл. 1, 2.

Рис. 2. Цифрові РЕМ-знімки тест-об'єкту з роздільною здатністю r = 1425 лін/мм при різних збільшеннях M ($\alpha = 0^{\circ}, z = 11$ мм): $a - M = 2000^{x}; 6 - M = 5000^{x}; 6 - M = 10000^{x}; c - M = 20000^{x}$

Таблиця 1

Виміряні збільшення вздовж осі х РЕМ-знімка та їх відхилення від встановлених на шкалі РЕМ

№ 3/п	M _{x PEM}	$2M_{x PEM}$		2M _{x2}	2M _{x3}	2M _{x cp}	$\Delta M_{x cp}$, %	$\Delta M_{x \min}$, %	$\Delta M_{x \max}$, %	
α	WD = 11 мм									
1/0°	1000 ^x	2000 ^x	1947,99	1951,92	1947,99	1949,30	-2,5	-2,4	-2,6	
2/0°	2000 ^x	4000 ^x	3911,70	3911,70	3911,70	3911,70	-2,2	-2,2	-2,2	
3/0°	3000 ^x	6000 ^x	5867,55	5859,69	5875,40	5867,55	-2,2	-2,1	-2,3	
4/0°	5000^x	10000 ^x	9818,52	9739,97	9802,81	9787,10	-2,1	-1,8	-2,6	
5/0°	10000 ^x	20000 ^x	19605,63	19762,72	19637,04	19668,46	-1,7	-1,2	-2,0	
6/0°	20000 ^x	40000 ^x	39022,73	39179,83	39148,41	39116,99	-2,2	-2,0	-2,4	
7/5°	10000^x	20000 ^x	19605,63	19731,30	19637,04	19657,99	-1,7	-1,4	-2,0	
8/10°	10000 ^x	20000 ^x	19448,53	19448,53	19511,37	19469,47	-2,6	-2,5	-2,7	
Середнє відхилення середніх значень ΔМ_{х ср} від М_{РЕМ},%								-2,0	-2,4	
α					WD = 7 м	М				
1/0°	10000^x	20000 ^x	19605,63	19574,21	19542,79	19574,21	-2,1	-2,0	-2,2	
2/5°	10000 ^x	20000 ^x	19448,53	19448,53	19479,95	19459,00	-2,7	-2,6	-2,8	
3/5°	10000^x	20000 ^x	19731,30	9668,46	19731,30	19710,35	-1,5	-1,4	-1,6	
4/10°	10000 ^x	20000 ^x	19448,53	19511,37	19542,79	19500,90	-2,5	-2,3	-2,7	
Середнє відхилення середніх значень $\Delta M_{x co}$ від M_{PEM} ,%								-2,1	-2,3	

Таблиия	2	
Laonann	4	

№ 3/п	M _{y PEM}	$2M_{yPEM}$	2M _{y1}	2M _{y2}	2M _{y3}	2M _{y cp}	$\Delta M_{y cp}$, %	$\Delta M_{y \min}$ %	$\Delta M_{y max}$, %
α=0°	WD=11 мм								
1/0°	1000 ^x	2000 ^x	1928,36	1920,50	1928,36	1925,74	-3,7	-3,6	-3,8
2/0°	2000 ^x	4000 ^x	3848,86	3833,15	3841,01	3841,01	-4,0	-3,8	-4,2
3/0°	3000 ^x	6000 ^x	5749,78	5741,87	5741,87	5744,49	-4,2	-4,2	-4,2
4/0°	5000 ^x	10000 ^x	9630,01	9677,14	9567,17	9624,77	-3,8	-3,2	-4,3
5/0°	10000 ^x	20000 ^x	19102,92	19228,59	19102,92	19144,81	-4,3	-3,9	-4,5
6/0°	20000 ^x	40000 ^x	37043,32	36949,06	36854,80	36949,06	-7,6	-7,4	-7,8
7/5°	10000 ^x	20000 ^x	19291,43	19417,11	19197,17	19301,17	-3,5	-2,9	-4,0
8/10°	10000 ^x	20000 ^x	18945,82	18788,72	18977,24	18903,92	-5,5	-5,1	-6,1
		Середн	_{хр} від М _{РЕМ} ,%	-4,6	-4,4	-4,8			
α	а WD=7 мм								
1/0°	10000 ^x	20000 ^x	19228,59	19322,85	19322,85	19291,43	-3,5	-3,4	-3,6
2/5°	10000 ^x	20000 ^x	19291,43	19354,27	19385,69	19343,80	-3,3	-3,1	-3,5
3/5°	10000 ^x	20000 ^x	19794,14	19699,98	19825,56	19773,22	-1,2	-0,9	-1,5
4/10°	10000 ^x	20000 ^x	19165,76	19354,27	19228,59	19249,54	-3,8	-3,2	-4,2
Середнє відхилення середніх значень ΔM_{ycp} від $M_{PEM},\%$								-2,7	-3,2

Виміряні збільшення вздовж осі у РЕМ-знімка та їх відхилення від встановлених на шкалі РЕМ

4.2. Встановлення величин геометричних спотворень PEM-зображень та їх врахування (апроксимація) поліномом загального виду 3-го степеня

Для визначення геометричних спотворень РЕМ-зображень виконувались вимірювання з використанням програмою «Test-Measuring». Після встановлення початку системи координат знімка (центр кружечка, найближчого до геометричного центра знімка), визначення дійсних значень збільшень за вимірами 8 точок у центральній частині знімка, надалі вимірювали координати центрів кружечків тест-сітки рівномірно по всьому полю РЕМ-зображення. Доцільно загалом вимірювати по 100-150 точок на знімок. Цю кількість точок умовно поділяють на дві частини. Спочатку міряють у шаховому порядку зліва направо згори донизу так звані «точки розв'язку», наводячи послідовно мишкою марку на центр кружечків тест-сітки. За вимірами цих точок програма знаходить величини геометричних спотворень точок Δx , Δy шляхом порівняння виміряних координат точок з їх дійсними значеннями, які нам відомі, оскільки відома роздільна здатність тест-сітки r=1425 лін/мм (віддалі між сусідніми центрами кружечків тест-сітки є постійними і рівними $\Delta l_r = \Delta l_v = 1/r = 0,7017544$ мкм – довжині хвилі променя червоного лазера, за допомогою якого було створено тест-сітку). За знайденими значеннями Δx , Δy наступна програма «Policalc» визначає коефіцієнти полінома загального виду 3-го степеня $a_0 \div a_9$, $b_0 \div b_9$. Потім аналогічно в шаховому порядку вимірюються і так звані «контрольні точки», за якими також визначаються величини геометричних спотворень координат Δx , Δy , а надалі – точність і ефективність апроксимації геометричних спотворень поліномом загального виду 3-го степеня. Алгоритм роботи програми описано в дисертації [6], а блок-схему наведено в роботі [7].

Загалом виміряно 12 вищеперелічених PEM-зображень тест-сітки, які опрацьовано за програмами «Test-Measuring», «Policalc» программного комплексу «Dimicros». Результати апроксимації геометричних спотворень PEM-зображень, отриманих на PEM DSM-960A, наведено в табл. 3. За допомогою програми SURFER за величинами геометричних спотворень PEM-зображень Δx , Δy контрольних точок побудовано векторні діаграми до і після їх апроксимації поліномом загального виду 3-го степеня за різних параметрів PEM-знімання (рис. 3–6).

Рис. 3. Векторні діаграми геометричних спотворень РЕМ-зображень до апроксимації (α=0°, z=11 мм)

Рис. 4. Векторні діаграми геометричних спотворень РЕМ-зображень після апроксимації (α =0°, z=11мм)

Puc. 5. PEM-зображення тест-сіток та векторні діаграми їх геометричних спотворень при двох різних кутах нахилу гоніометричного столика (α=5° і α=10°) та постійній робочій віддалі z=11 мм

Рис. 6. РЕМ-зображення тест-сіток при змінах кута нахилу гоніометричного столика і зменшеній постійній робочій віддалі z=7 мм та векторні діаграми їх геометричних спотворень

Таблиця 3

тест-сттки з т=1425 лін/мм											
№ 3/П	$M_{x PEM}$	$2M_{\text{PEM}}$	$2M_x$	2M _x 2M _y		ΔM _y ,%	т _{∆х} , мкм	т _{∆у} , мкм	т _{бх} , мкм	т _{бу} , мкм	
α	WD = 11 мм										
1/0°	1000 ^x	2000 ^x	1951,11	1919,72	-2,4	-4,0	251,0	743,5	111,4	100,1	
2/0°	2000 ^x	4000 ^x	3908,56	3839,43	-2,3	-4,0	210,1	733,6	113,4	138,9	
3/0°	3000 ^x	6000 ^x	5833,51	5749,73	-2,8	-4,2	342,0	726,4	150,3	150,5	
4/0°	5000 ^x	10000 ^x	9834,23	9630,01	-1,7	-3,7	1086,7	355,3	147,0	134,7	
5/0°	10000 ^x	20000 ^x	19668,46	19197,17	-1,7	-4,0	1061,4	603,3	191,7	180,0	
6/0°	20000 ^x	40000 ^x	39462,60	36886,22	-1,4	-7,8	1480,7	354,7	218,8	183,8	
7/5°	10000 ^x	20000 ^x	19605,63	19197,17	-2,0	-4,0	600,8	722,3	229,7	239,2	
8/10°	10000 ^x	20000 ^x	19511,37 18788,72		-2,4	-6,0	1397,8	677,6	299,1	290,6	
Середні значення -2,1 -4,7									182,7	177,2	
α				WI) = 7 мм						
1/0°	10000 ^x	20000 ^x	19605,63	19354,27	-2,0	-3,2	310,7	395,9	139,3	126,5	
2/5°	10000 ^x	20000 ^x	13385,69	19165,76	-3,1	-4,2	635,8	279,6	180,7	171,0	
3/5°	10000 ^x	20000 ^x	19731,30	19731,30	-1,4	-1,4	498,9	445,0	201,9	190,2	
4/10°	10000 ^x	20000 ^x	19479,95	19460,01	-2,6	-3,7	769,3	642,9	230,6	190,0	
	Середні значення -2,3 -3,1 188,1 169,4										

Результати апроксимації геометричних спотворень PEM-зображень тест-сітки з r=1425 лін/мм

Висновки

1. Дійсні величини збільшень (масштабу) цифрових РЕМ-зображень, отриманих на РЕМ DSM-960A приблизно рівно удвічі більші від встановлених значень на шкалі РЕМ, що пояснюється специфікою запису цифрового зображення.

2. Дійсним величинам збільшень (масштабу) РЕМ зображень притаманна систематика масштабних спотворень в усьому робочому діапазоні збільшень мікроскопа від 1000^x до 20000^x (крат).

Вони відхиляються від встановлених значень на шкалі РЕМ вздовж осі x знімка в середньому на -2,2 % з відхиленнями ±0,5 %, незалежно від величини збільшення РЕМ та робочої відстані z, а вздовж осі y в середньому на -4,5 % з відхиленнями ± 1 % з тенденцією збільшення спотворення

при збільшенні масштабу до $M=20000^x - до -7,6 \%$ при робочій віддалі z = 11 мм. Із зменшенням робочої віддалі до z=7мм середні значення спотворень масштабу зображень вздовж осі *у* також дещо зменшуються до величини в середньому -3,0 % з відхиленнями ± 1 % залежно від зміни кута нахилу гоніометричного столика.

3. PEM DSM-960A в метричному відношенні стосовно параметра збільшення можна вважати стабільно працюючим приладом, який не потребує постійного калібрування збільшень перед PEMзніманням дослідних зразків.

4. Геометричні спотворення РЕМ-зображень, отриманих на РЕМ DSM-960A, мають тенденцію до суттєвого зростання їх середньоквадратичних величин вздовж осі x знімка із збільшенням масштабу (збільшенням), зокрема від $m_{\Delta x} = 0,25$ мм при M=1000^x до $m_{\Delta x} = 1,50$ мм при M=20000^x зі збільшенням абсолютних величин спотворень до $\Delta x = \pm 3$ мм. Середньоквадратичні ж величини геометричних спотворень РЕМ-зображень вздовж осі y істотно не залежать від величини їх масштабу (збільшення) і становлять $m_{\Delta y} = 0,30-0,70$ мм (абсолютні величини досягають максимальних значень $\Delta y = \pm 2$ мм).

5. Зважаючи на значні абсолютні величини геометричних спотворень РЕМ-зображень, доцільно перед РЕМ-стереозніманням дослідних зразків виконувати при одних і тих самих параметрах ще й РЕМ-знімання тест-сітки, за допомогою опрацювання РЕМ-зображень якої і з використанням комплексу програм «Dimicros» можна буде їх врахувати.

6. Результати апроксимування геометричних спотворень РЕМ-зображень поліномом 3-го степеня показали значну його ефективність. Середньоквадратичні похибки після апроксимування зменшуються від 2-х до 7-ми разів до величин, що знаходяться у межах точності вимірів, яка становлять ±0,265 мм. Значні ж абсолютні величини спотворень, як правило, зменшуються приблизно на порядок, що значно підвищує точність визначення кількісних характеристик дослідних мікроповерхонь.

7. Геометричні спотворення PEM-зображень, отриманих на PEM DSM-960A, значні і істотно змінюються залежно від змін параметрів PEM-знімання, тому потребують обов'язкового калібрування під час стереовимірів мікроповерхонь досліджуваних об'єктів.

1. Boyde A., Ross H.F. Photogrammetry and Scanning electron microscopy // Photogrammetric Record. – 1975. – Vol.8. – №46. – P.408–457. 2. Burkhardt R. Untersuchungen zur kalibrirung eines Elektronen mikroskopes // Mitt. geod. Inst. Techn. Univ. Graz. – 1980. – №35. 3. Ghosh S.K. Photogrammetric calibration of a scanning electron microscope // Photogrammetria. – 1975. – V.31. – №31. – P.91–114. 4. Ghosh S. K., Nagaraja H. Scanning Electron Micrography and Phtogrammetry // Photogrammetric Engineering and Remote Sensing. – 1976. – Vol.42. – №5. – P.649–657. 5. Howell P. A practical method for the correction of distortions in SEM photogrammetry // Proc. Of the Annual Scanning Electron Microscope Symposium. Chicago, Illinois. – 1975. – Р.199–206. 6. Іванчук О.М. Методи оперативного фотограмметричного опрацювання знімків, отриманих на растрових електронних мікроскопах. – Львів, 2000. – 134 с. 7. Іванчук О., Хрупін І. Структура та функції програмного комплексу «Dimicros» для PEM-зображень на иифровій фотограмметричній станиії // Сучасні досягнення геодезичної науки та виробництва. – Львів, 2012. – Вип. I(23). – С.193–197. 8. Костышин М.Т., Мустафин К.С. Квантовая электроника. – 1982. – Вып.23. – С.29–33. 9. Калантаров Е.И., Сагындыкова М.Ж. Фотограмметрическая калибровка электронных микроскопов // Изв. вузов. Геодезия и аэрофотосъемка. – 1983. – №4. – С.76–80. 10. Мельник В.Н., Соколов В.Н., Иванчук О.М., Тумская О.В., Шебатинов М.П. Калибровка геометрических искажений РЭМ-снимков // Рук. деп. в ВИНИТИ. – 1984. – №528. – С.18. 11. Мельник В.М. Растрово-електронна стереомікрофракторафія: монографія / В.М. Мельник, А.В. Шостак. – Луцьк: «Вежа», 2009. – 469 с. 12. Финковский В.Я., Мельник В.Н., Иванчук О.М. К теории фотограмметрической обработки РЭМ-снимков // Геодезия и картография. – 1984. – №2. – С.29–33. 13. Шостак А.В. Методи і моделі мікрофотограмметрії у прикладних наукових дослідженнях: Автореф. дис. на здоб. наук. ст. докт. техн. наук. – К., 2012. – 28 с.