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/lna oyinroeanns zpasimayiitnoi nomenuianvHoi enepeii 3emni E euxopucmano 3D-po3nodin
2yCmunu enincoioanvHol nianemu pazom 3 1020 oyinkorw mounocmi. Came 6UKOpUCHAHHA
OCHAaHHbOI 010 3M02y 8UKOHamu ouiHloeanHnsa E Ha ocnoei tuwe padiansnozo po3nodiny zycmunu
Y 6u2naoi it nenepepenux ma Kyckoeo-nenepepeHux mooenei. JIescanopa-Jlannaca, Powa, Bynnapoa
i I'aycca. B pesynomami ompumana Hepisenicms 015 E 3 sepxnero epanuuero Ey 01 00nopionozo po3nooiny
i HudicHero cpanuyero Egy s, sika sionosioae po3nodiny I'aycca onsa cycmunu 3emni. I'onoseni ouinku E
oaromp 2apre no2odxceHua 3 Egy ! Ky eunaoky E, axe 6azyemuoca na mooeni Powa 3 6 2onoenumu
cmpubxkamu zycmunu, max i oyinku E, wo éionogioatome 4 naiinpocmivium moodensam
3 0OHUM CHIPUOKOM 2yCHUHU HA 2PDAHUYI A0PO-MAHMIA.

/s ouenku zpasumayuonnoil nomenyuanvHou snepeuu 3emnu E ucnonvzosano 3D-pacnpedenenue
NAOMHOCIU GHYMPU ITITUNCOUOATILHOU NIIAHEM bl COBMECIHO C €€ OUEHKOI MOYHOCHBIO.
Hmenno npumenenue nocieoneii 0ano 603MOHCHOCHb GbINOTHUMD oyenusanue E monvko

Ha 6aze paouanvHo2o pacnpedesieHus RIOMHOCHU 6 8UOe ee HENPEPLIGHBIX U KYCOUHO-HENPEPLIGHBIX

mooenei. Jlescanopa-Jlannaca, Powa, bynnapoa u I'aycca. B pe3ynrvmame nonyuyeno nepagenHcmeo
ona E ¢ eepxnum npedenom Ey ons 00nopoouoii nnanemst u Huxncnum npeodenom Ecyss,
coomeemcmeyrouwum I'ayccoeomy pacnpedenenuro. I nasnvie ouenku E oarom npexpacnoe
coznacosanue ¢ Ecyyss, 6K110Uas 3HAUCHUE E, 0cHO8anH0€E Ha modenu Powa c 6 2nasnbimu
CKauKamu naomuocmu eHympu 3emau, u ouenku E, omeeuarowgue npocmeitumum 4 modenam
C 00HUM CKAYKOM HA ZPAHUYE AOPO-MAHMUAL.

1 Introduction. Determination of the Earth’'s volume density disttibn 5(0,9,4) from external

potential data requires a solution of the knowreisg problem of the Newtonian potential. If thenptas
gravitational potential enerdy and density at the surface are accepted as amditidormation, this problem
transforms from an improperly posed to a propeosgal problem with its possible solution for the @&hsity
o(p,4,4) through the three-dimensional Cartesian momentsséhkryakov, 1977). According to Gauss

(1840) the search of the stationary veliean be treated as one of central subjects ofdtenimal theory. A
remarkable summary of the Gauss’ problem readsiifmim and maximum potential energy correspond to
physically (for the Earth) meaningless cases: &acairdistribution and a mass point. The ‘true’ Edi¢s
somewhere in between” (Moritz, 1990). It is obvidbat the potential enerdy can be estimated from the
density and internal gravitational potential. Hoewewnly few E-values for the homogeneous Earth
(Mescheryakov, 1973; Rubincam, 1979; Moritz, 1980 the planet differentiated into homogeneous Imant
and homogeneous core (Rubincam, 1979) are foutieifiterature. Thus, the question remains: howwean
evaluate better this ‘true’ Earth and the corredpanpotential energk.

This study focuses on (a) the determination of Eaeth’'s global density distribution and (b) the
estimation of the gravitational potential enef§yusing continuous and piecewise density models. The
Earth’s mass and principal moments of inertia regmé initial information for the unique solution e
restricted Cartesian moments problem providing his way the densityd 44, A, )and the potential
energyE. The principal moments of inertia given in (Maroke, 2007) were used for the computation of
the 3D global densityy 49, A, .)



It should be pointed out, that accuracy of the gloteensity and potential energy was derived
especially to restrict the possible solution domaisuch a way that a reasonable solution may leeteel
either from 3D-spatial or radial density inside gligpsoidal or spherical planet.

2. The Earth’s global density distribution. Let us consider the mathematical model of the 3D

global density distributiord(p,9,4) derived by (Mescheryakov et al., 1977) inside Hagth having a

shape of the ellipsoid of revolution with the fating f and the semimajor axia. According to
Mescheryakov (1991) the exact but restricted bydirdeer 2 solution of the three-dimension Cartesian
moments problem fod A I, A, Jeads

9(p,8,4) = (p)r +40(0,9,4), @
A5(p,9,A) = K + p* (4K, sin® dcos A + 4K, sin’ Isin*+ 4K ,cos 9) (2)
where o(p)y is the piecewise reference radial density mod¢h wadial density jumps such as PREM
(Dziewonski and Anderson, 19810 p ¢ A , i9 some anomalous density with the following conmgras
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In the relationships aboveg=1—f, the dimensionless Cartesian momehjs, 1,00, lo20. @Nd I oo
(1400 = 910 = 190y =0) of the density of a gravitating body (Grafarerichle, 2000) can be computed via
the Earth’s mash! and dimensionless principal moments of ineti8, andC normalized by Wa*

looo =1 A A
- ) A:\/EAZO(]_—]./HD)_\/]-_SAZZ/&
200=(B+C-A)/2 BZ\/gzgo(l_]-/HD)'l-\/l_SKQ? /3, (4)

I
o0 =(A=-B+C)/2 =
020 = ( ) Cz_\/gAZO/HD'
oo =(A+B-C)/2

The reference moded(p), includes individual information about density jusnphe mean density
J%, and the mean moment of inerti§ , which have been selected preliminary for the tanton of the
radial profile 5(p)5 . In contrast to Mescheryakov (1991) [Egs. (1 —tB) Cartesian momentsy,, |5,
IR, and I X, of the reference densit(p), were derived here for one common set of the cdioma

constantsd,, and | ,, of the model (1) and density jumps entering (@) :

5R
|§00=5—m, 1
m - on =3[ 8(p)r p*dp,
IR — 1R - 3|m5m 0 (5)
20 20 de()(Z_l_z)' IR_2(X2+2)j;5( ) 4d
R 3D{2|§5§ m = 35n|? ) p Rp p
2,0 +2)

Thus, in these formulge (0< p <1) is the relative distance from the origin of a boate system
to an internal current point? andA are the polar distance and longitude of this padptis the convenient
mean densityHp is the dynamical ellipticity; A, A,, are the fully normalized (non-zero) harmonic

coefficients adopted here as Stokes constantseirptimcipal axes systen©ABC . Therefore, this 3D
global density [Eq.(1)] is given in the geocentrmordinate system of the principal axes of inestial



agreed with the Earth’s mass and the principal nmisnef inertia to preserve in this way the external
gravitational potential from zero to second degrekdr,Hp, the flattening, and density jumps.
The radial densityd(p), is also treated within the ellipsoid of revolutidnwe use the formula

r,=R(-2f (P,(cosd)/3) for the radius vectar, by neglectingf? (Moritz, 1990), whereP,(coss )is
the 2nd-degree Legendre polynomial. This formuults from the average of over the unite sphere that
gives the mean radiuR=6371 km. According to Mescheryakov (1991) Egs.—(R) are valid for a
homothetic stratification whefi=const inside the ellipsoidal Earth. Hence, if thet of the internal
ellipsoidal surfaces, is labeled by the associated mean radiofsa sphere we have

F;:r[1—§f EPZ(COSS)} = ,0=LR:%. (6)

e

By averagingo(p,9,4) over ellipsoidal surfaces we define the piecewaskal densityd f )as
3(p) = 8(p)s + [2K + p?4D)
4D = 3_55m Al o+ Algyo + Aoz | 34 o0 |- )
12 X
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with the treatment of the reference densdfp), within the ellipsoidal Earth. Since the radipsis
constant for each,, the densitie®)(p)s andd (o ) are also constant by Egs. (7) at the surface (6).
Accuracy estimation of the 3D continuous globalsitgrwas derived from error propagation, keeping in
mind that information about accuracy of the meamsitie 5, the mean moment of inertig , and density
jumps in different piecewise radial modelép); (such as PREM) are not found in literature or wereeasily
accessible to the author. For this reason we wiilsier the reference densiyp), as some exact constituent

or “normal density”. Hence, the variance-covariamagrix of the principal moments of inertia, acayraf the
mean density,; , and accuracy of the flattenirg, were chosen as initial information (Table 1).

The accuracy; of the mean densitgh, requires additional remarks because this valuesepts a

scale factor of the considered theory. I§, =5.514g/cn? and the gravitational constant
G =(6.673+ 0010)[10™ m°kg”'s? suggested by the IERS Conventions 2003 (McCantilyRetit, 2004)
are selected, we get; = 008y/cn?. According to the IAG recommendations ferandGM (Table 1)

another mean densi#, = (5.5145+ 0.0026)g/cn?’ finally was adopted.
Table 1

Initial parameters and their accuracy

Reference Adopted parameters
Groten, 2004 G=(6.672520.0003)10™ m’kg™'s?
Groten, 2004 GM=(398600.44150.0008)10°m’s?
Marchenko, 2007 A=0.329612Z0.0000005
Marchenko, 2007 B=0.329620&0.0000005
Marchenko, 2007 C=0.330699&0.0000005
Marchenko and Schwintzer, 2003 1/f=298.25650 0.00001

Thus, the global density distribution and accuratydifferent depths were based on the value
J,, =(5.5145+ 0.0026)g/cn?, the flattening, and the principal moments of inerfiaB, andC from Table

1. The principal moments of inertia (given herethe zero frequency tide system) are results froen th
adjustment of the 2nd-degree harmonic coefficiait®$ gravity field models and 7 valué$, of the
dynamical ellipticity all transformed to the commuealue of precession constant at epoch J2000. The
reference radial density profilé(p), in Eq. (1) was selected in the form of the simpécewise Roche’s

law separated into seven basic shells (Marcher®@))2 which is slightly different from PREM.
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Fig. 1. Density anomalies [g/cin 43(p,3,4) [Eq.(2)] Fig. 2. Accuracyo s, 54 lgfent] of the continuous 3D
at the mantle/crust boundary (r=6346.6 km) density distribution at the mantle/crust boundary

Therefore, withd(p)r known as exact constituent, the accuracy estimatig,, 5, of the 3D

continuous global density distributiod p 6 A, (based only on the Earth’s mechanical parametarg)
lateral density heterogeneities [Eq. (2)] are gtrdiorward. Comparison of these lateral densitynaages
45(p,9,1) (Fig. 1) with the accuracyy, 5 ;) Of the continuous constituent at the same dejtits )

leads generally at least to values of the samer andencertainties and density heterogeneitiesrtdke
various depths. Because discussed uncertaintigaaeasing when radiygis decreasing to zero we will
use below only radial density models for furtheted@ination of the Earth’s gravitational potengalergy.

3. Estimation of the gravitational potential energy As well-known the computation of the
gravitational potential energy is based on theofeihg expression (Moritz, 1990):

_ 1
E=-2 j SV, Mr, (8)
wheredis the Earth’s density; is the internal gravitational potential, and the planet’s volume.
Table 2
Expressions for different radial density models
Model Mathematical expression
Homogeneous planet d(p) = J,, = const
Legendre-Laplace law d(p) = I, sin(yp) I(yp)
Roche’s law d(p) = a+bp?
Bullard’s model 3(p) =a+bp? +co’
Gauss’ model — 242
(Marchenko, 2000) o) = 0, eXPCAP")

For the determination of the potential enekyyve will examine additionally to the homogeneous
Earth the following radial-only continuous densjyofiles: Legendre-Laplace law, Roche’s law (as
solutions of the Clairaut’s equation), Bullard’'s ded, and Gaussian (normal) distribution (see Fig. 3
Therefore, in order to determine the gravitatiopatential energye we use density laws from Table 2
initially for the spherical Earth. The parametefgte simplest density models (Fig. 3) listed irblEa2
were derived in the closed form (Marchenko, 2000)nfthe solution of the inverse problem based en th
well-known conditions to kee@,,, |,, and the densityy, at the Earth’ surface (Moritz, 1990). The

parametersd,and a represent the density at the origin (Table 2 armdbld 3). Initially we derive
relationships for the internal potentMlcorresponding to these density laws. Then, appliq. (8) to the



density models from Table 2 and internal potentigésfind final expressions given in Table 3 for the
estimation of the potential energy E of the spladificarth.
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Fig. 4. Piecewise Roche-density model with 7 shells
compared with PREM-density mod&b) [g/cnT]

With adoptedd,, and the dimensionless mean moment of inefjg= 0.3299773 0.0000005

(Table 1) numerically we get estimations of thergpeée given in Table 4, which includds-estimates
given by Mescheryakov (1973) and Rubincam (1979)¥daher comparisons. Thus, there are two limits
for all computedE:

E (9)
The upper limitE,; agrees with the homogeneous Earth. The minimunuatm,, ., corresponds

to the Gauss’ model. Such assertion has an evidatitematical explanation. The first term of the [®ay
series expansion oEg, . from Table 3 represents the gravitational potéwetiergy of the homogeneous

Earth E,, . Globally speaking every model from Table 3 inésidhe main term equal 6, . But the sum
of other terms withE,, gives a smalleE than the valuee,, .

Gauss S EEarth = EHomogeneos-

Table 3
The gravitational potential energyE of the spherical Earth for different radial density models
Model Mathematical expression
Homogeneous planet | £ = _16/72Go2R® /15
m
Legendre-Laplace law 205 i
Eo_ 47726?0 R (20052 yo 3siny cosy +1j
Yy 4
Roche’s law 5
E= _16mGR (21a” + 24ab+ 7b?)
31t
Bullard’s model
- —% [286a (360 + 250)+ 90082 + 31002 +1404c + 4952)]
Gauss’ model £ - TPGOIR® (2mexpY)ert(B) o o oy _ N27eri(N2B)
= 7 PC28°) ——— ——
B B 2B
Table 4
Estimations of the gravitational potential energyE (spherical Earth)
Model E, erg:
Mescheryakov, 19: -2.34 x10*

Rubincam, 197

-2.45 x1C*




Homogeneous plar -2.241%10*

Legendr-Laplace lav -2.459510*
Roche’s lay -2.480x%10*
Bullard’s mode —2.4716K10°
Gauss’ mode -2.500%10*
Table 5
E-estimates for the spherical Earth with one densityump at the core/mantle boundary
Model (2 shells) E, ergs R.m.s. deviation from PRE3M in tt
core-mantle areag/crr

Rubincam, 1979 -2.45 x10* -
Legendre-Laplace law —2.494410% 0.430
Roche’s law -2.493&10°¢ 0.409
Bullard’s model -2.4907x10°¢ 0.322
Gauss' model —2.494(x10* 0.437

It has to be pointed out, that the enegglerived by Mescheryakov (1973) 2& = -V,,M was based

on the known Earth’s mas4 and the mean-value theorem after preliminary caatiom of the mean valué,

of the internal potentidl; in Eqg. (8). The estimation & given by Rubincam (1979) was found for the splaéric
Earth differentiated into homogeneous core and lgemeous mantle with one jump at the core-mantle
boundary. We will apply a similar approach to theae-discussed profiles using the direct approxonadf

the PREM density by these four simplest piecewiedeais separated into two shells with the same hasip

at the core-mantle boundary. Table 5 illustratssite of such approximation in the form of r.mevidtions

from the PREM density based in every case on tHgi@ohl conditions to keep,,, |,,, and Jd,. Despite the
best value of r.m.s. for the Bullard’s model wef@rdéo use below a simpler Roche’s law due to allema
number of the parametess andb; (j=1,2,..K) introduced for each shell.

The comparison dE-values from Table 4 and Table 5 gives better-tuafireement between all values
of E when the basic jump of density at the core/mdmtdlendary is taking into consideratidiestimates given
in Table 5 satisfy again to the inequality (9) witle two limits E;, . and E,, from Table 4. All values dE in

the case of these piecewise models from Table Beayeclose to the minimum amouBt, .. For this reason

the accuracyog, . of Eg,. Was derived under the assumption tbigt, . depends only on accuracy of,

uss
and |, given above. Numerically we g&,, .= (—2.5009+ 0.0025 x10* ergs. Hence, if a spherical Earth
differentiates into present-day core and mantle et in view of the estimated accuracy
O&..s= £0.0025¢x10% ergs a perfect accordance betweEvalues corresponded to the layered Legendre-

Laplace, Roche, Bullard, and Gauss models with elisshThis quantityog, . is certainly larger thai-

estimates contained in the 2nd-degree harmonidsr{fam, 1979) and for this reason we will use agaiinl-
only piecewise model for the determination of tbeeptial energ¥ of the ellipsoidal Earth.
The internal potentiaV; inside the ellipsoid of revolution with the rad@dgnsity d(r = p[R ) was

adopted according to Moritz (1990, p.41). For thenbthetic stratificatiof=const we get

r R
Y, =V Ayt = 2 [ (e + 476 (el + 4, (10)
0 r
ANV = 8’2’ T b (cos9) [aryrear- 8’2’ T b (cos9) [ayrar, (12)
r r
0 0

the internal potential of the ellipsoidal Earth [Ef0)] in the form of the internal potential oktkpherical
planetV,**"" reduced tov, by the ellipsoidal reductiomV;*" [Eq. (11)]. Egs. (10 — 11) allow the direct

computation of the potential energyin the following way

E= ESphere+ AEeII ’ (12)



if inserted into Eq. (8). Then, taking into accotm flatteningf we will determine the ellipsoidal reduction
4E,, beforehand. Since the value®f the piecewise radial models with one jump (€&l are very close to

the lower limit Eg, . In EQ. (9) it is enough to estimattE,, by applying the Gauss’ continuous model inside
the ellipsoid with the homothetic stratificationuiderically we getdES* = 0.000045< 10> ergs two orders

ell

smaller value than accuracyg, ..=+0.0025<10* ergdence, it is sufficient to adopt the reduction

AV =0 in Eq. (10) for the internal potentig].

If the expression foE is known, the piecewise PREM profile is one of astrsuitable densities for
the estimation of the potential enerBy although this problem is not discussed in therditure. Due to
polynomials of different powers adopted for eacélistmere are significant difficulties in the deation of
such relationship foE in the case of the PREM model. Therefore we wipllg another appropriate model
represented by polynomials of identical even powétkin every shell. Because the PREM-profile agree
well with the piecewise Roche model (Marchenko, ®0€onsisting from 7 shells (Fig. 4), we use this
Roche density as initial information in the follawjiform

2
5j(r)=ai+bj(LRj , a,=b, =0, (13)

wherej=0,1,2,..k kis the number of shellg<7), g andb; are the known coefficients of the model (13) gif@m
each shell separately (Table 6) with the artifizizdo shella, =k, = Oinvolved here for the generalization of

basic formulae. Note also that r.m.s. deviatiomben these models (Fig. 4) has the value 0.06°d¢erthe most
important in our case core-mantle area and incseasg to 0.24 g/crifor the total Earth (core-mantle-crust).

Table 6
Piecewise Roche’s model with 7 basic shells as sdaafor the PREM (Marchenko, 2000)
j (Shell) a, glent b, glcn? rj, km
1 (Inner core) 13.061 -8.891 12215
2 (Outer core) 12.483 -8.343 3480.0
3 (Lower mantle) 6.370 -2.574 5701.0
4 (Upper mantle) 6.058 -2.577 5971.0
5 (Upper mantle) 5.784 -2.524 6151.0
6 (Upper mantle) 6.057 -2.903 6346.6
7 (Crust) 6.622 -3.952

With A\/ieII =0, ro=0, and a current point lied within theshell at the distanag the substitution of
Eq. (16) into Eq. (13) provides the expressiortiierinternal potential

Vi) _@Z [y +—j5 (r)rdr + 476 Téﬂ(r)rdr v 416 Z Td(r)rdr (14)

1=l I=j+ly,

Then we substitute Eq. (13) into Eq. (14), obtagnin

M, 471G 3b; 476G b,
j +—{aj(r3_rj3)+5—R’2(r )} [a (rfg—r?)+ 21 (rfy = )}+Clgn, (15)
471
M; = 3 [31 (r? —r|_1)+ SQ (r| _rls—l):|1
416 <& q (16)
Clh =" o) +—=0h-nh |
int > lzjﬂ{ai(l 1=h) SR (ha—n")
Table 7
Estimations of the potential energye derived from the piecewise Roche’s model (Table 6)
j (Shell ContributionE; of each shell, ert
1 (Inner core -0.054%10™
2 (Outer core -0.915%10*
3 (Lower mantle -1.1625¢10*




4 (Upper mantle -0.1527x10*

5 (Upper mantle -0.095410*
6 (Upper mantle -0.099&10*
7 (Crust -0.010410*

Total gravitational potential energy2.491<10* ergs

Thus, according to Egs. (14 — 15) in the case efpiecewise Roche’s density (13) the internal
potential V;(r) at the arbitrary current poift can be formed from the four parts: first two teramsl last
two terms in Eqg. (18) represent the potential$efEarth’s layers lied below and abd®eaespectively. By
this, after some algebraic manipulation with Ed)(ibserted into Eqg. (8) we get a simple possipiit the
determination of the gravitational potential eneEgyl'he result is

ki

E=-21) jai(r)vi (r)r2dr :_Zk:Ej,
j=1

=iy 71
8
m=1
where E; expresses the contribution of eaehell in the total valug by
C,; =4Ga;(a A +b;B;),
Gy = 47y, (ii A :bjCj)'
Cyj :ajCiert(ri _ri—l)/a , (18)
Cs; =47Gb;(a,C, +b,D, / R?),
C, :4nG‘bj (a,B; +b,D;/R?),
Cgj =b; Ciy (rjs - rj5—1)/(5R2),
A, = @rp, =5rlrf+2r)/30
— 7 5 .2 7 2

D; = (Gry, —9r],r +4r’)[(180R?).
With adopted piecewise Roche’s density (Fig. 4,8 @lpwe get the estimation of the potential enérgy
(Table 7) by means of the contributiong; of each shell [Eq. (17)] The obtained quantity

E =-2.4910x10* ergs agrees well witlE-estimates from Table 5 based on the radial pgofiiéh one jump at
the core-mantle  boundary and satisfies to the  @liggu (9) at the  vicinity
Egauss= (-25009+ 0.0025 x10*  ergs  of the minimum amount. In view of the accuracy

Ogauss=10.0025¢10* ergs we get a remarkable accordance betwBen—2.4910x10% degived from

the piecewise Roche’s density with 7 basic shellsaanpled for PREM and the vallegiven by the simplest
piecewise Legendre-Laplace, Roche, Bullard, ands&aodels with 2 shells all corresponded to thersglly
symmetric Earth differentiated into core and mantlaly. We may assume that the quantity

E =-2.4910x10* ergs will be close tdE-value of the PREM model, taking into account aiminm contribu-

tion E; of the crust (Table 7) into the totalknd r.m.s. deviation between PREM and piecewish&e models.
4 ConclusionsThe global density model inside the ellipsoidaltEaras adopted as exact solution of the

restricted three-dimensional Cartesian momentslgmolfor o (o 7 ,A) under the conditions to conserve the

Earth’s mass, the geometrical flattening, andradicipal moments of inertia. This model includes taference
radial density profiled(p), selected in the form of the piecewise Roche’s iisodéh 7 basic shells, taking

into account density jumps as sampled for PREMhWi(p), chosen as exact constituent, the accuracy
O 5.9, Of continuous global density was derived fromdbesistent set of the Earth’s mechanical parameters



Comparison of the lateral density anomali&3(p,7, 1) with the accuracy 5, 5, at the same depths leads

generally at least to values of the same ordendentiainties and density heterogeneities.

As a result, only radial density models were adbjite the determination of the gravitational point
energyE. Relationships foE were derived in the following cases: 1) continubegendre-Laplace, Roche,
Bullard, and Gauss radial density laws; 2) the seadi&l models with one added jump of density atdbre-
mantle boundary (2 shells); 3) the piecewise Raclpedfile separated into 7 shells. The estimatibrc o
according to various continuous density laws gitiesfollowing result: there are two limits for abmputed E.
First one agrees with the homogeneous distribuBenond one corresponds to the Gauss’ radial gensit

Finally all determinations of the potential enefdgywere made for the spherical Earth since the
ellipsoidal reduction 4E,, gives two orders smaller quantity than the esthataccuracy

O&.uss=10.0025x10* ergs. Taking into accountog,,.. we get a perfect agreement between
Ecauee= (-2.5009+ 0.0029 x10*° ergs, the potential energyE =-2.4910x10*° ergderived from the

Gauss

piecewise Roche’s density with 7 basic shells, #al valuesE given by the four simplest piecewise
Legendre-Laplace, Roche, Bullard, and Gauss medtis2 shells (core and mantle only).

Among continuous densities for the Earth’s integiven in Fig. 3 the Gaussian distribution (based
on the Earth’'s fundamental parametels, 1,,, J, only) allows a better-quality representation o th

general trend of the planet’s piecewise densitytHy, the Gauss’ model leads to the reliable esdton of
the lower limitEg,.ss0f the potential energlg, answering in this manner on the question aboweitathe
gravitational potential energy of the ‘true’ Earth (Moritz, 1990): all piecewiskensity models givé&-

values at the vicinityE, .= —2.5009x10* ergsf the lower limit of Eq. (9).
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