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The problem of rank-order filtering is solved on the base of analogue neural circuit 

which determines maximal value signals among signal set. The filter is described by system of 

algebra-differential equations and combines such properties as high accuracy and speed, low 

computational and hardware implementation complexity, and independency on initial condi-

tions. The filter can be used for processing of constant signals, variable signals, and also equal 

signals. The filter simulation examples confirming theoretical statements are provided. 

Keywords: rank-order filtering, analogue neural circuit, a system of algebra-differential 

equations, computational complexity, hardware implementation, computer simulation.  

 

1. Introduction 

As known, rank-order filters are nonlinear filters which have many applications including digital 

image processing, speech processing, coding and digital TV, etc.[1] – [5]. A rank-order filter functions by 

working by selecting its input with a certain rank as its output. Rank-order filters entails substantial 

processing power to implement, which limits their real-time signal processing applications. Nevertheless, 

rank-order filters can benefit from their parallelist realizations.  

Numerous approaches have been developed to design rank-order filters using hardware [1] – [4]. In 

particular, a rank order filter design based on two KWTA models are proposed in [3]. A KWTA model 

with K winners is used in parallel to another KWTA model with K–1 winners to select the input with its 

rank-order being K in [5]. 

 

2. Rank-order filtering 

Let us derive the filtered output signal as 

 1KKT SSac  ,                                                               (1) 

where 
KS  is a step vector function which can be defined or encoded as the following binary functions: 
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where N,...,2,1k  ,  Tnnn N21
a,...,a,aa   is an input vector with the elements distinct and arranged in a 

descending order of magnitude satisfying the inequalities 


N21 nnn aaa  ,                                                          (3) 

N21 n,...,n,n  are numbers of the first largest input, the second largest input and so on up to Nth largest input 

inclusive,  Tnnn N21
c,...,c,cc  is an output vector of the rank-order filter which can be realized by using 

the state equation of continuous-time model of analogue KWTA neural circuit given by  
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with a state variable x and an initial condition Ax0 0  , 
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is a residual function,   is a constant parameter or decaying coefficient that is used for controlling a con-

vergence speed of the state variable trajectories to the KWTA operation [6]. As it was pointed out above, 

in view that (2) and (6) are discontinuous functions of x, the state equation (4) is an ordinary differential 

equation with a discontinuous right-hand side. 

The results presented above are valid not only for sets of time-constant inputs (3). The model (1) can 

be also used in the case of time-varying input signals )t(a
kn , N,...,2,1k   if the speed module of such 

signals is much less than that of the state variable x during transients. In other words, in this case, condition                            

minmax
n dt/dxdt/da

k
 .                                                          (6)                                   

should be satisfied for each 
*tt  , N,...,2,1k  . In order to match the condition (7), the value of the de-

caying coefficient   should be large enough.  

Let us consider the case where two or more inputs of the model (4) are equal to one another. If such 

inputs belong to K  winners or to KN  losers, then the outputs of the model converge to KWTA opera-

tion [6]. However, if the model should distinguish equal largest inputs and split them into positive and 

negative planes when there exists a number of maximal inputs less or greater than K only, then the outputs 

of the model which do not have KWTA operation will be obtained. The model outputs will demonstrates a 

phenomenon of chattering in the time points in which the condition (2) is violated, in other words, where 

input signals are equal one to another. Specifically, a dynamic shift x  of inputs will take place in a sliding 

mode around a certain point ee  of equal inputs of vector a. In this case, the conditions of the existing slid-

ing modes 
0s
0s

 , 

0s
0s

  are satisfied and the sliding mode equation is given by  

0axs e  .                                                                  (7) 

A derivative x  in this case is not defined on the surface of discontinuity   since K largest inputs do 

not exist and, therefore, 0)x(E  . Outputs N,...,2,1k,b
kn   will slide around the point xa

kn 
 
[7] and 

therefore a residual function (5) will accept sequentially the following two values: 1)x(EK 

 

and

 1)x(EK  .  

In order to remove indicated oscillations let us generalize the model (4) on the case of processing 

such time-varying  input signals, some of them can be equal one to another in some time moments. In such 

time moments inequalities (3) are not satisfied and therefore K maximal input signals do not exist. Let us 

extend for this case the model (4) to the following form: 

 1KKT SSac  ,
 
if
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 , 0c0  , otherwise,                                                                        (8) 

where 0c  is an initial condition. It is not hard to see, that in the steady state KWTA mode the system of 

algebra-differential equations (8) is reduced to the expression (1) which is a particular case of the system 

(8). In the transients output signals of the rank-order filter are described by the degenerative differential 

equation of the system (8).   
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3. Computer simulation results 

In order to illustrate the theoretical results presented above, let us consider concrete example with 

corresponding computer simulations which demonstrate the rank-order filtering by the filter model (8) 

based on the continuous-time model of an analogue KWTA neural circuit (4). Let us design for this pur-

pose corresponding program in the codes of high-performance language for the technical computing    

Matlab. To run such programs we use a 1.81 GHz desktop PC. 

Example. Let us set input sinusoidal signals defined as d)itsin(a i   (i=1,2,…,m-1), where 

ω is the angular frequency, φ is the phase shift, and d is the bias. Let us also use as an additional input sig-

nal ma  uniformly distributed on the interval (-1,1) random noise. In order to improve a performance of 

differential equations (4) and (8) solving we use corresponding finite difference equations with the time 

step 
3101t  . The first subplot in Fig. 1 depicts the eight input sinusoidal signals, the second subplot 

shows the random noise n uniformly distributed on the interval [-1, 1], and the last subplot presents the 

filtered output signal c obtained by the expression (1) and model (4) for m=9, 1000 , 0x 0  , K=5, 

d=2, ω = 2π, and φ = π/4. As one can see, this signal presents a phenomenon of chattering in the time 

points in which the condition (2) is violated in accordance with the predictions. For the same data, the fil-

tered output signal c obtained using the system of algebra-differential equations (8) is shown in Fig. 2. 

According to prognosis the oscillations in the time points where input signals are equal one to another have 

been completely removed. It is not hard to see that the system presents a median filter because of K=5. 

Since 1dt/da
max

n k


 
and 100dt/dx

min
   therefore inequality (6) is satisfied. As one can see from the 

results shown in Fig. 2, the analogue rank-order filter built on the base of the KWTA neural circuit de-

scribed by the model (8) presents good performance including the time points of equal input signals.  

Note that if the problem considered in this example is solved for the same data using the rank-order 

filter presented in [5] which is described by expression (1) and one of the most simple models of discrete-

time KWTA neural circuits, then output signal of the filter contains distortions similar to ones presented in 

Fig. 1 in the time points in which the condition (3) is not satisfied.      

 

4. Conclusions   

As one can see from the results obtained by computer simulations, the output signals of the model 

(8) of the analogue rank-order filter, are correct ones including the time points of equal input signals.  Such 

filter can have various applications, especially for real time signal processing. In particular, in the special 

case if N=3, such analogue rank-order filter can be used in analog fault tolerant systems. As known, analo-

gue fault tolerant systems can be designed based on the analog Tripple-Modular Redundancy (TMR). The 

TMR approach is a frequently used design technique in fault tolerant systems, especially for critical-

computation applications [8]. The basic concept of TMR is to triplicate the hardware and perform a majori-

ty vote to determine the output of the system. If one of the module becomes faulty, two-remaining fault-

free modules mask the result of the faulty module. One major problem arises if the result of each module is 

an analog signal. In such cases, the three signals may not completely agree in value even if the system 

functions with no-fault. One technique that alleviates this problem is the mid-value select technique [9], 

which selects the middle value of each triplet. Obviously, a 3-input 2
nd

 WTA network perfectly matches 

this selection method and thus can be directly used for this application.   
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Fig. 1. Trajectory of eight sinusoidal input signals, one noised input signal, and filtered output signal of the 

rank-order filter described by the expression (1) and  KWTA model (4). 

 
Fig. 2. Dynamics of eight sinusoidal input signals, one noised input signal, and filtered output signal of the 

rank-order filter described by the system of algebra-differential equations (8). 
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