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MATHEMATICAL MODELLING RELIABILITY PARAMETERS OF 
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Main reliability parameters of unrestorable unsymmetrical systems, ramified to level 3, with 

ageing output elements, are examined in this paper. A method of investigation of reliability 

parameters of ramified systems by means of generating functions is developed taking account of 

aging of the system’s output elements. Mathematical models of the probability distribution of count 

of output working elements, the duration of the system’s stay in each of its states and the duration of 

the system’s stay in the prescribed availability state are worked out in case when the lifetime of 

ageing output elements is circumscribed by the Rayleigh distribution. 
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Introduction 

Reliability is a very important concept that is determined in terms of its application to the wide range 

of activities. Reliability deals with products in service [1]. 

Reliability analysis of complicated systems is obligatory at their design.  Complication of the 

systems often grows quicker from development of mathematical methods of their researches. Insufficiently 

high reliability can result in excessive charges on repair and renewal or even to more serious consequences, 

in particular to the near-accidents or accidents. 

The problem of reliability investigation of the systems arose up a long ago together with becoming 

of the engineering approach to industry. Every engineering object must contain the sign of reliability. At a 

choice among competitive projects, reliability parameters occupy an important place in the list of 

requirements. But reliability prognostication is difficult because of multivariate and statistical nature of this 

phenomenon. In recent years with speed-up development of the computing engineering, the reliability 

calculations for sufficiently complicated systems became possible taking into account plenty of parameters 

at cost cutout on such calculations. 

Existent traditional methods of systems reliability analysis and estimation are mostly oriented to 

simple objects and cannot satisfy to a full degree the necessity of analysis of large unsymmetrical ramified 

systems. 

Separate examples of such systems are control systems, measuring systems, some types of computer 

local networks. On an output level such systems have sensors, printers, keyboards, disk drives that expose 

to exhaustion and aging. Lifetime of such devices is often described by the Rayleigh distribution or the 

Weibull distribution. Lifetime of elements on higher levels is described by the exponential distribution [2]. 

It is necessary to develop the methods of reliability prognostication taking into account features of the 

systems. 

Mathematical models of reliability parameters 
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Fig. 1. An unsymmetrical system, ramified to level 3, 

with 2 branches of unequal value on level 1 

 

The exponential distribution is a special case of the Weibull distribution just as it is of the gamma 

distribution. The Weibull distribution has different failure rates depending on a shape parameter [3]. The 

Raileigh distribution is a special case of the Weibull distribution which demarcates two different types of 

increasing failure rate behaviour, those that are concave upward and those that are concave downward. 

We use P3R(x3,t) to denote the probability that there are exactly x3 operating output elements 

provided the probability of failure-free operation of ageing output elements are circumscribed by the 

Raileigh distribution. Under conditions
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In case of x3=0 the right side of the equation (1) should increase by 
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 The average time to failure of the system Tс is calculated as an integral from 0 to ∞ of the 



 

 
probability of trouble-free P(t) [4]. Analogously, an expression for the probability distribution of count of 

output working elements having been integrated with respect to t from 0 to ∞, under condition 
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230 aaaax   we obtain the average duration of the system’s stay in each of its working 

states. 

 We use T3R(x3) to denote the average duration of the system’s stay in a state of x3 operating output 

elements provided that lifetime of ageing output elements is circumscribed by the Raileigh distribution. In 

order to calculate T3R(x3) we integrate (1) with respect to t from 0 to ∞. We obtain the following 

expression:  
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In the equation (2) we transform expressions between brackets raised to some power by the binomial 

theorem as follows:    
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Substituting (3), (4) into (2), we obtain: 
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the form of the next equation: 
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where erfc is the complementary error function. 

Notice that T3R(0)=. 

The sum of average durations of the system’s stay in states over count of output elements from k to 
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the prescribed availability condition k. 

We use TГ3R(k) to denote the average duration of the system’s stay in the availability condition k 

provided that lifetime of ageing output elements is circumscribed by the Raileigh distribution. Taking (6) 

into account, under conditions 
)2(

3

)1(

2

)1(

3

)1(

2 aaaa  , 
)2(

3

)1(

2

)1(

3

)1(

20 aaaak   we obtain the following 

expression:  

 

    

































 






























































1
)(2)(

}min{

},0max{

1

3

)2(
2

)1(
33

)2(
1

)2(
1

)1(
11

)2(
1

)1(
11

)1(
1

)1(
2

)1(
3

)1(
3)1(

2

)1(
3

)1(
2

)1(
3

)1(
2

)1(
1

)1(
2

)1(
3

)1(
2,3

)2(
3

)2(
23

)1(
3

)1(
2

)1(
3

)1(
3

)1(
1

)2(
3

)2(
2

)1(
3

)1(
2

3

1)(

a

xx
ceil

ceilx

xxttxx
xa

a

x
ceilx

x

xa

x

xa

aax

aaxx

a

a

x
ceil

ceilx

aaaa

kx

RГ eeCCkT


 
























 


2

)2(
1

)1(
1

)2(
1

)2(
2

)1(
1

)1(
2

2

1
)2(

1
)1(

1
)2(

1
)2(

2
)1(

1
)1(

2

1

)2(
1

)1(
1

1

1
)2(

1
)1(

1

)1(
33

)2(
2

)2(
3

)2(
1

)2(
2

)2(
3

)1(
33)2(

2

)2(
2

)2(
1

)2(
2

)1()1(
)(

0
)(

)(2

0
)(2

j

xxxaxa

j

j

xxxaxa

j

xx

j

j

xx

xx

xa

xa

a

xx
ceilx

x

xa
CCCC            (7) 

 

 
,

)(2

)((

)(2
)1(

33

2

)2(

2

)1(

221

)2(

1

)1(

1103

)(2

)()(

33

3

0

33

2
)2(

2
)1(

221
)2(

1
)1(

110
2
3

3

3
)2(

2
)2(

3
)1(

2
)1(

3

3

2
)2(

2
)2(

3
)1(

2
)1(

3 





























jx

jxxjxx
erfce

jx
C

jx

jxxjxx

j
xxaxa

j

j

xxaxa





 

where erfc is the complementary error function.  

As an example we consider a technical equipment of a computer network which includes a server, 

two hubs, workstations and takes the form of a ramified system shown in Fig. 2 where S denotes a server, 

H denotes a hub, W denotes a workstation, L denotes a communication line. 
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Fig. 2. Representation of a technical equipment of a local area computer network in the form of a ramified system 

 

A municipal enterprise has placed 20 workstations in 2 rooms, moreover 7 workstations are 

connected to the server by a 8-port hub, and the other 13 workstations are directly connected to a 16-port 

hub. Only the 8-port hub is directly connected to the server, and both hubs connect each other. Therefore 

the 8-port hub can be considered as basic. 

In Fig. 2 
)1(

2a , 
)2(

2a  denote counts of workstations directly connected to the basic hub and to the 

unbasic hub correspondingly. The following inequalities are executed:  

7)1(

2 a , 16)2(

2 a , 
)2(

2

)1(

2 aa  .                                                   (8) 

Results of calculations by the equation (6) showed that optimal placement of 20 workstations in 2 

rooms in relation to reliability is direct connecting as many workstations as possible to the basic hub, that 

is, a problem of choice of the ramification coefficients 
)1(

2a , 
)2(

2a  which ensure the highest reliability of the 

system under conditions (8) and under condition 

20)2(

2

)1(

2  aa ,                                                                   (9) 



 

 

Fig. 3. A fragment of a histogram of operation of an unsymmetrical system in course of time at 7)1(

2 a , 13)2(

2 a  

 

results in: 7)1(

2 a , 13)2(

2 a . 

The average duration of the system’s stay in the state of x2 working output elements of the system  

under condition 8 x220 does not depend on the variant of placement responding to conditions (8) and 

(9). The following results are obtained: 

T2(20)=237.077 hours, T2(19)=222.817 hours, T2(18)=218.082 hours, T2(17)=216.856 hours, 

 T2(16)=217.633 hours, T2(15)=219.854 hours, T2(14)=223.291 hours, T2(13)=227.857 hours, 

 T2(12)=233.487 hours, T2(11)=239.922 hours,  T2(10)=246.257 hours,  T2(9)=250.169 hours, 

T2 (8)=247.263 hours. 

An optimal variant of placement is chosen on the basis of estimating the average durations of the 

system’s stay in the states of x2 working output elements under x2<8. No less than 8 output elements of the 

system will operate on the average over a period of 565.3000)(
20

8

22

2


x

xT hours from the beginning of 

the system’s operation. 

The duration of the system’s stay in the state of 7 working output elements has a maximum value 

which equals 239.261hours at 7)1(

2 a , 13)2(

2 a . At other variants of the system’s structure 

corresponding to conditions (8) and (9) this duration equals 208.689 hours. At 7)1(

2 a , 13)2(

2 a  no less 

than 7 output elements will operate until a moment of time 3239.826 hours, and at other variants of the 

system’s structure they will operate until a moment of time 3232.188 hours from the beginning of the 

system’s operation. In Fig. 3 a fragment of a histogram of the system’s operation in the course of time is 

plotted under conditions 7)1(

2 a , 13)2(

2 a . 

We choose the availability condition k=18 which means that no less than workstations operate in the 

system.      



 

 
According to the equation (7) the average duration of the system’s stay in the prescribed availability 

state k=18, which means that no less than 18 output elements operate, equals 

976.677)20()19()18()()18( 222

20

18

222

2

 


TTTxTT
x

Г
 hours. 

Generalization of results of modelling reliability parameters for unsymmetrical systems ramified to 

level 3 makes possible to set up recurrent expressions for calculating the probability distribution of count 

of output working elements, the duration of the system’s stay in each of its states and the failure frequency 

under the prescribed availability condition for unsymmetrical systems, ramified to level n, with ageing 

output elements and with two branches of unequal value on level 1. 

Conclusions 

Up to now for ramified systems with complicated structures such as unsymmetrical systems with 2 

and more branches of unequal value, ramified to level 3 and more than 3 levels, there were no 

mathematical models in the form of analytic expressions for such reliability parameters as the duration of 

the system’s stay in each of its states and the duration of the system’s stay in the prescribed availability 

state. 

The main thrust of this paper is to reduce the computational time and complexity when evaluating 

reliability parameters of unsymmetrical ramified systems. 

Thus, mathematical models of the probability distribution of count of output working elements, the 

duration of the system’s stay in each of its states and the duration of the system’s stay in the prescribed 

availability state, are worked out for unsymmetrical systems with ageing output elements, ramified to level 

3. During designing unsymmetrical ramified systems, decisions about structures of the systems are made 

on the basis of such results.  
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