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SOME DEPENDENCE OF FIBONACCI'S NUMBERS 

 AND GOLDEN CHOPPING  

 Dzelendzyak U., Samotyy V., Dzelendzyak I., 2013 

New analytical dependences were established for golden chopping and for polynomials 

with infinite number of members. It is shown how we can determine analytically infinite 

polynomial in which the argument is the golden chopping using a Taylor’s series. The 

expressions for calculating these polynomials in which the coefficients are numbers in the 

Fibonacci’s series are displayed.  
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Introduction 

In 1202 Italian mathematician Leonardo of Pisa also known as Fibonacci (which means son of 

Bonacci) wrote a book "Liber abacci" ("Book about abacus") [1]. With this book Europeans first learned of 

Hindu ("Arabic") numerals, as well as the Fibonacci’s sequence. 

The Fibonacci’s sequence is expressed as as 00 F , 11 F , 12 F , 23 F , 34 F , 55 F , 86 F , 

137 F , 218 F , 349 F , ... ,  884757552793970077 F , 791464894439432378 F , ...  . We deal with 

a game-theoretic framework [2] involving a finite number of infinite populations, members of which have 

a finite number of available strategies. The payoff of each individual depends on her own action and 

distributions of actions of individuals in all populations. Fischer's concept, which is presented in [3], is an 

attempt to use Fibonacci's numbers for constructing the method of market behavior forecast taking into 

consideration the aspects of price and time. The wide range of Fibonacci's numbers application, especially 

in statistics, sports, non-Euclidean geometry, RSA codes, coloring of geographical maps, etc. are presented 

in [4]. Fibonacci’s algorithm has also been applied in technical fields. In particular, new algorithms of 

analog-to-digital conversion are an important outcome of this theory [5], which became the basis for the 

design of advanced analog-to-digital converters. Fibonacci numbers are used in automatic lines [6], which 

use a method of determining the state space of automatic lines with storage components based on a 

Fibonacci number. The obtained formulas give a theoretical basis for constructing mathematical models of 

automatic lines’ complex. Gold sectional are also used in telecommunications theory [7, 8]. The new 

logical-mathematical tools for modeling systems "man-machine-environment" in telecommunications are 

shown, and its application in the theories of linear and nonlinear filtering and in solving special problems 

searching are also shown. In [9] the method of matrix encryption / decryption numerical information using 

the sequence of Fibonacci numbers are shown, where classical mathematical tools - the theory of matrices 

is used. A method of detecting and correcting errors in an encrypted matrix, errors which happen in 

communication channels, is proposed. In this procedure, natural decimals of different sizes are 

corresponding objects of correcting. It has a principal meaning for the development of theory coding of 

information. 

The general formula of building this sequence is as follows  

1,0...,,3,2, 1021   FFnFFF nnn .                               (1) 

Dividing nn FF /1  golden chopping is obtained.  

It turns out that no matter whether this sequence consists of integers or real numbers, nn FF /1  ratio will 

always give golden chopping, which is aperiodic irrational number. And the greater the number of steps N  the 



more accurately one can calculate golden chopping. For example, taking a sequence of Fibonacci ratio 

54 / FF =3/5=0.6 and increasing N  to 78 we will have 

7877 / FF =5527939700884757/8944394323791464≈0.61803398874989484820458.    (2) 

It is of no import which will be the start value of 10 , FF . It may be real numbers. Moreover you can 

pass 10 FF  . For example, let it be 0F 120.4, 1F 13.8. Then according to (1) we can construct the 

following sequence: 134.2, 148, 282.2, 430.2, 712.4, 1142.6, 1855, 2997.6, 4852.6, 7850.2, 12702.8 

20553, 33255.8, 53808.8, 87064.6, 140873.4, 227938, 368811.4, 596749.4, 965560.8, …  . 

Dividing the last two numbers, we also obtain the golden chopping with a certain approximation, 

which depends on the number of the sequence members  

1918 / FF =596749.4/965560.8 ≈ 0.618 033 996 4.         (3) 

The preliminary version of this paper was presented as the publication [10]. 

1. Basic relations for golden chopping  

Golden chopping is marked as 

Z 0.618 033 988 749 894 848 204.                                          (4) 

The notation difference is introduced 

ZR 1 =0.381 966 011 250 105 151 796.   (5) 

The divider is marked as 

ZD /1 =1.618 033 988 749 894 848 204.   (6) 

The main dependencies for RZ,  and D  are written down 

1/1  ZZ ,     (7) 

ZR 2/1 .     (8) 

Substituting (7) in (6), we obtain  

1 ZD .     (9) 

If you subtract from (8) (7), we obtain  

1/1/1  ZR .    (10) 

Substituting (5) into (10) and multiplying the received result by Z   

 

Z
Z

Z



1

1
    (11) 

or  

)1)(1( ZZZ  .    (12) 

Expression (12) gives us a quadratic equation  

 

012  ZZ .    (13) 

The solution of this equation is 

 

ZZDZ  21 , .     (14) 

The consequence of this solution is 121 ZZ , as a consequence of equation (13) is  



1
1

2


 Z

Z
.              (15) 

Substituting (6) into (9) 

 

DD /11 ,                  (16) 

which formulates quadratic equation  

 

.012  DD       (17) 

The solution of this equation is  

 

., 21 ZDDD          (18) 

The consequence of this interpretation is 121 DD , as a consequence of equation (17) is  

 

.1
1

2


 D

D
              (19) 

2. The basic properties of power series of golden chopping 

Try to consider some properties of power series, where the argument is the golden chopping, or 

difference. To be golden chopping the dependence, which is a consequence of the Taylor’s series will be 

fair 
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.    (20) 

By comparing (11) and (20), we obtain  

 

ZZ
k

k 
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1

.    (21) 

By comparing (7) and (21), we obtain  
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.                (22) 

The consequence of these equations are the following ratio  
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.       (23) 

Subtracting from (21) Z , that is the first term of the series and taking into account relationship (20), 

(22), we obtain  
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.             (24) 

Equation (13) gives us the dependence  

 

ZZ 12 .                (25) 

Substituting (5) into (25), we obtain  



RZ 2 .             (26) 

Subtracting from (24) 2Z  and taking into account the dependence (26), we have 

  

RZ
k

k 




1
3

.    (27) 

Taking into account that RZ 1 , we have  

 

ZZ
k

k 


3

.                 (28) 

Multiplying left and right side of (13) on Z  
 

ZZZ  23 .    (29) 

Adding to the left and right side of (29) Z  

ZZZZ 232  .        (30) 

It means that the first three members of the sum (22) can be omitted subtracting from the right side 

value Z2 . Then the amount will be started from the fourth element  

 

ZDZ
Z

Z
k

k 22
1
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.             (31) 

Taking into account that 1 ZD  (see (7), (9)) expression (31) can be written as  

 

RZZ
k

k 




1
4

.       (32) 

There are several polynomial dependencies golden chopping. One is added to (30) and the received 

result is multiplied on Z  

 

ZZZZZZ  2432 2 .               (33) 

Taking into account the dependence (26) the last expression takes the form  

 

ZRZZZZ  2432 .              (34) 

According to (5) 1 ZR , so (34) can be written differently  

 

1432  RZZZZ .            (35) 

Subtracting polynomials in (22) according to (35) the first 4 members, and from the right side 1R , 

then the polynomial (22) can be written as  

R
Z

Z
k

k 




1
1

5

.       (36) 

Substituting (5), (7) into (36) we obtain  

12
5






ZZ
k

k .     (37) 

One is added in both parts of equation (35) and the received result is multiplied on Z  
 



ZZRZZZZZ 25432  ,     (38) 

Substituting (5) into (38), we obtain  

 

ZZZZZZZZ 2)1(5432                       (39) 

or 

25432 3 ZZZZZZZ  .   (40) 

Substituting (25) into (40), we obtain  

 

145432  ZZZZZZ .   (41) 

Subtracting polynomials in (22) according to (41) the first 5 members, and from the right side 
14 Z , then the polynomial (22) can be written as  

 

14
1

6






Z
Z

Z
k

k .         (42) 

Substituting (7) into (42) and obtain the final result  

 

)1(3
6

ZZ
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.      (43) 

One is added in both parts of equation (41) and the received result is multiplied on Z :  

 

265432 4ZZZZZZZ  .    (44) 

Substituting (25) into (44), we have  

 

)1(465432 ZZZZZZZ  .      (45) 

Subtracting polynomials in (22) according to (45) the first 6 members, and from the right side 

 Z14 , then the polynomial (22) can be written as  

)1(4
1

7
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.        (46) 

Substituting (7) into (46) and obtain the final result  

 

35
7






ZZ
k

k .    (47) 

One is added in both parts of equation (45) and the received result is multiplied on Z  
 

2765432 45 ZZZZZZZZZ              (48) 

or 

49765432  ZZZZZZZZ .          (49) 

Subtracting polynomials in (22) according to (49) the first 7 members, and from the right side 

49 Z , then the polynomial (22) can be written as  

 

49
1
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Substituting (6), (7) into (50) and we obtain the final result  
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k

k 85
8






.    (51) 

One is added in both parts of equation (49) and the received result is multiplied on Z  
 

ZZZZZZZZZZ 39 28765432  .   (52) 

Taking into account (25), we have  

 

ZZZZZZZZZ 1298765432  .  (53) 

Subtracting polynomials in (22) according to (53) the first 8 members, and from the right side 

Z129 , then the polynomial (22) can be written as  

 

Z
Z

Z
k

k 129
1

9






.          (54) 

Substituting (7) into (49) and we obtain the final result  

 

813
9






ZZ
k

k .      (55) 

These considerations can be continued to identify any partial amount. The grouped results are 

written 
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.   (56) 

We must remember that the Fibonacci’s series are defined as 00 F , 11 F , 12 F , 23 F , 

34 F ...  .  After dependence analysis (56) we can make a deductive conclusion that the coefficients of 

these expressions is the number of the Fibonacci’s series, namely  

 

...,5,4,3),()1( 32

1  
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k  .              (57) 

Here we observe a sign change, plus and minus constantly alternating. It is a direct manifestation of 

the Elliott’s wave theory [11], sometimes it is called the rule of alternation. It can be formulated in such a 

way: complex corrective waves alternate with simple, and strong pulse waves with weak corrective waves. 

This output gives another set of expressions, namely (25), (30) (35) (41) (45) (49), (53). We write 

them as a separate group of formula  
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The coefficients of these expressions are also subject to Elliott’s wave theory. These expressions can 

be written as recurrent formula  

.0,1...,,3,2, 1012

1
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k
  (59) 



We also calculate another coefficients ...,, 32 SS  using Fibonacci’s algorithm, which is based on 

Elliott’s wave theory, namely  

))1()1()1(()1( 2

1

1
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n

n
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n

n SSS  



   
.         (60) 

This expression has no analytical output and is purely heuristic in nature, like expression (57). 

If expression (59) substitute the value of golden chopping Z  and calculate it for different values n , 

you can get such a sequence of irrational numbers (confine three digits after the decimal point)  

1, 1.236, 1.382, 1.472, 1.528, 1.562, 1.584, ...   ,         (61) 

which according to (21) asymptotically approaching values of  

1+Z=1.618 033 988 749 894 848 204 58 . 

In practice it is very convenient because it saves computer time. There is no need to calculate the 

amount of power series, if it can be replaced by several arithmetic operations of multiplication, addition 

and subtraction.  

3. The basic properties of power series differences  

You can build a similar amount (21) for the differences. According to Taylor’s series we have  
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 11

.    (62) 

Taking into account the dependence (10), we have  

 

Z
R

R


1
.               (63) 

Substituting (63) into (62), we obtain  

ZR
k

k 


1

.                (64) 

Subtract from the left and right side of (64) R  

RZR
k

k 


2

.     (65) 

Adding to the left and right sides of (5) the difference R  

.21,1 RRZRZRR                                      (66) 

Substituting (5) into (66) 

12  ZRZ .                                                     (67) 

Substituting (67) into (65) 

12
2






ZR
k

k .    (68) 

Adding to the left and right side of (5) 2R
 

22 )1(1 ZZRR  .          (69) 

Given the dependence (25), we have  

ZRR 432  .      (70) 

Subtract from (64) expression (70) 



35
3






ZR
k

k .     (71) 

One is added tо the left and the right side of (70) and the received result is multiplied on R :  

)1(432 ZRRRR  .                                             (72) 

Taking into account the dependence (5), (26) expression (72) takes the form  

)32(432 ZRRR  .                                              (73) 

After subtracting (73) from (64) we obtain: 

813
4






ZR
k

k .      (74) 

One is added tо the left and the right side of (74) and the received result is multiplied on R :  

)43(3432 ZRRRRR  .                                       (75) 

Taking into account the dependence (5), (26) expression (75) takes the form  

)117(3432 ZRRRR  .                                        (76) 

After subtracting (76) from (64) we obtain:  

2134
5






ZR
k

k .       (77) 

These considerations can be continued and any partial amount can be identified. We write the 

grouped results  

,2134,813,35,12,
54321
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The coefficients of expressions (78) can be written through a series of Fibonacci’s numbers  

...,2,1,2212  
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.      (79) 

This output gives another set of expressions, namely (5), (70) (73) (76). We write them a separate 

group of formula 

)117(3),32(4,43,1 432322 ZRRRRZRRRZRRZR  ,…   (80) 

The coefficients of expressions (80) can be written through a series of Fibonacci’s numbers  

...,2,1,)1( 122
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If we compare expressions (56) and (78), we can note the following pattern  
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The obtained dependences can be summarized  

...,2,1,
12
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4. Properties of generalized power series  

We must take into account that except the golden chopping Z  which according to (19) when adding 

the power series gives one, other power series also can be built. According to Taylor’s series during adding 

these power series also will asymptotically approach to one, for example 

1
2

1
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.     4) 

The following formula is fair for 1/3, namely  
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     (85) 

and 

1
4

1
3
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k
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     (86) 

and 

1
5

1
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k

.     (87) 

Analysis of the obtained amount of general formula can be written  

1
1

)1(
1

 


k
kN

N .       (88) 

We can make a more general conclusion: the formula (88) is fair for all real (and not only integer) 

N  which satisfy the condition 2N . 

Try to explore the dependence if 21 N . Based on the Taylor’s series we again obtain again 

depending  

15.12/1
1
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k ,    (89) 

12.15/1
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k ,    (90) 

11.110/1
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k .    (91) 

The received amount have been analysed and then it can be written in general formula 

1)/11()/1(
1








k

kNN .           (92) 

This formula also covers written above formulas, namely (84) - (91). Here N > 0 is a real number. 

So substituting in formula (92) N =1 we obtain the expression (84),  and at N =0.25 we will obtain the 

expression (87). Formula (92) can be written in another form, replacing the negative exponent to positive 
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This formula can be written in a more general form 

M

N
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k
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1

,       (94) 

where M >0 - a real positive number. Formula (93) are special case of (94) when M = 1. 

The resulting formula is more general because it covers such cases as partial (22) when N =1, 

M = Z ; (64) with N = Z , M =1. 



Try to prove these two statements. Substituting ZMN  ,1  in (94), we have  

ZZk

k
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.      (95) 

Comparing (22) and (95), it remains to prove that 

Z
Z


1

1
.     (96) 

It is easy to see that this equality is a consequence of equation (7). Thus, formula (22) is a special 

cases of (94) when ZMN  ,1 . Substituting 1,  MZN  in (94), we have 

Z
Z

Z

k

k














1 1
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Comparing (61) and (94) it remains to prove that 

R
Z

Z


1
.               (98) 

According to (11) have  

Z
R

Z
1 .              (99) 

Defined in (99) R  we will receive expression (98). Thus, formula (64) is a special cases of (94) 

when 1,  MZN . 

Conclusion 

These new analytical dependences for golden chopping provide analytical basis for their further use 

in various fields of engineering practice. Expressions for polynomial series make it possible to calculate 

analytically the sum of infinite series without residual error. It increases the accuracy of calculations, while 

significantly reducing their number, because instead of calculating the sum of infinite series we can 

calculate the expression in which there are several operations of addition, subtraction, multiplication and 

division. 
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