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The paper proposes a method, algorithms and its implementations using dominance rules for 

minimizing the total tardiness on a single machine based on shortest Hamiltonian path in a arbitrary 

graph that improve the efficiency and not reduce the execution time. Metrics for evaluating the 

effectiveness of the dominance rules are proposed. The experimental results of algorithms are 

developed that justify the effectiveness of the proposed modifications by getting local optimal 

solutions during procedure. 
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Introduction 

Modern information and communication systems are defined by the presence of a great number 

of different types of resources – informational, computing, etc., its distribution, the control of which 

requires increase of efficiency and improvement of control over distributed processing systems, 

particularly on local resources. One of the goals is to develop efficient algorithms for scheduling and 

optimization of performance for the selected criteria in real-time computing machines (e.g., Grid system 

nodes, workstations (Network of workstations, desktop Grids), etc.). Solving the problem of 

optimization of local resource performance of such systems in order to reduce, and possibly even avoid 

the tardiness in cases where the task is characterized by due date. This will reduce the risks associated 

with the ability to pay fines, which lead to economic losses of users. The reviews of solving the problem 

of minimizing the total tardiness are examined in [1–4], the basic methods of its solution are given in 

[5–11]. A method of minimizing the total tardiness (method of direction optimization) based on the 

construction of the shortest Hamiltonian path in the fully-connected graph and based on the ranked 

approach with time complexity of О(n3) is shown in article [12]; in articles [13, 14] it is hypothesized 

that in cases where there are several alternative paths, the certain path is to be selected so where the 

vertex of graph that is added to the current rank of the Hamiltonian path has the shorter due date. 

The goal of this paper – is to develop and analyze the algorithms for constructing an optimal 

schedule tasks to minimize the total tardiness on a single machine (computing device) based on the 

construction of the shortest Hamiltonian path in an arbitrary graph and dominance rules along with 

metrics of evaluation the effectiveness of their use. 

Formulation of the problem 

Assume that the single machine receives a set of independent jobs  nJJJJ ,...,, 21 , and each of 

them is being continuously executed on it. The duration of each job Lj and its due date dj are known as 

well. The problem is to determine the order (sequence) of execution of all submitted jobs that enter a 

machine (device) at the same time, which will minimize the total tardiness of the input queue of all 

tasks  



}{

,0max
Sj

jjS dCTT , where Cj denotes the completion time of the job j. This problem is defined 

by 1||∑Ti, for solution of which the time complexity is obtained in [12, 13] and the dominance rules are 

first suggested for obtaining local optimum, namely the EDD rule (Earliest Due Date). In order to 

substantiate the hypothesis and to prove it experimentally, there are some considerable examples that 



illustrate the essence of the method and the use of dominance rules, on the basis of a fully-connected 

graph with vertices that characterize the operation of test sequence. 

Suppose that there is a set of jobs J1 (4, 7), J2 (5 , 6), J3 (3 , 7), J4 (3 , 4), for which it is 

necessary to build an optimal schedule. Each job J is characterized by two parameters: L – competition 

time, d – due date, and thus it appears as J (L, d). 

The graph that reflects the sequence of jobs is shown in Fig. 1.  

 
Fig. 1. Full-connected graph with 4 vertices (jobs) 

 

Algorithms to minimize the total tardiness along with dominance rules 

For an explanation of the algorithms operation a matrix is used, in which the columns 

correspond to the ranks (layers), and rows correspond to lines, the number of which is determined by the 

amount of jobs for which the schedule (timetable) is built (see Table 1). To characterize the value of the 

current tardiness of the set of jobs on each rank the notation T(j) j1j2…jn is used, where j – is the number 

of rank (column), j1j2,…,jn – is number of jobs (operations) that are the part of the current path to any job 

on current rank (column) of matrix. Thus, the total tardiness of all jobs will be determined on the last 

rank. 

At the beginning of the procedure jobs are ordered arbitrarily, the tardiness of each of them is 

equal to 0, and thus, their total tardiness is equal to 0. On the first rank (in the first row) of matrix all the 

paths from the jobs of J2, J3, J4 to job J1 are constructed, in second row the paths from the jobs J1, J3, J4 

to job J2 are constructed, in the third row the paths from the jobs J1, J2, J4 to job J3 is constructed, in the 

fourth row the paths from the jobs J1, J2, J3 to job J4 is constructed. Then according to the algorithm it is 

necessary to choose the minimum paths for each row: for row 1 – T(2)3,1 =3+(4-7) = 0 and T(2)4,1 = 

3+(4-7) = 0; for row 2 – T(2)3,2 = 3+(5-6) = 2 and T(2)4,2 = 3+(5-6) = 2; for row 3 – T(2)4,3 = 3+(3-7) = -

1; for row 4 – T(2)3,4 = 3+(3-4) = 2.  

After that, on the rank 2 the following is chosen: in the first row – T(3)4,3,1 = 6+(4-7) = 3 and  

T(3)3,4,1 = 6+(4-7) = 3; in the second row – T(3)4,3,2 = 6+(5-6) = 5 and T(3)3,4,2 = 6+(5-6) = 5; in the third 

row – T(3)4,1,3 = 7+(3-7) = 3; in the fourth row – T(3)3,1,4 = 7+(3-4) = 6. Then, a path from the vertices of 

the rank 3 to the vertices of the rank 4 is built: for the row 1 – TT4,3,2,1 = 0+0+5+8 = 13; for the row 2 – 

TT4,3,1,2 = 0+0+3+9 = 12 and TT4,1,3,2 = 0+0+3+9 = 12. So, the optimal Hamiltonian path (see Figure.1) 

include the sequence of jobs  J4J3J1J2. Thus, from the Table.1 it follows that there are «competing» paths 

from which can choose only one – accidentally or by using the dominance rules (for example EDD [1–3, 

11, 13]), which give the local optimal solution, or by «stretching» all the paths to the next rank, which 

means selecting all the constructed paths (without cutting off) for the next rank. If the current values of   

tardiness are equal to each other on any rank, a dominance rule EDD is used: for example, in rank 3 

T(3)4,3,1 = 6+(4-7) = 3 and T(3)3,4,1 = 6+(4-7) = 3. The choice falls on T(3)4,3,1 because d4 < d3. The 

procedure continues until it reaches the rank number 4, where the shortest Hamiltonian path with the 

minimum tardiness is finally selected. This will be the total tardiness, i.e. the desired solution. So for 

this example the optimal schedule is determined by the sequence of jobs J4, J3, J1, J2 with a total 

tardiness TT j4j3j1j2 = 12. The sequence of construction of Hamiltonian path in the graph in Fig. 1 at each 

rank is shown in Fig. 2–4 (Hamiltonian path is bold in the graph). The example of using the proposed 

algorithm with dominance rule EDD is shown in the Table 1. 
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Fig. 2. Choosing the vertex at the rank 2 

 

 
Fig. 3. Choosing the vertex at the rank 3 

 

 
Fig. 4. Choosing the vertex at the rank 4 

An optimal paths in a graph in all over matrices in Tables 1–3 and Tables 5, 6 are shown in bold. 

An example of the algorithm using the criterion of MDD rule   tdp jj ,maxmin  [15] is shown in 

the Table 2, the example of using the proposed algorithm without dominance rules is shown in the Table 3.  

Table 1. 

An example of algorithm operation including EDD rule 

Vertex Rank 1 Rank 2 Rank 3 Rank 4 

J1 (4;7) T(1)1 = (0 + 4) – 7 = – 3 T(2) 2,1 = (5 + 4) – 7 = 2 

T(2)3,1 = (3 + 4) – 7 = 0 

T(2)4,1 = (3 + 4) – 7 = 0 

T(3)4,2,1 = (8 + 4) – 7 = 5 

T(3)4,3,1 = (6 + 4) – 7 = 3 

T(3)3,4,1 = (6 + 4) – 7 = 3 

TT3,4,2,1 = 0+2+5+8 = 15 

J2 (5;6) T(1)2 = (0 + 5) – 6 = – 1 T(2)1,2 = (4 + 5) – 6 = 3 

T(2)3,2 = (3 + 5) – 6 = 2 

T(2)4,2 = (3 + 5) – 6 = 2 

T(3)4,1,2 = (7 + 5) – 6 = 6 

T(3)4,3,2 = (6 + 5) – 6 = 5 

T(3)3,4,2 = (6 + 5) – 6 = 5 

TT4,3,1,2 = 0+0+3+9 = 12 

TT4,1,3,2 = 0+0+3+9 = 12 

 

J3 (3;7) T(1)3 = (0 + 3) – 7 = –4 T(2)1,3 = (4 + 3) – 7 = 0 

T(2)2,3 = (5 + 3) – 7 = 1 

T(2)4,3 = (3 + 3) – 7 = – 1 

T(3)4,1,3 = (7 + 3) – 7 = 3 

T(3)4,2,3 = (8 + 3) – 7 = 4 

 

J4 (3;4) T(1)4 = (0 + 3) – 10 = –7 T(2)1,4 = (4 + 3) – 4 = 3 

T(2)2,4 = (5 + 3) – 4 = 4 

T(2)3,4 = (3 + 3) – 4 = 2 

  

 

 

 

 

Table 2. 

An example of algorithm operation including MDD rule 

Vertex  Rank 1 Rank 2 Rank 3 Rank 4 

J1 (4;7) T(1)1 = (0 + 4) – 7 = – 3 T(2)21 = (5 + 4) – 7 = 2 

T(2)3,1 = (3 + 4) – 7 = 0  

T(2)4,1 = (3 + 4) – 7 = 0  

T(3)4,2,1 = (8 + 4) – 7 = 5 

T(3)4,3,1 = (6 + 4) – 7 = 3  

T(3)3,4,1 = (6 + 4) – 7 = 3  

TT4,3,2,1 = 0 + 0 + 5 + 8 = 13 

J2 (5;6) T(1)2 = (0 + 5) – 6 = – 1 T(2)1,2 = (4 + 5) – 6 = 3 T(3)4,1,2 = (7 + 5) – 6 = 6 TT4,3,1,2 = 0 + 0 + 3 + 9 = 12 

J3 

J4 
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T(2)3,2 = (3 + 5) – 6 = 2  

T(2)4,2 = (3 + 5) – 6 = 2  

T(3)4,3,2 = (6 + 5) – 6 = 5  

T(3)3,4,2 = (6 + 5) – 6 = 5  

TT4,1,3,2 = 0 + 0 + 3 + 9 =12 

J3 (3;7) T(1)3 = (0 + 3) – 7 = –4 T(2)1,3 = (4 + 3) – 7 = 0 

T(2)2,3 = (5 + 3) – 7 = 1 

T(2)4,3 = (3 + 3) – 7 = – 1 

T(3)413=(7+3) – 7= 3 

T(3)4,2,3 = (8 + 3) – 7 = 4 

 

J4 (3;4) T(1)4 = (0 + 3) – 4 = –1 T(2)1,4 = (4 + 3) – 4 = 3 

T(2)2,4 = (5 + 3) – 4 = 4 

T(2)3,4 = (3 + 3) –  4 =2 

  

 

Table 3. 

An example of algorithm operation without dominance rules 

Vertex  Rank 1 Rank 2 Rank 3 Rank 4 

J1 (4;7) T(1)1 = (0 + 4) – 7 = – 3 T(2)2,1 = (5 + 4) – 7 = 2 

T(2)3,1 = (3 + 4) – 7 = 0 

T(2)4,1 = (3 + 4) – 7 = 0 

T(3)3,2,1 = (8 + 4) – 7 = 5 

T(3)4,3,1 = (6 + 4) – 7 = 3 

T(3)3,4,1 = (6 + 4) – 7 = 3 

TT4,3,2,1 = 0 + 0 + 5 + 8 = 13 

 

J2 (5;6) T(1)2 = (0 + 5) – 6 = – 1 T(2)1,2 = (4 + 5) – 6 = 3 

T(2)3,2 = (3 + 5) – 6 = 2 

T(2)4,2 = (3 + 5) – 6 = 2 

T(3)3,1,2 = (7 + 5) – 6 = 6 

T(3)4,3,2 = (6 + 5) – 6 = 5 

T(3)3,4,2 = (6 + 5) – 6 = 5 

TT3,4,1,2 = 0 + 0 + 3 + 9 = 14 

TT3,1,4,2 = 0 + 0 + 6 + 9 = 15 

J3 (3;7) T(1)3 = (0 + 3) – 7 = –4 T(2)1,3 = (4 + 3) – 7 = 0 

T(2)2,3 = (5 + 3) – 7 = 1 

T(2)4,3 = (3 + 3) – 7 =  – 1 

  

J4 (3;4) T(1)4 = (0 + 3) –  4= –1 T(2)1,4 = (4 + 3) – 4 =  3 

T(2)2,4 = (5 + 3) –  4 =  4 

T(2)3,4 = (3 + 3) – 4 = 2 

T(3)3,1,4 =  (7+3) – 4= 6 

T(3)3,2,4 = (8+3)–4=7 

 

Analysis of the results (Tables 1–3) shows that that it is possible to improve the result (total 

tardiness), and in some cases quite significantly – MDD rule can reduce the value of the total tardiness 

when using EDD rule and without using up to 30%, which may significantly affect the outcome in case 

of a large number of jobs in sequence, with the number of vertices of the Hamiltonian path, derived 

from the rule, is 2 out of the 4 vertices of the full-connected graph (Fig. 1). 

The problem of minimizing the total weighted tardiness (TWT) on a single machine (device) 

  



}{

,0max
Sj

jjjS wdCTWT  (1||∑wiTi) can be stated as the following. The set of jobs indexed from 1 to 

n, must be processed without interruption on one computing device that can handle only one job at a 

time. All jobs come to a device at time that equals to 0. Job is characterized by its processing time Li 

(processor time, pi), tardiness di and weight wi. For convenience, all jobs are ordered according to EDD 

rule, so that di < dj; if di = dj, then pi < pj; if pi = pj, then wi < wj for all i, j (i < j). If job i is completed 

after its due date di, there is a penalty for tardiness (weighted). For experimental research that evaluates 

the impact of the inclusion of dominance rules, the rules that are listed in the Table 4 are used. 

Table 4. 

Terms of dominance rules for the total weighted tardiness 

Rule Name   Description  Formula of determining the priority 

WEDD Weighted Earliest  

Due Date 

Weighted with the 

earliest due date 












j

j

d

w
max

 
WMDD Weighted 

Modified  

Due Date 

Weighted with the  

modified due date 
 











 

j

jj

w

tdp ,max
min

 
WSPT Weighted 

Shortest  

Processing Time 

Weighted with shortest 

processing runtime 












j

j

w

p
min

 
 

The examples of algorithms with the inclusion of dominance rule WMDD to algorithm of the 

weighted case, but not including the rule are given in Table 5 and Table 6, respectively. 

 



Table 5. 

An example of algorithm operation with the inclusion of WMDD rule 

Vertex Rank 1 Rank 2 Rank 3 Rank 4 

J1 (4;7,2) WT(1)1 = ((0 + 4) – 7)*2 

= – 6 

WT(2)2,1 = ((5 + 4) – 7)*2 = 4 

WT(2)3,1 = ((3 + 4) – 7)*2 = 0  

WT
(
2)4,1 = ((3 + 4) – 7)*2 = 0  

WT(3)3,2,1 = ((8 + 4) – 7)*2 = 10 

WT(3)4,3,1 = ((6 + 4) – 7)*2 = 6  

WT(3)3,4,1 = ((6 + 4) – 7)*2 = 6  

TWT4,3,2,1= 0+0+5∙4+8∙2 = 

36 

J2 (5;6,4) WT(1)2 = ((0 + 5) – 6)*4 

= – 4 

WT
(
2)1,2 = ((4 + 5) – 6)*4 = 12 

WT
(
2)3,2 = ((3 + 5) – 6)*4 = 8  

WT(2)4,2 = ((3 + 5) – 6)*4 = 8  

WT(3)3,1,2 = ((7 + 5) – 6)*4 = 24 

WT(3)4,3,2 = ((6 + 5) – 6)*4 = 20  

WT(3)3,4,2 = ((6 + 5) – 6)*4 = 20  

TWT4,3,1,2 = 0+0+3∙2+9∙4 = 

42 

TWT3,1,4,2= 0+0+3∙5+9∙4 = 

51 

 

J3 (3;7,5) WT(1)3 = ((0 + 3) – 7)*5 

= –20 

WT
(
2)1,3 = ((4 + 3) – 7)*5 = 0 

WT(2)2,3 = ((5 + 3) – 7)*5 = 5 

WT(2)4,3 = ((3 + 3) – 7)*5 = – 

5 

  

J4 (3;4,3) WT(1)4 = ((0 + 3) – 4)*3 

= – 3 

WT(2)1,4 = ((4 + 3) – 4)*3 = 9 

WT(2)2,4 = ((5 + 3) – 4)*3 = 

12 

WT(2)3,4 = ((3 + 3) – 4)*3 = 6 

WT
(
3)3,1,4 = ((7+3)–4) *3 = 18 

WT(3)4,2,3 = ((8+3)–7)*5 = 20 

 

Experimental investigation of algorithms and analysis of the results 

To perform the experimental research of the proposed algorithms their program realization is 

developed, through which the dependences of runtime and the total tardiness are calculated for the basic 

algorithm (optimization direction [12]) and for the algorithms using dominance rules for the unweighted 

and weighted cases (see Figures 5–8) based on methods used in [14]. 

Table 6. 

An example of algorithm operation without WMDD rule 

Vertex Rank 1 Rank 2 Rank 3 Rank 4 

J1 (4;7,2) WT(1)1 = ((0 + 4) – 7)*2 = 

– 6 

WT(2)2,1 = ((5 + 4) – 7)*2 = 4 

WT(2)3,1 = ((3 + 4) – 7)*2 = 0  

WT
(
2)4,1 = ((3 + 4) – 7)*2 = 0  

WT(3)4,2,1 = ((8 + 4) – 7)*2 = 

10 

WT(3)4,3,1 = ((6 + 4) – 7)*2 = 6  

WT(3)3,4,1 = ((6 + 4) – 7)*2 = 6  

TWT4,3,2,1= 0+6+20+8∙2 = 

42 

J2 (5;6,4) WT(1)2 = ((0 + 5) – 6)*4 = 

– 4 

WT
(
2)1,2 = ((4 + 5) – 6)*4 = 12 

WT
(
2)3,2 = ((3 + 5) – 6)*4 = 8  

WT(2)4,2 = ((3 + 5) – 6)*4 = 8  

WT(3)4,1,2 = ((7 + 5) – 6)*4 = 

24 

WT(3)4,3,2 = ((6 + 5) – 6)*4 = 

20  

WT(3)3,4,2 = ((6 + 5) – 6)*4 = 

20  

TWT3,4,1,2 = 0+6+6+9∙4 = 48 

TWT4,1,3,2= 0+0+15+9∙4 = 

51 

 

J3 (3;7,5) WT(1)3 = ((0 + 3) – 7)*5 = 

–20 

WT
(
2)1,3 = ((4 + 3) – 7)*5 = 0 

WT(2)2,3 = ((5 + 3) – 7)*5 = 5 

WT(2)4,3 = ((3 + 3) – 7)*5 = – 

5 

WT(2)4, 1,,3=  ((7+3) –7)*5= 15 

WT(2)4, 2,3=((8+3 ) – 7)*5 = 20 

 

J4 (3;4,3) WT
(
1)4 = ((0 + 3) – 4)*3 = 

– 3 

WT(2)1,4 = ((4 + 3) – 4)*3 = 9 

WT(2)2,4 = ((5 + 3) – 4)*3 = 12 

WT(2)3,4 = ((3 + 3) – 4)*3 = 6 

  



 
 

Fig. 5. The runtime dependency on number of jobs for the basic algorithm  

using dominance rules EDD and MDD 

 

 
Fig. 6. The total tardiness dependency on number of jobs for the basic and enumeration algorithms  

using dominance rules EDD and MDD 

 

  

Fig. 7. The runtime dependency on number of jobs  

using dominance rules WEDD and WMDD 

 



 
Fig. 8. The total weighted tardiness dependency on number of jobs for the basic and the complete enumeration 

algorithms using dominance rules WEDD and WMDD 

 

Evaluating the effectiveness of the inclusion of dominance rules to the basic algorithm 

To evaluate of the effectiveness of the inclusion the dominance rules to the basic algorithm for 

obtaining local optimum (in optimization using a certain dominance rule) is defined two metrics: the 

ratio of the number of vertices of the Hamiltonian path, derived from the rules of dominance, to the total 

number of vertices – density nv
GP

dr , where vdr – is a set of vertices on the graph included in 

Hamilton path, obtained on the basis of the dominance rule; the relative reduction of tardiness 

TTTTTT dr /)(  , where TTdr – is total tardiness with the inclusion of dominance rules to the algorithm; 

TT – total tardiness without the inclusion of dominance rule. 

To investigate the effectiveness of the dominance rules, in particular, the impact on the runtime 

and total tardiness, for output data with the number jobs that occur in practice, the experiments are 

carried out. For this purpose the packets of 50 tasks are generated (instances, observations), each of 20 – 

160 jobs, and the runtime of reducing the total tardiness estimated, using basic algorithm with and 

without the dominance rules, compared to algorithms without dominance rules, of local optimal 

solutions – attitude of obtained graph vertices in Hamilton path in a graph according to the rules, 

compared to the total amount of vertices (see Fig. 9, 10). 
 

 
Fig. 9. The total tardiness relative reduction dependency using the dominance rules  

on the number of jobs, %  

 

 



 
Fig. 10. Dependence of amount of local optimal solutions obtained by using the dominance rules, %  

 

Conclusions 

Analysis of the experimental results allows making the following conclusions regarding the 

effectiveness of the proposed algorithms using dominance rules for constructing optimal schedules of the 

tasks: 

the inclusion of dominance rules to the basic algorithm does not increase the runtime under the 

algorithm, because in terms of time complexity, its effectiveness does not decrease; 

using the dominance rules for this class of algorithms of minimizing the total tardiness allows to 

reduce the value of minimization criterion (total tardiness) in average (relative reduction – up to 20–25% 

for different dominance rules), which allows to conclude a significant efficiency of their use. 

The future plans are to investigate the algorithms towards evaluating the effectiveness of the 

dominance rules based on the proposed metrics for different runtimes of jobs and the relationship between 

the runtimes and due dates. 
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