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The paper proposes a method, algorithms and its implementations using dominance rules for
minimizing the total tardiness on a single machine based on shortest Hamiltonian path in a arbitrary
graph that improve the efficiency and not reduce the execution time. Metrics for evaluating the
effectiveness of the dominance rules are proposed. The experimental results of algorithms are
developed that justify the effectiveness of the proposed modifications by getting local optimal
solutions during procedure.
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Introduction

Modern information and communication systems are defined by the presence of a great number
of different types of resources — informational, computing, etc., its distribution, the control of which
requires increase of efficiency and improvement of control over distributed processing systems,
particularly on local resources. One of the goals is to develop efficient algorithms for scheduling and
optimization of performance for the selected criteria in real-time computing machines (e.g., Grid system
nodes, workstations (Network of workstations, desktop Grids), etc.). Solving the problem of
optimization of local resource performance of such systems in order to reduce, and possibly even avoid
the tardiness in cases where the task is characterized by due date. This will reduce the risks associated
with the ability to pay fines, which lead to economic losses of users. The reviews of solving the problem
of minimizing the total tardiness are examined in [1-4], the basic methods of its solution are given in
[5-11]. A method of minimizing the total tardiness (method of direction optimization) based on the
construction of the shortest Hamiltonian path in the fully-connected graph and based on the ranked
approach with time complexity of O(n3) is shown in article [12]; in articles [13, 14] it is hypothesized
that in cases where there are several alternative paths, the certain path is to be selected so where the
vertex of graph that is added to the current rank of the Hamiltonian path has the shorter due date.

The goal of this paper — is to develop and analyze the algorithms for constructing an optimal
schedule tasks to minimize the total tardiness on a single machine (computing device) based on the
construction of the shortest Hamiltonian path in an arbitrary graph and dominance rules along with
metrics of evaluation the effectiveness of their use.

Formulation of the problem

Assume that the single machine receives a set of independent jobsJ ={J,,J,..., J, }, and each of

them is being continuously executed on it. The duration of each job L; and its due date d; are known as
well. The problem is to determine the order (sequence) of execution of all submitted jobs that enter a
machine (device) at the same time, which will minimize the total tardiness of the input queue of all
tasksyr, — Y max(0,C; - d;): where C; denotes the completion time of the job j. This problem is defined
{ies}
by 1|>.T;, for solution of which the time complexity is obtained in [12, 13] and the dominance rules are
first suggested for obtaining local optimum, namely the EDD rule (Earliest Due Date). In order to
substantiate the hypothesis and to prove it experimentally, there are some considerable examples that



illustrate the essence of the method and the use of dominance rules, on the basis of a fully-connected
graph with vertices that characterize the operation of test sequence.

Suppose that there is a set of jobs J; (4, 7), J, (5, 6), J3 (3, 7), J4 (3, 4), for which it is
necessary to build an optimal schedule. Each job J is characterized by two parameters: L — competition
time, d — due date, and thus it appears as J (L, d).

The graph that reflects the sequence of jobs is shown in Fig. 1.

3.=(5,6) = (3.7)

J,=(4,7) J,=(3.4)

Fig. 1. Full-connected graph with 4 vertices (jobs)

Algorithms to minimize the total tardiness along with dominance rules

For an explanation of the algorithms operation a matrix is used, in which the columns
correspond to the ranks (layers), and rows correspond to lines, the number of which is determined by the
amount of jobs for which the schedule (timetable) is built (see Table 1). To characterize the value of the
current tardiness of the set of jobs on each rank the notation T(j) jij>.. ja iS used, where j — is the number
of rank (column), jijo,...,jn — is number of jobs (operations) that are the part of the current path to any job
on current rank (column) of matrix. Thus, the total tardiness of all jobs will be determined on the last
rank.

At the beginning of the procedure jobs are ordered arbitrarily, the tardiness of each of them is
equal to 0, and thus, their total tardiness is equal to 0. On the first rank (in the first row) of matrix all the
paths from the jobs of J,, Js;, J4 to job J; are constructed, in second row the paths from the jobs Ji, Js, J4
to job J, are constructed, in the third row the paths from the jobs J;, J,, J4 to job Js is constructed, in the
fourth row the paths from the jobs J;, J,, Js to job J, is constructed. Then according to the algorithm it is
necessary to choose the minimum paths for each row: for row 1 — T(2)3; =3+(4-7) = 0 and T(2)4, =
3+(4-7) = 0; for row 2 — T(2)3, = 3+(5-6) = 2 and T(2)4, = 3+(5-6) = 2; for row 3 — T(2)43 = 3+(3-7) = -
1; for row 4 — T(2)34 = 3+(3-4) = 2.

After that, on the rank 2 the following is chosen: in the first row — T(3)43; = 6+(4-7) = 3 and
T(3)341 = 6+(4-7) = 3; in the second row — T(3)432 = 6+(5-6) = 5 and T(3)34., = 6+(5-6) = 5; in the third
row — T(3)4,1.3 = 7+(3-7) = 3; in the fourth row — T(3)314 = 7+(3-4) = 6. Then, a path from the vertices of
the rank 3 to the vertices of the rank 4 is built: for the row 1 — TT43,, = 0+0+5+8 = 13; for the row 2 —
TT4312 = 0+0+3+9 =12 and TT,;3, = 0+0+3+9 = 12. So, the optimal Hamiltonian path (see Figure.l)
include the sequence of jobs J,J3J1J,. Thus, from the Table.1 it follows that there are «competing» paths
from which can choose only one — accidentally or by using the dominance rules (for example EDD [1-3,
11, 13]), which give the local optimal solution, or by «stretching» all the paths to the next rank, which
means selecting all the constructed paths (without cutting off) for the next rank. If the current values of
tardiness are equal to each other on any rank, a dominance rule EDD is used: for example, in rank 3
T(3)431 = 6+(4-7) = 3 and T(3)341 = 6+(4-7) = 3. The choice falls on T(3),3; because ds < d3. The
procedure continues until it reaches the rank number 4, where the shortest Hamiltonian path with the
minimum tardiness is finally selected. This will be the total tardiness, i.e. the desired solution. So for
this example the optimal schedule is determined by the sequence of jobs Js, Js, Ji, J, with a total
tardiness TT jy552 = 12. The sequence of construction of Hamiltonian path in the graph in Fig. 1 at each
rank is shown in Fig. 2-4 (Hamiltonian path is bold in the graph). The example of using the proposed
algorithm with dominance rule EDD is shown in the Table 1.
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Fig. 2. Choosing the vertex at the rank 2
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Fig. 3. Choosing the vertex at the rank 3

3,=(5,6)

J=(4,7)

‘J3: (317)

3= (3.4)

Fig. 4. Choosing the vertex at the rank 4

An optimal paths in a graph in all over matrices in Tables 1-3 and Tables 5, 6 are shown in bold.
An example of the algorithm using the criterion of MDD rule min {max(pj,dj ~t)f [15] is shown in

the Table 2, the example of using the proposed algorithm without dominance rules is shown in the Table 3.

Table 1.
An example of algorithm operation including EDD rule
Vertex Rank 1 Rank 2 Rank 3 Rank 4
J1 (4;7) T@y=0+4)-7=-3 T@)1=0G+4)-7=2 T =(8+4)-7=5 TTagn =0H+245+8=15
T@a=(B+4)-7=0 TR =(6+4-7=3
T2y =@3+4)-7=0 TQuu=6+4)-7=3
J2(5:6) | T,=0+5-6=-1 | T@=@+5-6=3 TQup=(7+5-6=6 Ty, =0+0+3+9=12
T(Qs=(3+5-6=2 TR)yz=(6+5-6=5 TTuzp=0+0+39=12
T(2,=(3+5-6=2 T(3kp=(6+5-6=5
BB | TWe=0+3-7=4 | TQu=@+3-7=0 TQ)s=[7+3)-7=3
T@p=06+3)-7=1 T@)us=0B8+3)-7=4
1(2)422(3"’3)—7:—1
Js(3:4) | T0u=0+3-10=-7 | TQu=(@4+3-4=3
T2)=6+3)-4=4
T(Qu=(3+3)-4=2
Table 2.
An example of algorithm operation including MDD rule
Vertex Rank 1 Rank 2 Rank 3 Rank 4
J1 (47) T1),=0+4-7=-3 T =06+4)-7=2 TR =(B+4)-7=5 TTy31=0+0+5+8=13
T@e=(B+4)-7=0 TR =(6+4-7=3
ﬂg)41=(3+4)—7=0 T(3)341=(6+4)—7:3
\]2 (5,6) T(1)2=(0+5)*6=*1 T(2)12=(4+5)*6=3 T(3)412=(7+5)*6=6 H4,q17:0+0+3+9=12




T(y=(3+5-6=2 TQ)z=(6+5-6=5 TT4=0+0+3+9=12
ﬂg)47=(3+5)—6=2 T(3)342=(6+5)—6:5
3(3;7) | TMe=0+3)-7=-4 | TQu=@+3-7=0 T3):=(7+3)-7=3
TQ)=6+3-7=1 TRys=B+3)-7=4
T2y=@3+3)-7=-1
Ja(34) | T=0+3)-4=-1 T@ha=(@4+3-4=3
T@pa=0+3)-4=4
T(2x=B+3)-4=2
Table 3.
An example of algorithm operation without dominance rules
Vertex Rank 1 Rank 2 Rank 3 Rank 4
W@ | TW=0+4-7=-3 | TQu=6+4)-7=2 TR =@+4)-7=5 TTyu=0+0+5+8=13
TRy =(3+4-7=0 TEum=6+4)-7=3
TQ)y=(B+4)-7=0 TRy =(6+4)-7=3
J,(5:6) | T1),=0+5-6=—1 | TQp=@+5-6=3 T@yp=(7+5-6=6 TTap=0+0+3+9=14
T(2=(3+5-6=2 TQRup=(6+5-6=5 TT34=0+0+6+9=15
T@yp=@B+5-6=2 TQRpep=(6+9-6=5
J3 (3;7) T1p=0+3)-7=4 T@hz=@G+3)-7=0
T@ps=06+3)-7=1
T2y=CB+3)-7=-1
LG4 | TQ=0+3-4=1 | TQu=@+3-4=3 T(R)e= (7+3)—4=6
T@n=6+3-4=4 T(R)eu=(8+3-4=7
T(Q=(3+3)-4=2

Analysis of the results (Tables 1-3) shows that that it is possible to improve the result (total

tardiness), and in some cases quite significantly — MDD rule can reduce the value of the total tardiness
when using EDD rule and without using up to 30%, which may significantly affect the outcome in case
of a large number of jobs in sequence, with the number of vertices of the Hamiltonian path, derived
from the rule, is 2 out of the 4 vertices of the full-connected graph (Fig. 1).

The problem of minimizing the total weighted tardiness (TWT) on a single machine (device)
TWTs = ¥ max(0,(C; ~d; ) w;) (1][Xw;T;) can be stated as the following. The set of jobs indexed from 1 to

{iesy

n, must be processed without interruption on one computing device that can handle only one job at a
time. All jobs come to a device at time that equals to 0. Job is characterized by its processing time L;
(processor time, p;), tardiness d; and weight w;. For convenience, all jobs are ordered according to EDD
rule, so that d; < d;; if d; = d, then p; < p;; if pi = p;, then w; < w; for all i, j (i < j). If job i is completed
after its due date d;, there is a penalty for tardiness (weighted). For experimental research that evaluates

the impact of the inclusion of dominance rules, the rules that are listed in the Table 4 are used.

Terms of dominance rules for the total weighted tardiness

Table 4.

Rule Name Description Formula of determining the priority
WEDD Weighted Earliest Weighted with the W
Due Date earliest due date max{df}
]
WMDD Weighted Weighted with the max(p. d. —t)
Modified modified due date min{”}
Due Date W
WSPT Weighted Weighted with shortest D.
Shortest processing runtime min{‘}
Processing Time W

The examples of algorithms with the inclusion of dominance rule WMDD to algorithm of the
weighted case, but not including the rule are given in Table 5 and Table 6, respectively.



Table 5.

An example of algorithm operation with the inclusion of WMDD rule

Vertex

Rank 1

Rank 2

Rank 3

Rank 4

J1 (4,7,2)

WIQ),=(0+4- 772

WT(2)=(5+4)-7y2=4
WT(2); =((3+4)-72=0

WTQR)1=(8+4)-7y"2=10
WT(3)yz =(6+4)-7*2=6

WT9)y =(3+4)-7/*2=0

WT R =(6+4)-7)"2=6

TWT 4321=0+0+5‘4+8'2=
36

J2 (5;6,4)

WT(2)=(0+5)—-6)*4

WTQ),=(@+5)-6p4=12
WTQ),=(3+5)-6)*4=8

WT(@)1o=((7+5)-6y4=24
WT(3)yz,=((6+5-6/4=20

WT(2)o=(3+5)-6y4=8

WTR=(6+5)-64=20

TWTa2=0+0132+94=
42
TWT 3l42:0+0+35+9.4:
51

J3(3;7,5)

WT(Q)s;=(0+3)-7)"5
=20

WT2);3=(4+3)-7)'5=0
WT(2)23:((5+3)77)*5:5
WT(Qp=(3+3)-7*5=—
5

J4(3;4,3)

WT(L,=(0+3)-4r3

WT(25=(4+3)-4r3=9
WT(2)=(5+3)-43=
12
WT(2):,=((B3+3)—4)*3=6

WTB),=((7+3)}4)*3=18
WT@)z=(8+3-7/5=20

Experimental investigation of algorithms and analysis of the results

To perform the experimental research of the proposed algorithms their program realization is
developed, through which the dependences of runtime and the total tardiness are calculated for the basic
algorithm (optimization direction [12]) and for the algorithms using dominance rules for the unweighted

and weighted cases (see Figures 5-8) based on methods used in [14].

Table 6.
An example of algorithm operation without WMDD rule
Vertex Rank 1 Rank 2 Rank 3 Rank 4
o (47.2) | WID=(0+4)-7y2= | WTRu=(6+4-7y2=4 | WTRu=(B8+4)-7)2= | TWTyp=0+6+20+82=
-6 WT(2),=((3+4)-72=0 | 10 Viv)
WTQy=(B+4)-72=0 | WTQRu=(6+4)-7/2=6
WTRky=(6+4-7/2=6
1 (5:64) | WID,=(0+5)-6/4= | WTQp=(@+5)-6/4=12 | WTQ)=(7+5)-6/"4= | TWTyp=0+6+6194=48
-4 WTQ),=((3+5)-6)*4=8 | 24 TWT 5= 0+0+15+94 =
WT(Q,=(B3+5)-6*4=8 | WT(3)y=(6+5—-6/4= | 51
20
WTQR)p=(6+5-6)"4=
20
33 (3;7,5) | WI1);=(0+3-7)"5= | WTQ)s=(@+3)-7/*5=0 | WTQu < (7+3)-7)"5=15
-2 WT(2ps=(5+3)-7)5=5 | WT(2:z~(8+3)-7)"5=20
WT(Q2)3=(B+3)-7/"5=-
2
3(3:43) | WT'D),=(0+3)-473= | WTQw=(4+3-4"3=9
-3 WT(2)s=(5+3)-4y3=12
WT(2s=((3+3)-4*3=6
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Evaluating the effectiveness of the inclusion of dominance rules to the basic algorithm

To evaluate of the effectiveness of the inclusion the dominance rules to the basic algorithm for
obtaining local optimum (in optimization using a certain dominance rule) is defined two metrics: the
ratio of the number of vertices of the Hamiltonian path, derived from the rules of dominance, to the total
number of vertices — density Zvdr/ n, where vy — is a set of vertices on the graph included in

GP
Hamilton path, obtained on the basis of the dominance rule; the relative reduction of tardiness
(TT =TTy )/TT , where TTq — is total tardiness with the inclusion of dominance rules to the algorithm;

TT — total tardiness without the inclusion of dominance rule.

To investigate the effectiveness of the dominance rules, in particular, the impact on the runtime
and total tardiness, for output data with the number jobs that occur in practice, the experiments are
carried out. For this purpose the packets of 50 tasks are generated (instances, observations), each of 20 —
160 jobs, and the runtime of reducing the total tardiness estimated, using basic algorithm with and
without the dominance rules, compared to algorithms without dominance rules, of local optimal
solutions — attitude of obtained graph vertices in Hamilton path in a graph according to the rules,
compared to the total amount of vertices (see Fig. 9, 10).
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Conclusions

Analysis of the experimental results allows making the following conclusions regarding the
effectiveness of the proposed algorithms using dominance rules for constructing optimal schedules of the
tasks:

the inclusion of dominance rules to the basic algorithm does not increase the runtime under the
algorithm, because in terms of time complexity, its effectiveness does not decrease;

using the dominance rules for this class of algorithms of minimizing the total tardiness allows to
reduce the value of minimization criterion (total tardiness) in average (relative reduction — up to 20-25%
for different dominance rules), which allows to conclude a significant efficiency of their use.

The future plans are to investigate the algorithms towards evaluating the effectiveness of the
dominance rules based on the proposed metrics for different runtimes of jobs and the relationship between
the runtimes and due dates.
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