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A continuous-time analogue neural circuit which is capable of identifying the K largest 

of unknown finite value N distinct inputs, where NK1  , located in an unknown range is 

proposed. The circuit model is described by a state equation and by an output equation. A cor-

responding functional block diagram of the circuit is presented as N feed-forward hard-

limiting neurons and two feedback neurons, which are used to determine the dynamic shift of 

inputs. The circuit combines such properties as high accuracy and speed, low hardware im-

plementation complexity, and independency of initial conditions. Simulation example demon-

strates that the circuit state variable trajectories are globally stable and globally convergent to 

the  KWTA operation from each initial value. 

Keywords: continuous-time model, analogue neural circuit, functional block diagram, 

feed-forward hard-limiting neuron, hardware implementation complexity, KWTA operation.  

 

1. Introduction 

K-winners-take all (KWTA) neural networks are known to choose K largest out of a set of N inputs, 

where NK1   is a positive integer [1]. In the special case when K is equal to unity, the KWTA network 

is the winner-takes-all (WTA) one, that determines the maximal out of N inputs [2], [3]. 

KWTA neural networks have various applications, particularly, in data and signal processing, in de-

cision making, for pattern recognition, in competitive learning, and in sorting [4] - [6]. The KWTA net-

works are used in telecommunications [7] and vision systems [8], for solving problems of filtering [9], 

decoding [10], image processing [11], clustering [12], and classifying [13], [14]. The KWTA operation is 

used in machine learning, in mobile robot navigation, and in feature extraction [15], [16]. The KWTA 

mechanisms are used for modeling cognitive phenomena and spiking neural networks [17], [18].  

Continuous-time KWTA neural networks implemented in analogue hardware can be faster, more 

compact and more power-efficient compared to digital implementations [19]. Many different analogue 

neural networks have been proposed to solve the KWTA problem [1], [5], [20] - [22]. In particular, a con-

tinuous-time model of the KWTA neural circuit which can select the K maximal out of N unknown inputs, 

where NK1  , located in a definite range of change was proposed in [21]. The operation of the model 

depends on the initial values of the  state variable. A modification of this circuit was derived and simulated 

[23]. In contrast to the predecessor, the modified circuit is independent of initial conditions and uses a sim-

plified residual function. Computer simulations showed that the circuit convergence speed to the KWTA 

operation is close to that of one of the fastest Hopfield type analogue KWTA neural networks, whereas a 

computational and hardware implementation complexity of the circuit is lower than the complexity of this 

network. The hardware implementation complexity of the circuit is close to that of one of the simplest con-

tinuous-time KWTA networks, whereas the convergence time to the KWTA operation of the model is low-

er than that of this comparable model. A discrete-time version of the circuit model and a corresponding 

functional block-diagram of a digital neural circuit have been proposed in [24]. 
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In this paper, a generalized continuous-time model and a corresponding functional block-diagram of 

analogue KWTA neural circuit are presented. In contrast to the predecessors proposed in [21], [23], the 

circuit is capable of selecting K largest out of N unknown inputs, where NK1  , located in an unknown 

range of change. The circuit is described by a differential equation with discontinuous right-hand side and 

an output equation. Computer simulations show that the circuit state variable trajectories are globally stable 

and globally convergent to the  KWTA operation from  each initial value. 

 

2. Continuous-time model of the circuit 

Let us generalize a continuous-time model of an analogue KWTA neural circuit presented in [23] 

based on the case of identifying K maximal out of N unknown input signals, where NK1  , located in an 

unknown range. We assume that there is an input vector a   nT
nnn N21

a,...,a,a  , N1  with unknown  

finite value elements, the inputs are distinct and can be arranged in a descending order of magnitude satis-

fying the inequalities 


N21 nnn a...aa ,                                                     (1) 

where N21 n,...,n,n  are the unknown numbers of the first largest input, the second largest input and so on up 

to the N-th largest input inclusive. Let us design a continuous-time model of an analogue neural circuit that 

should identify the K largest of these inputs, which are referred to as the winners. The designed model 

should process the input vector a to obtain, after a finite convergence time, such an output vector 

b  Tnnn N21
b,...,b,b  that the following KWTA property is satisfied: 

;K,...,2,1i,0b
in  .N,...,2K,1Kj,0b

jn                                           (2) 

We assume that the outputs of the model are given by   

                                               ;K,...,2,1i,0xab
ii nn   

        ,N,...,2K,1Kj,0xab
jj nn                                                   (3) 

where x is a scalar dynamic shift of inputs [21].  

Let us describe the model of a designed KWTA neural circuit by the following state equation:  

  







 


N

1k
k K)x(Spxdt/dx  ,                                                      (4)   

and an output equation 

,N,...,2,1k,xab
kk nn                                                              (5)          

where  

K)x(S)x(R
N

1k
k 



                                                                (6) 

is a residual function,  



 


otherwise,0

;0xaif,1
)x(S kn

k                                                   (7)          

is a step function, 


N

1k
k )x(S  is the number of positive outputs of the model,   is the gain which can be 

used to control a convergence speed of the model state variable trajectories to the KWTA operation, p is a 

constant parameter,  0x  is an initial condition. Note that the state equation (4) can also be trans-

formed to the following special form:  

   )x(Rsgncxdt/dx                                                           (8)              

where  

 
















0)x(Rif,1

;0)x(Rif,0

;0)x(Rif,1

)x(Rsgn                                                    (9) 

is a signum (hard-limiting) function,   is a gain, and c is a constant parameter.  
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3. Analogue functional block-diagram of the circuit  

The functional block-diagram of a generalized analogue KWTA neural circuit built based on the 

model described by the state equation (4) and output equation (5) is shown in Fig. 1.  The diagram consists 

of inputs N21 a,...,a,a , summers ∑, an integrator I with the gain  , external sources of constant signals 

p,x,K 0 , blocks  N21 S,...,S,S  of step functions ),x(Sk  k=1,2,3,…,N, outputs N21 b,...,b,b , block of multipli-

cation ×, and a block of module function Abs. Note that the outputs of blocks N21 S,...,S,S  can also be used 

as the circuit outputs. However, in this case, the only K winners out of N inputs will be identified. No in-

formation is available on the ordering of inputs by magnitude which can be useful for some applications 

[25]. 

 
Fig. 1.  Architecture of the KWTA neural circuit described by a state equation (4) and by an output equation 

(5). 

 

As we can see, from an analogue hardware implementation complexity point of view, the circuit 

contains 2N   summers, N  switches, one integrator, one multiplier, one absolute function block and three 

sources of constant signals (or two sources of constant signals if 0x0  ). Note that the block Abs can be 

realized, for instance, by using a switch and an inverter. Therefore, the circuit presented can be implement-

ed in modern hardware using such traditional electronic circuit components as analogue summers, multi-

plier, inverter, switches, integrator, and sources of constant voltage or current. For comparison, the previ-

ous continuous-time model of analogue KWTA neural circuit (A circuit) presented in [23] needs 2N  

summers, 2N  switches, one integrator and four sources of constant signals (or three sources of constant 

signals if 0x0  ). An implementation of one of the simplest KWTA networks with a single state variable 

and the Heaviside step activation function, presented in [20], requires N+1 summers, N switches, one inte-

grator and one source of constant signals. Thus, the hardware implementation complexity of the circuit 

described by a state equation (4) and by an output equation (5) is close to that of these comparable analogs. 

A resolution of the circuit is theoretically infinite and does not depend on its parameter values. Since 

the circuit is capable of correctly processing any finite value distinct inputs, its resolution is the same as 

that in other comparable neural networks with the same property [1], [20], [21], [23].  

Since the present circuit can operate correctly with any finite initial condition  0x , it re-

quires neither a periodical resetting for repetitive processing of input sets, nor corresponding analogue 
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supervisory circuit, nor  spending additional processing time. This simplifies the hardware and decreases 

the convergence time to the KWTA operation.  

 

4. Computer simulation results 

     Let us consider the example with corresponding computer simulations which illustrates the per-

formance of the herein presented analogue KWTA neural circuit.   

 Example. We set 200 uniformly distributed random initial values  250,250x0   of inputs 
kna , 

k=1,2,3,…,N uniformly distributed within the interval [-250, 250] for N=400, K=100, 610 , and p=1. A 

1.81 GHz desktop PC and the variable order Adams-Bashforth-Moulton solver of non-stiff differential 

equations ODE113 with relative and absolute error tolerances equal to 510  are employed. Fig. 2 presents,  

in  normalized units,  the state variable  transient behaviors showing that the state variable trajectories are 

globally stable and globally convergent to the  KWTA operation from  each initial value.   

 
Fig. 2.  Convergence behaviors of state variable x of the KWTA circuit model (4), (5) with inputs 

kna , 

k=1,2,3,…,N,  uniformly distributed in the interval [-250,250], where  N=400, K=100, 610 , starting from 200 

uniformly distributed random initial values ]250,250[x0  . 

 

5. Conclusions   

This paper presents a continuous-time mathematical model and a corresponding  functional block-

diagram of  an analogue K-winners-take-all neural circuit. In contrast to the predecessor, the proposed 

KWTA neural circuit is capable of selecting K maximal among unknown finite value N distinct inputs 

located in an unknown range, where NK1  . The hardware implementation complexity of the proposed 

KWTA circuit is close to that in these comparable analogs. Computer simulations show that the circuit is 

globally stable and globally convergent to the KWTA operation from each initial value.  
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