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Abstract. The shear forces and corresponding strains 
appearing in the flow under the action of chemical 
potential gradient have been analyzed. The ratios for 
determination of the viscosity coefficient for low-
molecular pure liquids and solution components were 
established. It was proved that the viscosity of the low-
molecular solution can be expressed via the terms of the 
viscosity coefficients of its components and via their 
concentration.  
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characteristic time of the viscous flow.  

1. Introduction 

The temperature dependence of the viscosity 
coefficient for the low−molecular elementary liquids is 
well described by the Arrhenius empirical equation: 

}exp{ RTEA=η        (1) 

where Е is the activation energy of the viscous flow. 
However, the theoretical interpretation of the pre-
exponential factor А faces considerable difficulties which 
have not been overcome till the present time. 

Among the molecular-kinetic theories of low-
molecular liquids complying with the Newton’s equation, 
let us mark out two main formulated by Frenkel [1, 2] and 
by Eyring [3-5]. 

In accordance with the Frenkel’s theory under the 
presence of a shear strain σ the rapid layer of liquid 
entrains the slow one with the velocity rate ϑ∆ : 

2σδu=∆                      (2) 

where u is the mobility of particle and δ is the interparticle 
distance. 

Substituting of ϑ∆  by δ
ϑ

dy
d

, where dydϑ  is 

the velocity gradient of the hydrodynamic flow along y 
axis, which is normal to the flow, and using the Newton’s 

equation in a form σ
ϑ

η =
dy
d

, the following ratio was 

obtained by Frenkel: 
1-)( δη u=                (3) 

Substitution of the Einstein’s equations into (3) 

kTDu /=    (4) 

τδ 6/2=D    (5) 
leads to the final result 

3/6 δτη kT=    (6) 

where D is the coefficient of the diffusion; τ is the 
characteristic time of the particles transport from the one 
equilibrium state into another, which can be also called as 
the characteristic time of the viscous flow. 

According to Frenkel τ is determined by the 
oscillation frequency in the quasi-lattice of liquid and by 
the probability of the hole formation, i. e. corresponding 
free volume needed for the particle transport: 

}/exp{0 RTEττ =        (7) 

Therefore, here τ0 is the characteristic time of the 
oscillating movement of a particle in the quasi-lattice of 
liquid; E is energy of hole formation or of the free volume 
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in liquid, which is necessary to pass the particle from one 
position of equilibrium into another. 

After the integration of (6) and (7) the Frenkel’s 
equation becomes as follows: 

}/exp{6
03 RTEkT

τ
δ

η =               (8) 

In the calculations Frenkel assumed that 
13-

0 10=τ s, which is equal to the determination 

0 /= h kTτ     (9) 

However, the calculations of the pre-exponential 
multiplier in (8) sometimes give the values exceeding the 
experimental ones by 2-3 orders. These divergences were 
explained by Frenkel by the dependence of E on 
temperature; however, such phenomenon is observed very 
seldom. 

In molecular-kinetic theory of Eyring the starting 
principle consists in the fact that the action of force 
causing the liquid flow decreases the height of the energy 
barrier at the movement of particle in the forward 
direction and increases it in the backward direction. The 
rate constant к of the particles transfer via the potential 
barrier is described by the standard equation of the theory 
of absolute rates of chemical reactions: 

*

exp{- / }=
kT Qк E RT
h Q

          (10) 

where Q and Q* are the statistical sums of the particle per 
unit of volume in main and activated states respectively. 

Under considerable following simplifications the 
force of shift disappears from the equation of transfer. As 
a result, the expression for the viscosity coefficient 
according to Eyring becomes as follows: 

* exp{ / }= AhN Q E RT
V Q

η            (11) 

where V is the molar volume of liquid. 
Assuming that the statistical sum Q* of particle in 

the activated state is devoid of one freedom degree of the 
transitional movement, Eyring writes: 

1/ 2
1/3

*
(2 )

= f
Q mkT

hQ
π

υ                          (12) 

where υf is free volume per one particle. 
Let us note, however, that in accordance with the 

starting Eq. (10) Q* is already devoid of one freedom 
degree of the oscillating movement, otherwise the co-
multiplier kT h  would not appear in Eq. (10). Making Q* 

devoid of another freedom degree, namely, the transitional 
one, would be absolutely physically unjustified. 

Although the expression (12) in the presented case 
is fitting of theory to the result, let us use it for 
determination of characteristic time of the translational 
movement:  

1/ 2
1/3

0
2 =  

 
f

m
kT
π

τ υ        (13) 

By combining of (12) and (13) into (11) we can 
obtain: 

0 exp{ / }= AkN T E RT
V

η τ                      (14) 

In accordance with the Frenkel’s equation (7) such 
expression can be written as follows: 

/= RT Vη τ     (15) 

Taking 3δ  as the volume falling per one particle, 
we will obtain from the expression (6) the equation 
analogous to (15): 

6 /= RT Vη τ     (16) 

Thus, in spite of the difference in molecular-
kinetic approaches of Frenkel and Eyring to the analysis 
of the viscosity coefficient for simple liquids, they lead to 
the ratios containing the same phenomenological value 

VRT /τ . The difference between (15) and (16) is 
visualized in numerical coefficient and physical 
interpretation of 0τ  determined by the expressions (9) and 
(13). This difference is quite substantial, since 0τ  of the 
translational movement is two orders higher than 0τ  of 
the oscillating movement. At the analysis of the solution 
viscosity Eyring and Frenkel do not use the notion 
“coefficient of solution component viscosity”, preferring to 
describe the viscosity of solution via the coefficients of 
viscosity for pure liquids. Here it is assumed that the 
viscosity of solution can be described by the equations 
analogous to (8) and (11), but at the same time, free 
activation energy (according to Eyring) or an activation 
energy (according to Frenkel) is declared as the function 
of the solution composition. This leads Eyring to the 
equation: 

2211 lnlnln ηηη NN +=            (17) 

which was proposed by Arrhenius and Kendall earlier [6]. 
A more complicated equation for the binary 

solution was proposed by Frenkel: 



Phenomenological Coefficients of the Viscosity for Low-Molecular Elementary Liquids... 

 

365 

2 2
1 1 2 2 1 2 12

1 1ln ln ln ln
2 2

= + +N N N Nη η η η  (18) 

In these equations Νi is molar part of the 
component; ηi is its coefficient of viscosity in pure liquid 
state; η12 is additional viscosity, which, in accordance with 
Frenkel, reflects the difference in energies of interaction 
of particles by the first and the second kinds between 
themselves and between the particles of the same kind. 

In conclusion of the presented short review let us 
note that the molecular-kinetic analysis of Frenkel and 
Eyring as to viscosity coefficients for pure liquids leads to 
the ratios (15) and (16) containing the general 
phenomenological factor VRT /τ , which requires the 
substantiation from more general considerations. 
Coefficients of viscosity of the solution components in 
this approach are not revealed. The characteristic time of 
the viscous flow remains undefined. We will solve these 
problems in the following chapters. 

2. Coefficient of Viscosity  
for Low-Molecular Pure Liquid 

Let us accept phenomenological determination of 
the stationary flow Ј of substance, the moving force of 
which is the gradient of the chemical potential μ [7, 8] as 
the starting point for the analysis. Let us write these flows 
along the direction of the x and y axes: 

- ∂
=

∂x
LJ c

RT x
µ

, - ∂
=

∂y
LJ c

RT y
µ

               (19) 

where L is the transfer coefficient having the dimension of 
the diffusion coefficient; с is the molar-volumetric 
concentration of particles. 

For pure liquid at Т = const the chemical potential 
μ is the function only of pressure Р. That is why it can be 
written as / /∂ ∂ = ∂ ∂x V P xµ , where V is molar volume. 
Since Vc = 1, instead of the (19) we will get 

- ∂
=

∂x
L PJ

RT x
; - ∂

=
∂y

L PJ
RT y

        (20) 

The flows can be expressed also via the transfer 
rate u and concentration c: =i iJ cu . Then, with taking 
into account Eq. (20) we will have: 

- ∂
=

∂x
LV Pu
RT x

;  - ∂
=

∂y
LV Pu
RT y

               (21) 

By differentiating of ux upon y, and uy upon x, we 
will obtain 

2

-2
∂∂ ∂

+ =
∂ ∂ ∂ ∂

yx uu LV P
y x RT x y

           (22) 

If η is the coefficient of the liquid viscosity, then 
according to the Newton’s equation 

∂ ∂
+ = = ∂ ∂ 

yx
xy yx

uu
y x

η σ σ           (23) 

where =xy yxσ σ  are the shift components of the stress 
tensor; the first index points out direction of the 
component of force, and the second one points out 
direction of the normal to the plate of the application of 
force. 

From the comparison of (22) and (23) follows: 
2

2 ∂
− = =

∂ ∂ xy yx
LV P
RT x y

η σ σ   (24) 

Next, in liquid let us separate the elementary cube 
with the edges δ. The sectional elevation of this cube by 
the plate ху is shown in Fig. 1а. 

 

 
Fig. 1. Scheme of the formation of shear forces Fxy (a) 

and tensions σxy (b) under dependence of normal force Fxx  
on coordinate y 

 
Let is assume that in the center of the cube the 

gradient of pressure in direction х is equal to - /∂ ∂P x . 
Since - /∂ ∂P x  is the force acting on a unit of the 

volume of liquid, full force Fxx, acting on the whole 
volume 3δ  of cube in the direction of the х axe will be 
equal to 

3( 0, 0) - ∂
= = =

∂xx
PF x y
x

δ                 (25) 

Tangential or shear forces appeared as a result of 
the dependence of Fxx on y. Let us write the new forces Fxx 

at x = 0 as 
2
δ

=y  and 
2

- δ
=y : 
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2
' 3 40, - - / 2

2
∂ ∂ = = =  ∂ ∂ ∂ 

xx
P PF x y
x x y

δ
δ δ       (26) 

2
'' 3 40, - - / 2

2
∂ ∂ = = = +  ∂ ∂ ∂ 

xx
P PF x y
x x y

δ
δ δ        (27) 

The difference in these forces creates the shear 
forces Fxy, applied to the top and the bottom of cube faces, 
normal to the axe у (see Fig. 1а): 

2
' '' 40, - -

2
∂ = = = =  ∂ ∂ 

xy xx xx
PF x y F F

x y
δ

δ      (28) 

2
'' ' 40, - -

2
∂ = = = =  ∂ ∂ 

xy xx xx
PF x y F F

x y
δ

δ      (29) 

These forces create the shear tensions 
2/=xy xyFσ δ :  

on the top face  
2

2∂
= −

∂ ∂xy
P

x y
σ δ                (30) 

and on the bottom face  
2

2∂
=

∂ ∂xy
P

x y
σ δ             (31) 

As follows from this, under the chosen direction of 
force Fxx 

2

2
∂

− =
∂ ∂

xyP
x y

σ

δ
    (32) 

The stress tensor is symmetrical, that can be easily 
demonstrated by the analogous analysis of force Fyy 
depending on х, that is why =xy yxσ σ , as it is shown in 
Fig. 1b. 

By substituting of (32) in (24), we obtain: 

21
2

=
RT
LV

η δ                 (33) 

Next using the Einstein’s ratio for the transfer 
coefficient 

2 6=L δ τ               (34) 

which takes into account the randomness of the particle 
wandering in all three directions of space, we finally find: 

3 /= RT Vη τ               (35) 

3. Partial Coefficients of the Compo-
nents of Low-Molecular Solution 

Let us determine the flows of i-component of the 
solution along х and у axes according to the formula (19): 

- ∂
=

∂
i i

ix i
LJ c

RT x
µ

, - ∂
=

∂
i i

iy i
LJ c
RT y

µ
 (36) 

Due to the difference in the transfer coefficients Li 
of the solution components it can be formally supposed 
that the conditions similar to the components separation in 
the baromembrane process can appear in the 
hydrodynamic flow [8]. In the last case these conditions 
are realized at the expense of a high gradient pressure 
upon membrane layer and a great difference in transfer 
coefficients Li and Lj via the membrane. 

However we suppose that at the viscosity change 
the hydrodynamic flows are weak enough and the effect 
of the components separation can be neglected. 
Consequently, a liquid solution is homogeneous upon 
composition and all derivatives by dci/dx type are equal. 
Then, although the chemical potential μi is the function of 
the solution composition via the thermodynamic activity 
of the component, the derivatives /∂ ∂i xµ  are the 
function only of the gradient of pressure. Therefore, at  
Т = const and presented composition of solution, 

/ /∂ ∂ = ∂ ∂i ix V P xµ , where iV  is the partial-molar volu-
me of solution i-component. Since: 

=i i icV ϕ           (37) 
where φi is the volumetric part of the presented 
component, the expressions (36) can be rewritten as: 

- ∂
=

∂
i

ix i
L PJ
RT x

ϕ  - ∂
=

∂
i

iy i
L PJ

RT y
ϕ       (38) 

Expressing these flows in a form =ix i ixJ c u , 
=iy i iyJ c u , and taking into account (37) and (38) we will 

obtain: 
2

-2
∂∂ ∂

+ =
∂ ∂ ∂ ∂

iyix i iuu LV P
y x RT x y

  (39) 

Since ∂ ∂P x  is a force applied to the unit of the 
volume of solution then ∂ ∂i P xϕ  is a force applied to the 
presented component in the unit of the volume. 
Consequently, it can be supposed, that the contribution of 
the presented component into general viscosity of solution 
η depends not only on the partial coefficient of viscosity 
ηi, but also on volumetric part φi. That is why we postulate 
the dependence: 

= ∑ i i
i

η η ϕ             (40) 
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Thus, the contribution of i component into the 
viscosity of solution is determined by the value i iη ϕ , that 
is why it is necessary to write the Newton’s equation for 
each component of the solution as: 

∂ ∂
+ = = ∂ ∂ 

iyix
i i ixy iyx

uu
y x

η ϕ σ σ           (41) 

Here =ixy iyxσ σ  is the contribution of i component 

into corresponding full shear stresses =xy yxσ σ , so: 

= ∑xy ixy
i

σ σ    (42) 

From the comparison of (41) and (39) it follows that: 
2

2 ∂
= =

∂ ∂
i i

i i ixy iyx
LV P
RT x y

η ϕ σ σ             (43) 

Let us again refer to the elementary cube of 
volume δ3 (Fig. 1). In the center of this cube the force acts 
on the presented component along the x axe; this force, as 
it was noticed, is equal to − ∂ ∂i P xϕ . Taking into account 
the volume of cube, we have: 

3( 0, 0) - ∂
= = =

∂ixx i
PF x y
x

ϕ δ   (44) 

The force Fixx depends on coordinate у, that is why 
we write the new forces at х = 0, but at / 2=y δ  and 

/ 2= −y δ : 
2

3 4( 0, ) - / 2
2

∂ ∂
= = = −

∂ ∂ ∂ixx i i
P PF x y
x x y

δ
ϕ δ ϕ δ  (45) 

2
4( 0, - ) - / 2

2
∂ ∂

= = = +
∂ ∂ ∂ixx i i
P PF x y
x x y

δ
ϕ ϕ δ  (46) 

The difference in these forces creates the shearing 
forces Fixy, applied to the cube faces, normal to у axe, 
which determine the shear stresses 2/=ixy ixyFσ δ . In 
particular, in the direction of Fixx the shear stress on the 
top face of cube will be equal to: 

2
2- ∂

=
∂ ∂ixy i

P
x y

σ ϕ δ        (47) 

Using this ratio in (43), we obtain: 
21

2
=i

i i

RT
LV

η δ     (48) 

Expressing the transfer coefficient Li via corres-
ponding Einstein’s ratio 2 / 6=i iL δ τ  we finally obtain: 

3 /=i i iRT Vη τ                (49) 
Thus, postulated dependence (40) leads to the 

expression (49) for the coefficient of the viscosity of 
solution in the same form as for the pure liquid. However, 
the viscosity coefficient ηi is the function of the solution 
composition. 

Substitution of (49) into (40) and taking (37) into 
account permits to express the viscosity of solution by the 
ratio more convenient from the practical point of view:  

3= ∑ i i
i

RT cη τ                     (50) 

For binary solution it can be written as: 
1 2 1 1 2 23 ( )( )= + +RT c c N Nη τ τ  (51) 

where Ni is molar part of the component. 
Since -1

1 2+ =c c V , where V is a molar volume of 
the solution, equal to 1 1 2 2( ) /+M N M N ρ , it follows 
from the (51) that 

( )1 2 2 1
1 1 2 2

3 ( - )
 

= + + 
RT N

M N M N
ρ

η τ τ τ     (52) 

where Mi are molar masses of components, ρ is a density 
of solution at presented composition. 

An expression (52) permits to find the numerical 
values of τi and their dependence on composition of the 
solution based on the experimental values of viscosity η. 

4. Characteristic Time of the Viscous 
Flow 

As it can be seen from the phenomenological 
expressions (35) and (49), the main problem at the 
viscosity coefficient calculation is the determination of the 
characteristic time τ of the viscous flow. According to 
Frenkel τ can be described by the expression (7), in which 
τ0 is determined either by vibration freedom degree of 
liquid particles or by the translational one, in others words 
by the ratios (9) or (13), respectively. 

In order to compare the experimental values of τ0 
with the calculated ones according to (9) and (13), we 
described the temperature dependence of viscosity for a 
series of n-alkanes and n-alcohols, and also for water on 
the basis of referenced data via the Arrhenius equation in 
the following form: 

ln ln= +A E RTη          (53) 
Coefficients of this equation are represented in the 

Table. On the basis of viscosity values at temperature  
293 К, according to (35) the values τ293, and after that 
according to (7) the values τ0 were calculated. The results 
of the calculations are represented in the Table. 

At Т = 293 К the characteristic time of the 
oscillating movement is equal to -131.63 10= ⋅h kT s, and 
of the translational motion 1/ 2 1/ 3(2 ) fm kTπ υ  is 
approximately two orders greater. 

That is why, the experimental values 
1/ 2 1/ 3

0 (2 )<< fm kTτ π υ . At the same time, for the  
n-alkanes τ0 is somewhat greater than /h kT , although is 
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of the same order, but for the associated liquids,  
n-alcohols and water, τ0 is considerable less than /h kT . 
Besides, in a series of the n-alcohols a well-defined slope 
opposition of the dependence between the activation 
energy of the viscous flow and τ0 is observed: the greater 
is Е, the less is τ0. Both factors, i.e. 0 /<< h kTτ  and 
observed slope opposition compensation effect, cannot be 
explained using the approximations of Eyring and 
Frenkel. 

In the Eyring’s theory of the absolute reactions 
rates there are three essential drawbacks: а) the 
concentration of the activated complexes can be found 
from the consideration of condition of their equilibrium 
with the initial (or final) substances; b) the activated 
complex is devoid of one freedom degree along the 
coordinate of the reaction; с) the transmission coefficient 
is the empirical co-multiplier.The approach that preserves 
the main advantages of the theory of absolute reactions 
rates but eliminates the listed above drawbacks is 
described in detail in [9]. Here let us only shortly touch 
upon it with the specific aim of the analysis of 
characteristic time of viscous flow. 

Let the elementary reversible reaction 
 

A B 

rк  

sк                                 (54) 

proceeds via the activated complex С, general for initial 
and final substances. Then it can be written as:  

A С 1к  

1v  

2v  
B 

2к                        (55) 
In accordance with (55), the activated complex С 

has a right to roll back from the top of the potential barrier 
into both potential holes with the frequencies ν1 and ν2, 
which are not the activation parameters. Parameters к1 and 
к2 are activation parameters. In other words, they depend 
on the value of the potential barrier, and determine the 
frequencies of the activated complexes formation from the 
initial and final substances respectively. 

Let а, b and с be the concentrations А, В and С. 
The rate of the elementary reaction (54) according to the 
law of mass action  

= −
r sa bυ κ κ          (56) 

is strictly defined, i.e. has the physical sense only under 
condition / 0=dc dt , to which the stationary 
concentration of activated complexes сs corresponds: 

1 2 1 2( ) /( )= + +sc a bκ κ ν ν .          (57) 
In this case, in accordance with the scheme (55): 

1 1 2 2- -= =s sa v c v c bυ κ κ             (58) 
By substituting of (57) into (58), we obtain: 

1 1 2 1

1 2 1 2

-=
+ +
v va b

v v v v
κ κ

υ                        (59) 

 

Table 

Referenced and calculated data on to the viscosity of some liquids 

Liquid M, 
g/mol 

ρ⋅106, 
g/m3 

∆Hev, 
kJ/mol 

η293К⋅10-3 

Pа·s 
−lnA, 
Pа·s R

E , К τ293К⋅ 
⋅10-12, s 

τ0⋅10-13, 
s R

S ∗∆  Т*, 
К 

D⋅109, 
m2/s 

pentane 
С5H12 

72 0.626 26.43 0.229 11.29 851 3.61 1.98 0.50 — 15.4 

hexane 
C6H14 

86 0.655 31.55 0.320 11.12 900 5.75 2.67 0.20 — 10.6 

heptane 
C7H16 

100 0.684 36.55 0.409 11.10 970 8.21 3.04 0.07 — 8.0 

octane 
C8H18 

114 0.702 41.48 0.540 11.19 1070 12.03 3.10 0.05 — 5.8 

nonane 
C9H19 

128 0.718 39.92 0.710 11.32 1195 17.37 2.94 0.11 — 4.3 

methanol 
CH3OH 32 0.793 38.45 0.584 11.83 1285 3.23 0.40 2.10 612 8.6 

ethanol 
C2H5OH 46 0.789 42.01 1.190 12.63 1725 9.52 0.26 2.53 682 3.7 

propanol 
C3H7OH 60 0.804 48.12 2.256 13.38 2135 23.10 0.16 3.02 707 1.8 

buthanol 
C4H9OH 74 0.810 52.3 2.950 13.74 2315 37.00 0.14 3.15 735 1.3 

pentanol 
C5H11OH 88 0.814 56.94 4.140 15.88 3045 61.42 0.019 5.15 591 0.9 

water 
H2O 18 0.997 40.66 1.005 13.22 1865 2.49 0.043 4.33 431 6.5 
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If an equilibrium Maxwell−Boltzmann distribution 
of the energy between the particles and their freedom de-
grees is kept in the system, then in accordance with the law 
of mass action the following ratios should be performed: 

111 / K=νκ , 222 / K=νκ           (60) 
where K1 and K2 are equilibrium constants of the activated 
complexes formation from the initial and final substances 
respectively. 

By substituting these ratios in (59) and comparing 
them with (56) we will obtain the following expressions 
for the constants rates of direct and reverse elementary 
reaction (54): 

1
21

21 K
vv

vv
+

=κ
r

, 2
21

21 K
vv

vv
+

=κ
s

              (61) 

With respect to the analysis of the characteristic 
time of viscous flow the constant rate к of the particles 
transfer via the potential barrier can be presented by 
analogous (61) expression: 

*

21

21 K
vv

vv
+

=κ    (62) 

where K* is the constant of equilibrium of activated 
complex with particles in the main state. It can be 
described by usual thermodynamical ratio via the standard 
entropy ΔS* and enthalpy ΔH* of activation: 

{ } { }* * *exp / exp - /K S R H RT= ∆ ∆          (63) 
Let us admit that the movement of the activated 

complex in the both directions of the transfer is 
determined by the oscillating freedom degree in such a 
way that 1 2 /kT hν ν= = . Then: 

{ } { }* *1 exp / exp - /
2

kT S R H RT
h

κ = ∆ ∆        (64) 

Here the value of the transmission coefficient is 
well defined. Characteristic time of the transfer is 
inversely proportional to к, that is why: 

{ } { }* *2 exp - / exp /h S R H RT
kT

τ = ∆ ∆            (65) 

and for τ0 we have the following expression: 

{ }*
0 2 exp - /h S R

kT
τ = ∆                         (66) 

In accordance with the data of Table the 
experimental values of τ0 for n-alkanes are practically 
agreement with the value -132 / 3.27 10h kT = ⋅ s. 

For the associated liquids kTh /20 <<τ , which 
indicates essentially greater value of positive entropy of 
activation ΔS*. These values ΔS*/R, calculated according 
to (66), are represented in the Table. For the homologous 
series of the n-alcohols the symbate dependence of ΔS* on 
Е is clearly observed. For the n-alkanes such relationship 
is not observed, since the values of ΔS* for them are little 
and stay within the ranges of the inaccuracy of their 
determination based on the experimental values of τ0. 

In accordance with the conclusion (62) the activated 
complex has not only the same number, but also the same 
freedom degree as the particles in the main state. That is why 
in the presented case we cannot obtain ΔS* > 0 at the expense 
of freedom degrees redistribution at the particle transfer from 
the main state into the activated one. Since at given Р and Т 
the activation is accompanied by the energy increasing, the 
entropy should also increase like it increased at the phase 
transition of the first kind at ΔН > 0. 

Thus, we suppose, that in the activation process at 
viscous flow of liquid the change of ΔS* can be expressed 
via ΔH* similarly as at the phase transition of the first 
kind. Activation process at the given Р and Т is non-
equilibrium, however theoretically at a given Р a 
hypothetic temperature Т* at which the activation 
transition would be equilibrium can be always found. 
Consequently, at this temperature Т*: 

*** /THS ∆=∆      (67) 
Then the expression (66) can be rewritten as: 







 ∆= *

*

0 -exp2
RT

H
kT
hτ                      (68) 

Calculated values of Т* according to (67) for the  
n-alcohols and water are represented in the Table. For 
homological series of n-alcohols the values of Т* are not 
considerably different from one another, which explains 
the experimentally observed the slope-opposition 
dependence of τ0 on *∆ ≈H E . 

In conclusion of the presented section it is 
necessary to note that the activation entropy by (67) type 
occurs also in chemical processes as one of the elements 
of the general activation entropy. This fact is proved both 
by rapidly observed compensation effects in a range of the 
single-type chemical reactions, and by the presence of so 
called quick reactions, description of which is beyond the 
Eyring’s theory. 

5. Calculation of the Diffusion 
Coefficients Based on the Coefficients 
of Viscosity 

Experimental determination of the diffusion 
coefficients D is a quite complicated and labour intensive 
process, whereas the experimental determination of the 
coefficients of viscosity is not so complicated. 

The long ago established empirical Walden’s rule 
η ≈D const            (69) 

does not offer an estimation of the value const and is 
approximate, however it points on the possibility of D 
calculation based on the experimental values η. 

For pure liquids the relationship between the 
transfer coefficient L or coefficient of self-diffusion D is 



Yuriy Medvedevskikh et al. 

 

370 

determined via the ratio (33), which can be rewritten in a 
form of the Walden’s rule (L=D) 

21
2

RTD
V

η δ=            (70) 

Expressing the transfer area δ2 via the molar 
volume of liquid 

2 2 / 3( / )AV Nδ =              (71) 
for the coefficient of the self-diffusion we obtain the 
expression: 

1/ 3

2 / 3

1
2 A

RTD
MN
ρ

η
 =  
 

                 (72) 

The calculated values of D according to (72) with 
the use of experimental data of η at Т = 293 К are 
represented in the Table. As we can see, the calculated 
data of D have a typical order for the liquids by similar 
kind, clearly reflect the dependence of D on molar mass in 
the presented homolytical range and on the nature of 
homolytical range. 

For the solutions the determination of coefficients of 
diffusion of components on the viscosity is a more 
complicated task. In accordance with (48) and (71) we have: 

1/ 3
1
2i

i i A

RT VD
V Nη

 
=  

 
       (73) 

where V is molar volume of the solution. Thus /V M ρ= , 

= ∑ i i
i

M M N is molar mass of the solution. 

As we can see, the calculation of the coefficient 
of diffusion of the solution’s component according to 
(73) needs the knowledge, first of all, of the coefficient 
of the viscosity of the presented component and its 
partial-molar volume. 

6. Conclusions 

An analysis of the molecular-kinetic theories of 
Frenkel and Eyring leads to the expressions for the 
coefficients of viscosity of low-molecular pure liquids, 
containing the VRTτ  ratio. From the general 
phenomenological determinations of the substances flow 
under the action of the gradient of chemical potential and 
analysis of the shear forces and corresponding tensions 
appearing in the flow it was proved that the viscosity 
coefficient of pure liquid is ordered to the ratio 

VRT /3 τη = , and in the case of the component of 
solution it is ordered to the ratio iii VRT /3 τη = . 

Comparison of the experimental values of the 
characteristic times τ of the viscous flow and the 
calculated ones shows that the pre-exponential multiplier 
τ0 is determined not only by the frequency of the 
oscillating movement  of the  particles in the  quasi-lattice 

 of the liquid but also by the entropy factor. This leads to 
the conclusion that the activation entropy at the viscous 
flow of the liquid can be found via the same expression as 
in the case of the entropy at the phase transition by the 
first kind. The obtained expression for the activation 
entropy  ** /THS ∆=∆  allows to explain the low 
values of kTh /20 <<τ  for the associated liquids and the 
observed slope opposition for the dependence between τ0 
and the activation energy of the viscous flow. 

The expressions were proposed, according to 
which the coefficients of the self-diffusion and diffusion 
based on corresponding coefficients of the viscosity of 
low-molecular pure liquids and melts can be calculated. 

An analysis of the Maxwell’s equation and the 
deformation rates of the conformational volumes of 
polymeric chains and their rotation allowed to separate the 
frictional and elastic coefficients of the viscosity of high-
molecular single-component liquid. It was shown that 
exactly the elastic coefficient of the viscosity is gradiently 
depended value. At the same time, the so called maximal 
Newton viscosity at 0→g  is not such value and it is 
represented by a sum of frictional and elastic components. 
On the contrary, at → ∞g  the effective viscosity is 
wholly determined only by the frictional component. 
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ФЕНОМЕНОЛОГІЧНІ КОЕФІЦІЄНТИ В’ЯЗКОСТІ 
НИЗЬКОМОЛЕКУЛЯРНИХ ПРОСТИХ РІДИН  

ТА РОЗЧИНІВ 
 
Анотація. В роботі проведено аналіз сил зсуву та 

відповідних напружень, що виникають в потоці під дією 
градієнта хімічного потенціалу. Встановлені співвідношення 
для визначення коефіцієнта в’язкості низькомолекулярних 
чистих рідин та компонентів розчину. Доведено, що в’язкість 
низькомолекулярного розчину може бути виражена через 
коефіцієнти в’язкості його компонентів та їх концентрацію. 

 
Ключові слова: хімічний потенціал, в’язкість чистих 

рідин, характеристичний час в’язкої течії.  
 




