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Abstract. The shear forces and corresponding strains
appearing in the flow under the action of chemical
potential gradient have been analyzed. The ratios for
determination of the viscosity coefficient for low-
molecular pure liquids and solution components were
established. It was proved that the viscosity of the low-
molecular solution can be expressed via the terms of the
viscosity coefficients of its components and via their
concentration.
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1. Introduction

The temperature dependence of the viscosity
coefficient for the low—molecular elementary liquids is
well described by the Arrhenius empirical equation:

h = Aexp{E/RT} Q)

where E is the activation energy of the viscous flow.
However, the theoretical interpretation of the pre-
exponential factor 4 faces considerable difficulties which
have not been overcometill the present time.

Among the molecular-kinetic theories of low-
molecular liquids complying with the Newton’s equation,
let us mark out two main formulated by Frenkel [1, 2] and
by Eyring [3-5].

In accordance with the Frenkel’s theory under the
presence of a shear strain o the rapid layer of liquid
entrains the slow one with the velocity rate BJ :

D =usd? )

where u is the mobility of particleand ¢ isthe interparticle
distance.

Substituting of DJ by ((jj—Jd , where dJ /dy is
y

the velocity gradient of the hydrodynamic flow along y
axis, which is normal to the flow, and using the Newton's

- dJ
equation in a form h — =s | the following ratio was

dy
obtained by Frenkel:
h = (ud)” )
Substitution of the Einstein’ s equations into (3)
u=D/KT (4)
D=d?/é& (5)
leads to the final result
h =6kTt /d® (6)

where D is the coefficient of the diffusion; 7z is the
characteristic time of the particles transport from the one
equilibrium state into another, which can be also called as
the characterigtic time of the viscous flow.

According to Frenkd t is determined by the
oscillation frequency in the quasi-lattice of liquid and by
the probability of the hole formation, i. e. corresponding
free volume needed for the particle transport:

t =t ,exp{ E/RT} )

Therefore, here tg is the characteristic time of the
oscillating movement of a particle in the quasi-lattice of
liquid; E is energy of hole formation or of the free volume
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in liquid, which is necessary to pass the particle from one
position of equilibrium into another.

After the integration of (6) and (7) the Frenkel’s
equation becomes as follows:

6KT
In the caculations Frenkel assumed that
t , =10™s, whichisequal to the determination
t,=h/KT 9

However, the calculations of the pre-exponential
multiplier in (8) sometimes give the values exceeding the
experimental ones by 2-3 orders. These divergences were
explained by Frenkel by the dependence of E on
temperature; however, such phenomenon is observed very
seldom.

In molecular-kinetic theory of Eyring the starting
principle consists in the fact that the action of force
causing the liquid flow decreases the height of the energy
barrier at the movement of partide in the forward
direction and increases it in the backward direction. The
rate constant x of the particles transfer via the potential
barrier is described by the standard equation of the theory
of absolute rates of chemical reactions:

KT Q

where Q and Q  are the statistical sums of the particle per
unit of volume in main and activated states respectively.

Under considerable following simplifications the
force of shift disappears from the equation of transfer. As
a result, the expression for the viscosity coefficient
according to Eyring becomes as follows:

_hN, Q
h=" 5 exp{ E/ RT}

(11)

where V is the molar volume of liquid.

Assuming that the statistical sum Q" of particle in
the activated state is devoid of one freedom degree of the
transitional movement, Eyring writes:
Q_@ mkT ) uve
Q h
where vz is free volume per one particle.

Let us note, however, that in accordance with the
starting Eq. (10) Q is aready devoid of one freedom
degree of the oscillating movement, otherwise the co-
multiplier KT/h would not appear in Eq. (10). Making Q'

(12)
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devoid of another freedom degree, namely, the transitional
one, would be absolutely physically unjustified.

Although the expression (12) in the presented case
is fitting of theory to the result, let us use it for
determination of characteristic time of the translational
movement:

_apmd” | s
[ - f
& KT 5

By combining of (12) and (13) into (11) we can

obtain:

(13)

h=

t , exp{ E/RT} (14)

KN, T
\%
In accordance with the Frenkel’ s equation (7) such
expression can be written as follows:

h =RTt /V (15)

Taking d* as the volume falling per one particle,
we will obtain from the expression (6) the eguation
analogous to (15):

h =6RTt /V (16)

Thus, in spite of the difference in molecular-
kinetic approaches of Frenkel and Eyring to the anaysis
of the viscosity coefficient for simple liquids, they lead to
the ratios containing the same phenomenological vaue
RTt /V. The difference between (15) and (16) is
visualized in numerical coefficient and physical
interpretation of t ; determined by the expressions (9) and
(13). This difference is quite substantial, since t , of the

trandational movement is two orders higher than t , of

the oscillating movement. At the analysis of the solution
viscosity Eyring and Frenkel do not use the notion
“ coefficient of solution component viscosity”, preferring to
describe the viscosity of solution via the coefficients of
viscosity for pure liquids. Here it is assumed that the
viscosity of solution can be described by the eguations
analogous to (8) and (11), but at the same time, free
activation energy (according to Eyring) or an activation
energy (according to Frenkel) is declared as the function
of the solution composition. This leads Eyring to the
equation:
Inh =N, Inh, +N,Inh, (17)
which was proposed by Arrhenius and Kendall eerlier [6].
A more complicated equation for the binary
solution was proposed by Frenkel:
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Inh :% NZInh, +% NZInh, + N,N, Inh,,

(18)
In these equations N; is molar part of the
component; #; is its coefficient of viscosity in pure liquid
state; 71, is additional viscosity, which, in accordance with
Frenkel, reflects the difference in energies of interaction
of particles by the first and the second kinds between
themselves and between the particles of the same kind.

In conclusion of the presented short review let us
note that the molecular-kinetic analysis of Frenkel and
Eyring asto viscosity coefficients for pure liquids leads to
the ratios (15 and (16) containing the generd
phenomenological factor RTt /V, which requires the
substantiation from more genera considerations.
Coefficients of viscosity of the solution components in
this approach are not revealed. The characteristic time of
the viscous flow remains undefined. We will solve these
problemsin the following chapters.

2. Coefficient of Viscosity
for Low-Molecular Pure Liquid

Let us accept phenomenological determination of
the stationary flow J of substance, the moving force of
which is the gradient of the chemical potential « [7, 8] as
the starting point for the analysis. Let us write these flows
along the direction of the x and y axes:

L 9m

J=-—cl g =. =™

19
RT S qy (19)

where L isthe transfer coefficient having the dimension of
the diffusion coefficient; ¢ is the molar-volumetric
concentration of particles.

For pure liquid at 7 = const the chemical potential
w isthe function only of pressure P. That is why it can be
written as m/ix =V P/ X, where V is molar volume.

Since Vc =1, instead of the (19) wewill get
L P

TTRT X y (20)

The flows can be expressed also via the transfer
rate u and concentration c: J; =cu;. Then, with taking
into account Eq. (20) we will have:

_ LVIP. _ LV IP

* RTIx ° RTYy (21)

By differentiating of u, upon y, and uy, upon x, we
will obtain
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2
fu, T, _ LV P

fy x RT fixTy

If n is the coefficient of the liquid viscosity, then
according to the Newton’ s equation

(22)

h%+&8:3

: =s 23
gﬂy X g @)

Xy yX

where s, =s . are the shift components of the stress

tensor; the first index points out direction of the
component of force, and the second one points out
direction of the normal to the plate of the application of
force.

From the comparison of (22) and (23) follows:

LV 1°P _ _
_mﬁﬂxﬂy_sw_sw (29)

Next, in liquid let us separate the elementary cube
with the edges 6. The sectional elevation of this cube by
the platexy isshown in Fig. la.
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Fig. 1. Scheme of the formation of shear forces F,, (a)
and tensions g,y (1) under dependence of normal force F«
on coordinatey

Let is assume that in the center of the cube the
gradient of pressurein direction x is equal to-fP/{x.

Since -{P/qx is the force acting on a unit of the
volume of liquid, full force Fy, acting on the whole

volume d*® of cube in the direction of the x axe will be
equal to

F(x=0,y=0)=-1Pgs
x

(25)
Tangential or shear forces appeared as a result of

the dependence of Fy ony. Let us write the new forces Fy
ax=0as y—9 and y—-g'
2 2
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& 25 T Iy
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=0,y=-29= 43, "0 44/0 2
Frgh=0y= 2@ wC Iy &7

The difference in these forces creates the shear
forces Fyy, applied to the top and the bottom of cube faces,
normal tothe axey (see Fig. 1a):

2
Fyox=0,y= do_p g =P ge (g
v 29 Xfly
do _TP
F,&%=0y=-22=F -F, =" "—d* (29)
Vg 2% Y
These forces create the shear tensons
S, =F,/d*:
on the top face
7P .,
s, =-——d (30)
Y Iy
and on the bottom face
7P .,
S, = d (31)
Y Xy

Asfollows from this, under the chosen direction of
force Fy
1'[2
‘HX‘ITy B d_2

The stress tensor is symmetrical, that can be easily
demonstrated by the analogous analysis of force Fyy

depending on x, that iswhy s, =s , asitisshownin

(32)

Fig. 1b.
By substituting of (32) in (24), we obtain:
h= E E d? (33)
2LV

Next using the Einstein's ratio for the transfer
coefficient
L=d?/a (34)

which takes into account the randomness of the particle
wandering in all three directions of space, we finaly find:

h =3RTt /V (35)
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3. Partial Coefficients of the Compo-
nents of Low-Molecular Solution

Let us determine the flows of i-component of the
solution along x and y axes accordi ng to the formula (19):

‘]|>< ___C ﬂ_m iy — C ﬂm (36)
RT ' x ' Y RT Ty

Due to the difference in the transfer coefficients L;
of the solution components it can be formally supposed
that the conditions similar to the components separation in
the baromembrane process can appear in the
hydrodynamic flow [8]. In the last case these conditions
are redlized at the expense of a high gradient pressure
upon membrane layer and a great difference in transfer
coefficients L; and L; via the membrane.

However we suppose that at the viscosity change
the hydrodynamic flows are weak enough and the effect
of the components separation can be neglected.
Conseguently, a liquid solution is homogeneous upon
composition and all derivatives by dci/dx type are equal.
Then, although the chemical potential y; is the function of
the solution composition via the thermodynamic activity
of the component, the derivatives fm/fx are the

function only of the gradient of pressure. Therefore, at
T = const and presented composition of solution,
m/Ix=VIP/qx, where V, is the partial-molar volu-
me of solution i-component. Since:

Vi =i, (37)
where ¢; is the volumetric part of the presented
component, the expressions (36) can berewritten as:

L P . 9P
ix ___J i ﬂ ‘]iy __LJ i ﬂ (38)
RT™ " 9qx RT" vy
Expressng these flows in a form J, =cqu,,
J,, =qu,,, and taking into account (37) and (38) we will
obtain:
. Uy ’p
iy ‘ITX RT ‘ITX‘ITy

Since TP/1x is a force applied to the unit of the

volume of solution then j , TP/ isa force applied to the

presented component in the unit of the volume.
Conseguently, it can be supposed, that the contribution of
the presented component into general viscosity of solution
n depends not only on the partial coefficient of viscosity
7;, but also on volumetric part ¢;. That is why we postulate
the dependence:

h=ahi, (40)
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Thus, the contribution of i component into the
viscosity of solution is determined by the value hj , , that

is why it is necessary to write the Newton's equation for
each component of the solution as:

. u 0
h|J ?[UIX T— ﬂ y ixy =S iyx (41)
ey 1x g
Heres,, =s,, isthecontribution of i component
into corresponding full shear stressess, =s  , so:
=A Sy 42)
From the comparison of (41) and (39) it follows that:
LV 7P
|J i =S ixy =S iyx (43)
RT Ty

Let us again refer to the eementary cube of
volume §° (Fig. 1). In the center of this cube the force acts
on the presented component along the x axe; this force, as

it was noticed, is equal to -j ,fP/x . Taking into account
the volume of cube, we have:

Fu(x=0,y=0) =

TP,
44
s (44)

The force Fix depends on coordinate y, that is why
we write the new forcesat x = 0, but & y=d/2 and

y=-d/2:
‘ITF’ds . P

F. (x=0, —". , d*/2 (45
o ( y=—)=-] 0 ] Xty (45)
. P . ‘|I 4
F o (X=0,y=-2)=- —+j,
o y 2) i o j Ty

The difference in these forces creates the shearing
forces Fiyy, applied to the cube faces, normal to y axe,

which determine the shear stresses s, =F,/d?. In

particular, in the direction of Fi the shear stress on the
top face of cube will be equal to:

N
=1 d (47)
ity
Using thisratioin (43), we obtain:
=Rl g “8)
T2 LV,

Expressing the transfer coefficient L; via corres-
ponding Einstein’sratio L, =d*/ @, wefinaly obtain:

h, =3RTt, /V, (49)

Thus, postulated dependence (40) leads to the

expression (49) for the coefficient of the viscosity of

solution in the same form as for the pure liquid. However,

the viscosity coefficient #; is the function of the solution
composition.
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Substitution of (49) into (40) and taking (37) into
account permits to express the viscosity of solution by the
ratio more convenient from the practical point of view:

h=3RT3 ct, (50)

For binary solution it can be written as:

h =3RT(c, +¢,)(Nit; + Nt ,) (51)
where N; ismolar part of the component.

Since ¢, +¢, =V, where V isa molar volume of
the solution, equal to (M;N; +M,N,)/r , it follows
fromthe (51) that
where M; are molar masses of components, p isadensity
of solution at presented compoasition.

An expression (52) permits to find the numerical

values of 7; and their dependence on composition of the
solution based on the experimental values of viscosity #.

4. Characteristic Time of the Viscous
Flow

As it can be seen from the phenomenological
expressions (35) and (49), the main problem at the
viscosity coefficient calculation is the determination of the
characteristic time ¢ of the viscous flow. According to
Frenkel = can be described by the expression (7), in which
70 IS determined either by vibration freedom degree of
liquid particles or by the trandational one, in others words
by theratios (9) or (13), respectively.

In order to compare the experimental values of 7o
with the calculated ones according to (9) and (13), we
described the temperature dependence of viscosity for a
series of n-alkanes and n-alcohols, and also for water on
the basis of referenced data via the Arrhenius equation in
the following form:

Inh =In A+ E/RT (59)

Coefficients of this equation are represented in the
Table. On the basis of viscosity values at temperature
293 K, according to (35) the values 7,93, and after that
according to (7) the values 7o were calculated. The results
of the calculations are represented in the Table.

At T = 293 K the characterigic time of the

oscillating movement is equal to h/kT =1.63X0™ s, and
of the trandational motion (pnYKT)"?ui® s

approximately two orders greeter.
That is why, the experimental values

t, <<(2pnmyKT)"?u?®. At the same time, for the
n-alkanes 7, is somewhat greater thanh/KT , although is
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of the same order, but for the associated liquids,
n-alcohols and water, 1o is considerable less thanh/KT .
Besides, in a series of the n-alcohols a well-defined slope
opposition of the dependence between the activation
energy of the viscous flow and 7, is observed: the greater
is E, the less is 5. Both factors, ie. t,<<h/KT and

observed slope opposition compensation effect, cannot be
explained using the approximations of Eyring and
Frenkel.

In the Eyring's theory of the absolute reactions
rates there are three essentiad drawbacks. a) the
concentration of the activated complexes can be found
from the consideration of condition of their equilibrium
with the initial (or final) substances; b) the activated
complex is devoid of one freedom degree along the
coordinate of the reaction; c) the transmission coefficient
is the empirical co-multiplier. The approach that preserves
the main advantages of the theory of absolute reactions
rates but eliminates the listed above drawbacks is
described in detail in [9]. Here let us only shortly touch
upon it with the specific aim of the anaysis of
characteristic time of viscous flow.
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proceeds via the activated complex C, general for initial
and final substances. Then it can be written as.
K, Vo
A = C = B

tvl tKZ

(55
In accordance with (55), the activated complex C
has aright to roll back from the top of the potential barrier
into both potential holes with the frequencies v, and v»,
which are not the activation parameters. Parameters x; and
K2 are activation parameters. In other words, they depend
on the value of the potential barrier, and determine the
frequencies of the activated complexes formation from the
initial and final substancesrespectively.
Let @, b and ¢ be the concentrations 4, B and C.
The rate of the elementary reaction (54) according to the
law of mass action
u=Ka- Kb (56)
is strictly defined, i.e. has the physical sense only under
condition dc/dt=0, to which the dationary
concentration of activated complexes cs corresponds:
¢, = (k,a+k,b)/(, +n,). (57)
In this case, in accordance with the scheme (55):

Let the elementary reversible reaction u =k,a-vc, =v,c, -K,b (58)
1 . . . .
K By substituting of (57) into (58), we obtain:
A - lel k2Vl
2 = a- b (59)
(54) vity, Vi ty,
Table
Referenced and calculated data on to the viscosity of someliquids
Liquid M, pA0°, AHo, | 720° | —InA | E g | megex | 0207, | DST | T, | DACY,
g/mol g/m’ kJ/mol Pa's Pas | R 0™, s s R K m/s
pg‘tHa”e 72 0.626 26.43 0229 | 11.29 | 851 | 361 198 | 050 | — | 154
51112
hCe’ﬁ”e 86 0.655 3155 0320 | 1112 | 900 | 575 | 267 | 020 | — | 106
6! 114
hgptHa”e 100 0.684 36.55 04090 | 1110 | 970 | 821 | 304 | 007 | — | 80
71116
ogta”e 114 0.702 41.48 0540 | 1119 | 1070 | 1203 | 310 | 005 | — | 58
8l 118
”g”Ha”e 128 0718 39.92 0710 | 1132 | 1195 | 1737 | 294 | 011 | — | 43
9l 119
methanol 32 0.793 38.45 058 | 11.83 | 1285 | 323 | 040 | 210 | 612 | 86
CH,OH
ethanol
46 0.789 4201 1190 | 1263 | 1725 | 952 | 026 | 253 | 682 | 37
C,H:OH
propanol 60 0.804 48.12 2256 | 1338 | 2135 | 2310 | 016 | 302 | 707 | 18
C.H-OH
buthanol 74 0.810 52.3 2050 | 1374 | 2315 | 3700 | 014 | 315 | 735 | 13
C.HsOH
pentanol 83 0.814 56.94 4140 | 1588 | 3045 | 6142 | 0019 | 515 | 591 | 09
CeHy,OH
"lvftg 18 0.997 40.66 1005 | 1322 | 1865 | 249 | 0043 | 433 | 431 | 65
2
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If an equilibrium Maxwell—Boltzmann distribution
of the energy between the particles and their freedom de-
greesis kept in the system, then in accordance with the law
of mass action the following rati os should be performed:

k,/n; =K k,/n, =K, (60)
where K, and K are equilibrium constants of the activated
complexes formation from the initial and final substances
respectively.

By substituting these ratios in (59) and comparing
them with (56) we will obtain the following expressions
for the constants rates of direct and reverse elementary
reaction (54):

oW S WY
ViV, VY,

With respect to the analysis of the characteristic
time of viscous flow the constant rate x of the particles
transfer via the potential barrier can be presented by
analogous (61) expression:

K= V2
v, +V,
where K' is the constant of equilibrium of activated
complex with particles in the main state. It can be
described by usual thermodynamical ratio via the standard
entropy AS and enthalpy AH" of activation:

K" =exp{DS / R} exp{-DH" / RT} (63)

Let us admit that the movement of the activated
complex in the both directions of the transfer is
determined by the oscillating freedom degree in such a
way that n, =n, =KT /h. Then:

k _Ek%exp{os /Ry exp{-DH" /RT}

K, (61)

(62)

(64)

Here the value of the transmission coefficient is
well defined. Characteristic time of the transfer is
inversely proportional to , that is why:

h . .
t =2—expi-DS /R expi DH /RT 65
- op{-05 1R} expf b (69
and for 7o we have the following expression:
h .
t,=2—expi-DS /R 66
0 =2, p{-0S /R} (66)

In accordance with the data of Table the
experimental values of 7 for n-akanes are practicaly

agreement with the value 2h/KT =3.27340" s.
For the associated liquids t , << 2h/KT, which

indicates essentially greater value of positive entropy of
activation AS . These values AS/R, calculated according
to (66) are represented in the Table. For the homologous
series of the n-alcohols the symbate dependence of AS on
E is clearly observed. For the n-alkanes such relationship
is not observed, since the values of AS for them are little
and stay within the ranges of the inaccuracy of their
determination based on the experimental values of .
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In accordance with the conclusion (62) the activated
complex has not only the same number, but also the same
freedom degree as the particles in the main state. That iswhy
in the presented case we cannot obtain AS > 0 at the expense
of freedom degrees redistribution at the particle transfer from
the main state into the activated one. Since at given P and T
the activation is accompanied by the energy increasing, the
entropy should also increase like it increased at the phase
trangition of thefirst kind at AH > 0.

Thus, we suppose, that in the activation process at
viscous flow of liquid the change of AS can be expressed
via AH" similarly as at the phase transition of the first
kind. Activation process at the given P and T is non-
equilibrium, however theoretically at a given P a
hypothetic temperature 7' at which the activation
transition would be equilibrium can be aways found.
Consequently, at this temperature 7 :

DS =DH" /T’ (67)
Then the expression (66) can be rewritten as:
h i DH' U
=2—expj - (68)
T OP R,

Calculated values of 7" according to (67) for the
n-acohols and water are represented in the Table. For
homological series of n-alcohols the values of 7' are not
considerably different from one another, which explains
the experimentally observed the dope-opposition

dependence of 7o 0n DH” » E.

In conclusion of the presented section it is
necessary to note that the activation entropy by (67) type
occurs aso in chemical processes as one of the elements
of the general activation entropy. This fact is proved both
by rapidly observed compensation effectsin arange of the
single-type chemical reactions, and by the presence of so
called quick reactions, description of which is beyond the
Eyring s theory.

5. Calculation of the Diffusion
Coefficients Based on the Coefficients
of Viscosity

Experimental determination of the diffusion
coefficients D is a quite complicated and labour intensive
process, whereas the experimental determination of the
coefficients of viscosity is not so complicated.

The long ago established empirical Waden'srule

hD » const (69)

does not offer an estimation of the value const and is
approximate, however it points on the possibility of D
calculation based on the experimental values 7.

For pure liquids the relationship between the
transfer coefficient L or coefficient of self-diffusion D is
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determined via the ratio (33), which can be rewritten in a
form of the Walden' srule (L=D)
hp=2RT g2 (70)
2V
Expressing the transfer area o° via the molar
volume of liquid
d?>=(V/N,)*"? (72)
for the coefficient of the self-diffusion we obtain the
expression:
,1/3

_1 RT ar o

2hNZ° &M 5

The calculated values of D according to (72) with

the use of experimental data of n & T = 293 K are

represented in the Table. As we can see, the calculated

data of D have a typical order for the liquids by similar

kind, clearly reflect the dependence of D on molar massin

the presented homolytical range and on the nature of

homolytical range.

For the solutions the determination of coefficients of

diffuson of components on the viscosity is a more
complicated task. In accordance with (48) and (71) we have:

,1/3

_1RT &V 0

20V EN, 5

where V is molar volume of the solution. ThusV =M /r
M :é M; N; is molar mass of the solution.

(72)

(73)

|

As we can see, the calculation of the coefficient
of diffusion of the solution’s component according to
(73) needs the knowledge, first of all, of the coefficient
of the viscosity of the presented component and its
partial-molar volume.

6. Conclusions

An analysis of the molecular-kinetic theories of
Frenkel and Eyring leads to the expressions for the
coefficients of viscosity of low-molecular pure liquids,

containing the RTt/V ratio. From the genera
phenomenological determinations of the substances flow
under the action of the gradient of chemical potential and
analysis of the shear forces and corresponding tensions
appearing in the flow it was proved that the viscosity
coefficient of pure liquid is ordered to the ratio
h =3RTt /V, and in the case of the component of

solution it is ordered to theratio h, = 3RTt, /V, .

Comparison of the experimental values of the
characteristic times r of the viscous flow and the
calculated ones shows that the pre-exponential multiplier
70 IS determined not only by the frequency of the
oscillating movement of the particlesinthe quasi-lattice
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of the liquid but also by the entropy factor. This leads to
the conclusion that the activation entropy at the viscous
flow of the liquid can be found via the same expression as
in the case of the entropy at the phase transition by the
firs kind. The obtained expression for the activation

entropy DS =DH /T adlows to explain the low
values of t ; << 2h/KT for the associated liquids and the

observed dope opposition for the dependence between o
and the activation energy of the viscous flow.

The expressions were proposed, according to
which the coefficients of the self-diffusion and diffusion
based on corresponding coefficients of the viscosity of
low-molecular pure liquids and melts can be cal culated.

An analysis of the Maxwell’s equation and the
deformation rates of the conformational volumes of
polymeric chains and their rotation allowed to separate the
frictional and elastic coefficients of the viscosity of high-
molecular single-component liquid. It was shown that
exactly the elastic coefficient of the viscosity is gradiently
depended value. At the same time, the so called maximal

Newton viscosity at g ® O is not such value and it is

represented by a sum of frictional and elastic components.
On the contrary, at g ® ¥ the effective viscosity is
wholly determined only by the frictional component.
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®EHOMEHOJIOI'TYHI KOEDIIIEHTHU B' A3KOCTI
HU3bKOMOJIEKYJIAPHUX ITPOCTUX PIAVNH
TA PO3YHNHIB

Anomauia. B pobomi nposedeno amaniz cun 3cysy ma
BIONOGIOHUX HANPYIHCEHb, WO GUHUKAIOMb 6 Nomoyi nio Oi€r
epadicnma ximiunoeo nomenyiany. Bemanoeneni cniesionowenms
ONsl  GUBHAUEHHS KoeiyicHma 6 A3KOCMi  HU3bKOMONEKYVIAPHUX
yucmux piour ma Komnonenmie pozuuny. JJosedeno, wo 6' s3kicmo
HU3LKOMOJIEKYIIAPHO20 PO3YUHY MOJice Oymu eupasicena uepes
KoeiyicHmu 6' 13Kkocmi 1i020 KOMNOHEHMIE MA IX KOHYEeHMPayiio.

Knwuosi cnosa: ximiunuii nomenyian, 6 A3Kicmv YucCmux
PIOUH, XapakmepucmuiHull yac 6 si3koi meuii.





