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Abstract. The quantitative theory of diffraction by 
separate chiral nanotubes of arbitrary chemical 
composition is offered. The pseudoorthogonality effect 
and dependence of diffraction on the azimuthal ordering 
are considered. The calculated diffraction patterns for the 
case of electron microdiffraction by separate chrysotile 
nanotubes are adduced. 
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1. Introduction 

Diffraction by the chiral lattice was considered by 
E. Whittaker in the middle of the last century in the 
approach to close packing of layers [1]. More detailed 
consideration of the problem [2] shows that close-packed 
chiral lattice is impossible. After first investigation of 
carbon nanotubes the description of atoms arrangement 

and the diffraction theory [3, 4] without using the 
concepts of unit cell and applicable only to this structure 
and to similar ones were developed. However researches 
of the last decade have resulted in significant expansion of 
the nanotubes nomenclature and in the necessity of 
formulation of more general mathematical apparatus for 
diffraction simulation. The purpose of this research is the 
analysis of diffraction by single-wall and multi-wall chiral 
nanotubes of arbitrary chemical composition in view of 
the features of radial packing of their layers. 

The peculiarity of the considered model of nanotube 
is the assumption of the tendency of its layers to inheritance 
of mutual orientation [2]. Then cylindrical coordinates of 
atoms of the multiwall cylindrical chiral nanotube of 
arbitrary composition, which layers have longitudinal linear 
Δzm (m = 0, 1, 2, … – number of a layer) and azimuthal 
angular εm shifts and close chiral angles εcm [2] concerning a 
general origin, can be written down as: 
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where chiral indexes of the m-th layer (pm, sm), expressed in numbers of Bravais cells along the turn of structure and on 
the step of helix, respectively, are determined as nearest integers from: 
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where n and ν – numbers of unit cells in directions of 
measurement of lattice parameters a and b, respectively;  
d – thickness of a layer; j – number of atom in an unit cell; 
xj, yj, zj – linear coordinates of atom in an unit cell in a 
radial direction and in directions of measurement of lattice 
parameters b and a, respectively. 

The rectangular Bravais cell in a layer is chosen in 
such a manner that parameter a is measured in the 
direction closest to nanotube’s axis and parameter b – in 
the direction closest to a circle of the cylinder. Value ρ0 is 
determined from 

( ) ( )20
2

002 bpas +=πρ  
where (p0, s0) – chiral indexes of an internal layer, the 
chiral angle of which is equal to εс. The same values are 
considered as the chiral indexes of multiwall chiral 
nanotube. Hence, the chiral angles of nanotube’s layers 
are given by the expressions: 
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The modeling profiles of diffraction are calculated 
for the case of electron microdiffraction by a separate 
chrysotile nanotube. The correction multipliers 
(absorption, etc) on this stage of development were not 
taken into account. 

2. Amplitude of Diffraction 

Entering in reciprocal space the cylindrical 
coordinate system {R, φ*, z*} the diffraction amplitude by 
structure (1) can be written down as: 
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where  
( ) ( ) ( )mmjjmj zizizfzF ∆= ∗∗ πγπ 2exp2exp* 2  (4) 

М – number of cylindrical layers in nanotube; N – number 
of site turns along the cylinder’s axis; fj –scattering 
function of j-th atom. Let us expand the last exponent in 
(3) into a series of cylindrical waves corresponding to: 
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Let us consider addendum (5). The sums over n 
and v have character δ-functions, therefore the sum over n 
has appreciable values only at: 
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Comparing (7) and (8), we obtain: hsm = kpm, that 

generally gives the unique decision: h = 0, k = 0. From 
this, in turn, follows z* = 0 – an equation of layer plane 
(or, in crossing with Ewald sphere, of a layer line), on 
which all reflexes, corresponding to amplitude (5), are 
located. Thus, this addendum describes the amplitude of 
strong [5] reflexes of a zero layer line (the number of a 
layer line or plane coincides with the value of index h): 
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where the index "S" means strong reflexes. 
Let us consider amplitude (6) as: 
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In the second column of Table 1 the conditions of 
extremum of the sums, which are included in (12), are 
given. The products of these sums will give combinations 
of conditions of extremenesses, being the systems of 
equations for determination of the values of z* and q (the 
third column of the Table 1, h, k - integers), at which the 
maxima of every m-th addendum of amplitude (10) are 
reached. This allows choosing the members of a series 
which make the basic contribution to intensity of scattering. 

Because of the symmetry of reciprocal space it is 
enough to investigate distribution of intensity in one of its 
halves, for example, with z* ≥ 0. As in the majority of 
practically important cases bpm > asm, from the third 
column of the Table it follows that only reflexes with  
h ≥ 0 will be considered. The exception will be the diffuse 
(k ≠ 0) reflexes with h = 0, which will be split in pairs 
with z* > 0 and z* < 0. 

The index of a series q > 0 by definition, therefore 
from the third column of Table 1  it follows  that  the mul- 
tiplier Aqm describes diffuse reflexes with k > 0, and  
Bqm – with k < 0. The  last multiplier gives also strong  (k = 0) 

 reflexes with h > 0, as the strong reflexes with h = 0 are 
described by amplitude (9). In fourth column of the Table 
the maximal values of multipliers are given. 

Pseudoorthogonal reflexes, as well as in case of 
circular nanotube [5], are formed by the main maxima of 
Bessel functions, which are included in expression for 
strong reflexes. Let us consider positions of pseudoortho-
gonal reflexes of the layer lines with h > 0. From (2) and 
definition of radius of a chiral layer (1) it follows that: 

( ) ( ) mmmm bpas πρω 222 =+=  

Substituting this in ∗
mz  from the Table 1 at k = 0 and 

taking into account expression for pm from (2) we obtain: 

cmm a
hz εcos=∗    (13) 

On the other hand, the main maxima of Bessel 
functions are near to points appropriating to equality of 
their argument to the index. Then from (10) and the third 
line of the third column of Table 1 at k = 0: 

mm hsR =ρπ2 ⇒  cmm a
hR εsin0 =   (14) 

where xj was neglected and expression (2) for the chiral 
index sm was taken into account. From comparison of 
expressions (13) and (14) it follows that the maxima of m-
th addendums of amplitude (10), corresponding to 
pseudoorthogonal reflex, displace along arch of a circle of 
radius h/a with the centre in the origin of reciprocal space 
when the chiral angle changes. 

 
Table 1 

Conditions of a maximum of multipliers which are included in function Sqmj 

Multiplier Conditions of a maximum Value of variables Value of 
multiplier 
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3. Diffraction by a Singlewall  
Chiral Nanotube  

In this case in the sum over m in expressions (9) 
and (10) there remains the only addendum corresponding 
to т = 0, and in expressions (1), (2) and (4) it is necessary 
to put εт = 0, Δzm = 0. Then, according to (9), the intensity  

of the singlewall chiral nanotube zero layer line strong 
reflexes will look like: 
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From Table 1 it follows that h-th layer lines of 
strong and diffuse reflexes of the singlewall chiral 
nanotube will have coordinates 
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correspondingly. Function (11) and amplitude (10) 
become: 
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and the weak overlapping of Bessel functions is taken into 
account too. The corresponding intensity 

( ) 2
0

2
1 2exp∑




















+=

j

jj
j b

y
k

a
z

hifpNRI π ⋅ 

⋅ ( )
2

02 jq RJ ρπ                            (17) 

has no angular dependence. 
It is possible to estimate from (15) and (17) 

positions of the main maxima of diffuse reflexes equating 
argument of the Bessel function to its index and omitting 
addendum xj: 
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where the index k is taken in absolute value.  
From (18) it is seen that the diffuse reflex with  

k > 0 has place above the layer plane z* = (h/a)cosεc and is 
closer to a point R = 0, and the reflex with k < 0 is lower 
and farther. The module of a reciprocal space vector of the 

diffuse reflex main maximum 22 zRR hkhkhk =+= ∗∗  

( ) ( )221 hbka
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+= . It means that the splitting of 

diffuse reflexes occurs along the arch of a circle with 
centre at the origin of reciprocal space when the chiral 
indexes change. From (18) it also follows that the linear 
and angular distances between the main maxima of 
diffuse reflexes with opposite sign of index k can be 
written down as: 
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When s0 = 1, a = 0.53 nm and bp0 ≈ 25 nm 
(approximately corresponds to chrysotile) this gives  
εhk ≈ 2.50, which is in good agreement with the 
experimental results [6]. 

The choice of q from the expression (16) allows 
obtaining the profiles of intensity of any reflexes of the 
singlewall chiral nanotube from (17). The strong reflexes 
are presented only by reflexes h0 (Fig. 1). 

The examples of profiles of diffuse reflexes with  
h = 1 and various values of index k and second chiral 
index s0 are shown in Fig. 2. The profiles in Figs. 1 and 2 
are combined on one diagram conditionally, as, according 
to (15), they have different coordinates z*. 
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Fig. 1. Reflexes 20 of the chrysotile singlewall chiral nanotubes with chiral indexes (27,1) (solid)  

and (27,3) (dotted)
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Fig. 2. Pairs of diffuse reflexes kk 11 −  from chrysotile singlewall chiral nanotubes  

with chiral indexes (27,1) (solid) and (27,3) (dotted) 
 

4. Diffraction by a Multiwall Chiral 
Nanotube 

The positions of the maxima of addendums of 
scattering amplitude by the multiwall chiral nanotube, 
according to the third column of the Table 1, depend on a 
layer number m. Therefore for modeling diffraction it is 
necessary to calculate the distribution of intensity in some 
area of change of values R and z*, covering the whole area 
of existence of maxima of scattering amplitude 
addendums. For this purpose it is necessary to present 
amplitudes of scattering in another form. 

The purpose of the previous analysis was finding 
the conditions of simultaneous extremeness of the sums 
over n and v, which gave values of coordinates of maxima 
z* and conditions for the members of series over q. Now 
the purpose is finding the maxima of the pointed pair 
products at any values z*, close to the values given in the 
third column of Table 1. 

Calculation of the sums, included in multipliers 
(12), gives: 
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At arbitrary values of variable z* the values (20) 
will be maximal at values q, given in the Table 2, where in 
the fourth column the maximal values of multipliers are 
also given. It means that as a first approximation for every 
m-th addendum it is possible to choose two members of a 
series, which give the greatest contribution to amplitude 
of a reflex. Thus, each of the products (19) will enter into 
amplitude of a reflex two times: first time will be maximal 
the first multiplier of product, second time – the second. 

It is obvious that it is necessary to round off the 
values of q from Table 2 during the calculations. 
Parameter t, arising from a condition of a maximum of 
expressions (20), is integer too. The comparison of the 
data of Tables 1 and 2 at z*, corresponding to the third 
column of Table 1, gives conditions for this parameter, 
that were given in third column of Table 2. 

As it was already noted, the factor qmA  in (11) 

corresponds to diffuse reflexes with k > 0, and factor qmB  
– to diffuse reflexes with k < 0. Then, according to (19), in 
the case of diffuse reflexes with k > 0 with arbitrary 
coordinate z* from multiwall chiral nanotube the 
amplitude (10) may be presented as: 
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where the index "D" means diffuse reflexes. 

In Fig. 3 the examples of calculated distributions of 
intensity corresponding to amplitude (21) of diffuse reflex  

130 from multiwall monoclinic (Δzm = mΔz, Δz = -a/13) 
nanotubes with various second chiral indexes are shown 
in coordinates {R, φ*}. The distributions have kg-multiple 
symmetry, the availability of the reciprocal lattice’s centre 
of symmetry in a case kg - odd is provided by the similar 
distribution of a reflex 301  (at opposite value of z*), 
turned on 180о [7]. 
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Fig. 3. Distributions of intensity of a reflex 130 from chrysotile multiwall monoclinic nanotubes  
in a plane {R, φ*} with chiral indexes: (27,1) (a) and (27,4) (b) 
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Fig. 4. A reflex 130 from chrysotile’s chiral monoclinic nanotube (27,4) with various angles φ*
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Fig. 5. A doublet 130- 031  from chrysotile chiral monoclinic nanotube (27,4) 

in a plane {R, z*}  at φ* = 5º 

130 

031  

 
The examples of calculation of diffraction profiles 

lengthways the layer lines, marked in Fig. 3b by direct 
lines, are shown in Fig. 4 by the lines of the same type. 
The distinctions in profiles mean that the experimental 
patterns of electron microdiffraction by separate chiral 
nanotube will depend essentially on their azimuthal 
orientation on an electron beam. Hence, in spite of the fact 
that the modern experimental techniques allow to register 
patterns, showed in Fig. 3 only for z* = 0 it is necessary to 
simulate the distributions of all reflexes in a plane  
{R, φ*} for correct interpretation of experimental data. 

Fig. 5 shows the example of calculation of intensity 
distribution for a chrysotile chiral monoclinic nanotube’s 
doublet 130- 031  in a plane {R, z*}, that corresponds to a 
usual experimental electron microdiffraction pattern (the 
intensity levels from 0 up to 10 % through 1 % are shown 
only). On distribution the main maxima of diffuse reflexes 
and oscillations of intensity in the area of their tails, which 
are similar to oscillations in Fig. 4 and having same 
origin, are clearly visible. Thus, though every addendum 
of diffraction amplitude, appropriate to a layer of nano-
tube, has its own value of a extremum point *

mz , the 
summation of these addendums results in forming diffuse 
reflex with quite certain coordinate z*. 

Determination of a chiral angle by the main 
maxima gives value εc ≈ 5.4о, while its calculation at  
p0 = 27, s0 = 4 and parameters of a chrysotile lattice gives 
εc ≈ 4.9о. The reason is, apparently, the variations of chiral 
angles of separate layers owing to a rounding off. 

The strong reflexes result from general expression 
(10) under condition of k = 0. An index of a series q ≥ 1 
by definition, that in application to the Table 2 means, that 
its second line corresponds to z* < 0. Being limited by the 
half-space with z* > 0 we shall take into account only 
values −

qmC  and +
qmD , that is value qmB  and addendums, 

connected with it in (11). The taken into account members 
of a series are: 

*2 z
bp

asq
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mmω
=  
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m

m

m
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bpq 2

2

3 * ωω +−=   (23) 

with a rounding off. It is necessary to remember that here 
h ≥ 1, as the strong reflexes of a zero layer plane are 
already given by expression (9). It is obvious that the 
required amplitude is described by expression (22), where 
parameter q2 should be taken from (23): 
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33
3

13 −−+ −  (24) 
Calculations of intensity (Fig. 6) appropriate to 

amplitude (24) in a plane {R, φ*} show that the strong 
reflexes with h > 0 from chiral nanotubes, as against the 
circular ones, have spiral character. In this case the step of 
a spiral in reciprocal space is much less than in the case of 
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diffuse reflexes (Fig. 3), but strongly depends on the 
second chiral index s0. Hence, in case of strong reflexes 
with h > 0 the experimental patterns of electron 
microdiffraction by separate chiral nanotube will depend 
on its azimuthal orientation about its own axis (Fig. 7).  

In Fig. 8 the examples of calculation of second 
layer line strong reflexes profiles from chrysotile 
monoclinic nanotubes with various chiral indexes are 
shown. The appreciable displacement of reflexes with  
l ≠ 0 to the beginning of a layer line with increasing of  
the second chiral index is observed. Thus  the reflex   200, 

 overlapped with a pseudoorthogonal reflex 20, is 
displaced in an opposite direction, and its intensity quickly 
decreases. This effect proves to be true by calculations of 
intensity distribution in a plane {R, z*} in the area of a 
second layer line (Fig. 9). 

During research of chrysotile nanotube’s oriented 
polycrystalline preparations by the method of X-ray 
scanning of reciprocal space [8] there were samples whose 
reflex 120  had a considerable low-angle tail [7]. It can be 
explained by spiral character of strong reflexes from chiral 
nanotubes and their dependence on the chiral indexes. 

 

   
a)       b) 

Fig. 6. Distributions of intensity of strong reflexes with h = 2 from chrysotile chiral monoclinic nanotubes in a 
plane {R, φ*} with chiral indexes: (27,1) (a) and (27,3) (b)  
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Fig. 7. Profiles of strong reflexes of a second layer line from chrysotile’s chiral nanotube (27,1) at various φ* 
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Fig. 8. Profiles of second layer line strong reflexes from monoclinic chrysotile nanotube  

with various chiral indexes at φ* = 0 
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   (27,1) 

   (27,2) 

   (27,3) 

   (27,4) 
R, inv. nm 

Fig. 9. Distribution of intensity, diffracted by the chrysotile’s chiral monoclinic nanotubes in the area of second layer line 
on a plane {R, z*} at φ* = 0 (the chiral indexes of nanotubes on the right are given) 
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inv. nm 

 
5. Diffraction by a Multiwall 
Azimuthal Disordered Chiral 
Nanotube (Whittaker’s Model) 

In the model of multiwall cylindrical nanotube, 
proposed by Whittaker, initial angular phases εm, included 
in γ1mj, have random character [9]. Then in intensity of 
diffuse reflexes with k > 0, corresponding to amplitude 
(21), 
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will remain only addendums, appropriate m' = m: 
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Substituting (4) and (25), we obtain finally: 
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In case k < 0, that is in case of intensity appropriate 
amplitude (22), operating similarly, we obtain: 
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( ) ( ) ( )∑ ∑ −+ ∗−

m j
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2
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22 2exp2exp
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ρπδγπ   (26) 

The same expression at k = 0, that is at q2 and q3 from 
(23), describes the strong reflexes from multiwall chiral 
nanotube of the Whittaker’s model too. This means that in 
this case in the sum over layers (over m) which generates 
series of strong reflexes only positive values are 
summarized and arising of the sharp and separate maxima 
of intensity is impossible. Hence, in the Whittaker’s 
model the strong reflexes take place only on a zero layer 
line according to (9). On the other layer lines the "strong" 
analogue of expression (26) gives only the background 
component with a pseudoorthogonal maximum. As 
follows from the carried out analysis, in the Whittaker’s 

case the angular dependence of multiwall chiral 
nanotube’s reflexes is also absent. 

In Fig. 10 the examples of calculated profiles of 
the strong reflexes of chrysotile nanotube‘s second layer 
line in the Whittaker’s case with various second chiral 
indexes s0 are given. The profiles represent continuous 
distribution of intensity beginning from reflex 200. The 
intensity oscillations in the areas 0.6-0.7 nm-1 and 1.3-1.4 
nm-1 are not associated with any strong reflex of 
chrysotile. It is necessary to notice that the authors did not 
face similar diffraction patterns either during researches or 
the scientific literature. Nevertheless, the presence of an 
appreciable level of background in the area of layer lines 
of oriented polycrystalline chrysotile samples allows 
assuming a possibility of existence of such nanotubes. 
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Fig. 10. Profiles of strong reflexes of chrysotile nanotube’s second layer line of Whittaker’s model 

with various chiral indexes 
 
6. Conclusions 

The carried out analysis and the modeling 
calculations allow making a set of conclusions. First, 
diffraction by chiral nanotubes, in comparison with the 
circular ones [5], represents a more complex phenomenon 
and gives more difficult diffraction patterns for 
interpretation. Dependence of the displacement of 
coordinates of layer lines and reflexes of chiral nanotube’s 
microdiffraction pattern on chiral indexes makes the 
determination of lattice parameters rather complicated. It 
is obvious that the correct determinations are possible 
only on the basis of analysis of distributions of reflexes 
intensities in a plane {R, φ*} with taking into account the 
azimuthal orientation of nanotube about its own axis. 

In the model of inheritance of layers orientation the 
dependence of a diffraction pattern on the chiral indexes 
of layers allows determining the chiral indexes of 
multiwall nanotube (p0, s0) and further – the whole set of 
chiral indexes of nanotube’s layers. The authors do not 
consider a model of inheritance as the only, but assume 

that this model is prevailing. Also the model in which in 
(2) the chiral indexes of a layer (pm,sm) are determined not 
as the nearest integers, but by rounding off in a direction 
of increase is possible. It will mean that the radiuses of the 
next layers can not differ by the value smaller than d. It is 
obvious that in this case the dependences of positions and 
forms of multiwall nanotube’s reflexes on chiral indexes, 
specified in the article, will amplify. 

The essential point of the proposed as the first 
approach mathematical apparatus is taking into account 
only those members of expanding of diffraction amplitude 
into a series of cylindrical waves (series over q) which 
make the maximum contribution. This does not cause 
doubts when the selection rule arises from the lattice sum 
along a nanotube’s axis (over n), as the number of 
addendums in this sum is rather great and is well 
approximated by δ-function. However the number of 
addendums in the azimuthal lattice sum (over v) is not so 
great, therefore an appreciable contribution can be made 
not only by the chosen member of a series but also by 
members with q-1 and q+1. 



The Structure and Diffraction by Chiral Nanotubes of Arbitrary Composition 

 

177 

It can result in the occurrence of a set of diffraction 
effects more fine than the considered above. For example, 
there can be some angular dependence (on φ*) intensity of 
all reflexes of a singlewall chiral nanotube, except for 
reflexes 00l. Also there can be some deviations of the 
form of the given calculated diffraction patterns. The 
analysis of these effects will be continued further. 

The proposed mathematical apparatus simulation 
of diffraction by chiral nanotubes is more general than the 
earlier published one [5] for the case of circular nanotubes 
and contains it as a special case at sm = 0. Really, in this 
case values (2) transform into 

m mbpω = , 2 m
mp

b
πρ

= , 

mj m jxρ ρ= + ,  1
2
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mp
π
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1 2 0m mβ α= = ,     2m aβ = , 

1

2 j
mj m

m

y
bp
π

γ ε= + ,     2mj jzγ = , 

and        ( ) ( ) ( )mjjmj zizzizfzF ∆= ∗∗ ππ 2exp2exp*      (27) 

Then the sums over v in amplitude (5) become 
trivial and there will be only one condition (7), which 
gives: z* = h/a – the equations of layer planes, on which 
the strong reflexes of circular nanotube are located. The 
substitution of the obtained values in (5) gives the 
corresponding expression from [5] for amplitude of 
circular nanotube’s strong reflexes. 

The diffuse reflexes of chiral nanotube, as against 
the circular one, are split in pairs, whose intensities are 
given by the expressions (21) and (22). Hence, the sum of 
these expressions corresponds to the case of circular 
nanotube. If we use values (27) the conditions of 
maximum of expressions (20) give: q = kpm and z* = h/a – 
the equations of layer planes, on which all, including  
the diffuse ones, reflexes of circular nanotube are  located.  

Then both in (21) and (22) there remains only one 
addendum, corresponding to this value q, and their sum 
will give expression for amplitude of diffuse reflexes from 
circular nanotube, given in [5]. The expression (24) 
becomes unacceptable, as the condition of strong reflexes 
(k = 0) gives: q = 0, while in amplitude (6), from which 
(24) is deduced, q ≥ 1 by definition. 

In the following article of this series the 
quantitative theory of diffraction by spiral nanotubes of 
arbitrary chemical composition will be proposed. 
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МОДЕЛЮВАННЯ ДИФРАКЦІЇ  
ХІРАЛЬНИМИ НАНОТРУБКАМИ  

ДОВІЛЬНОГО СКЛАДУ 
 

Анотація. Запропоновано кількісну теорію дифракції 
за допомогою окремих хіральних нанотрубок довільного хі-
мічного складу. Досліджено вплив псевдоортогональності та 
залежність дифракції від азимутальної впорядкованості. На-
ведено розрахункові дифрактограми для випадку електронної 
мікродифракції окремими хризотиловими нанотрубками. 

 
Ключові слова: нанотрубки, хіральні нанотрубки, ін-

декси хіральності. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




