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Abstract. The quantitative theory of diffraction by
separate  chiral  nanotubes of arbitrary chemical
composition is offered. The pseudoorthogonality effect
and dependence of diffraction on the azimuthal ordering
are considered. The calculated diffraction patterns for the
case of eectron microdiffraction by separate chrysotile
nanotubes are adduced.
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1. Introduction

Diffraction by the chiral lattice was considered by
E. Whittaker in the middle of the last century in the
approach to close packing of layers [1]. More detailed
consideration of the problem [2] shows that close-packed
chiral lattice is impossible. After first investigation of
carbon nanotubes the description of atoms arrangement

i

and the diffraction theory [3, 4] without using the
concepts of unit cell and applicable only to this structure
and to similar ones were developed. However researches
of the last decade have resulted in significant expansion of
the nanotubes nomenclature and in the necessity of
formulation of more general mathematical apparatus for
diffraction simulation. The purpose of this research is the
analysis of diffraction by single-wall and multi-wall chiral
nanotubes of arbitrary chemical composition in view of
the features of radial packing of their layers.

The peculiarity of the considered model of nanotube
is the assumption of the tendency of its layersto inheritance
of mutual orientation [2]. Then cylindrical coordinates of
atoms of the multiwall cylindrical chira nanctube of
arbitrary composition, which layers have longitudinal linear
AZ,(m=0, 1, 2, ... — number of alayer) and azimuthal
angular e, shifts and close chiral angles e;m[2] concerning a
genera origin, can bewritten down as.
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where chiral indexes of the m-th layer (pm, Sv), expressed in numbers of Bravais cells along the turn of structure and on
the step of helix, respectively, are determined as nearest integers from:
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where n and v — numbers of unit cells in directions of
measurement of lattice parameters a and b, respectively;
d —thickness of alayer; j — number of atomin an unit cell;
Xi, Yj, Z — linear coordinates of atom in an unit cell in a
radial direction and in directions of measurement of lattice
parametersb and a, respectively.

The rectangular Bravais cell in alayer is chosenin
such a manner that parameter a is measured in the
direction closest to nanotube’ s axis and parameter b —
the direction closest to a circle of the cylinder. Value ppis
determined from

2pr o =4/ (asp)” + (bpo )
where (po, So) — chiral indexes of an internal layer, the
chiral angle of which is equal to &.. The same values are
considered as the chiral indexes of multiwall chiral
nanotube. Hence, the chiral angles of nanotub€ s layers
are given by the expressions:

=—, tge =_Mm
cm bpm
The modeling profiles of diffraction are calculated
for the case of electron microdiffraction by a separate
chrysotile nanotube. The correction  multipliers
(absorption, etc) on this stage of development were not
taken into account.

2. Amplitude of Diffraction

Entering in reciprocal space the cylindrica
coordinate system {R, ¢*, z*} the diffraction amplitude by
structure (1) can be written down as:
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M — number of cylindrical layersin nanotube; N — number
of site turns along the cylinder's axis, f; —scattering
function of j-th atom. Let us expand the last exponent in
(3) into aseries of cylindrical waves corresponding to:
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Let us consider addendum (5). The sums over n
and v have character o-functions, therefore the sum over n

has appreciable values only at:
hw
z*pb,,=hp b zZ=—"n
p 2m p abpm
h=0+1%2,... @)
and the sum over v —at
kWi,
zZ*pa,, = = ,
pa oy, = Kp abs,,
k=0+L+2;... (8)

Comparing (7) and (8), we obtain: hs,, = kpy, that
generally gives the unique decision: h = 0, k = 0. From
this, in turn, follows z* = 0 — an eguation of layer plane
(or, in crossing with Ewald sphere, of a layer ling), on
which all reflexes, corresponding to amplitude (5), are
located. Thus, this addendum describes the amplitude of
strong [5] reflexes of a zero layer line (the number of a
layer line or planecoincideswith the value of index h):
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where theindex "'S' means strong reflexes.
Let us consider amplitude (6) as:
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In the second column of Table 1 the conditions of
extremum of the sums, which are included in (12), are
given. The products of these sums will give combinations
of conditions of extremenesses, being the sysems of
equations for determination of the values of z* and g (the
third column of the Table 1, h, k - integers), at which the
maxima of every m-th addendum of amplitude (10) are
reached. This allows choosing the members of a series
which make the basic contribution to intensity of scattering.

Because of the symmetry of reciprocal space it is
enough to investigate distribution of intensity in one of its
halves, for example, with z* > 0. As in the majority of
practically important cases bp, > asy, from the third
column of the Table it follows that only reflexes with
h > 0 will be considered. The exception will be the diffuse
(k # 0) reflexes with h = 0, which will be split in pairs
withz* >0and z* < 0.

The index of a series g > 0 by definition, therefore
from the third column of Table 1 it follows that the mul-
tiplier Aqm describes diffuse reflexes with k > 0, and
Bym—Wwithk< 0. The last multiplier givesalso strong (k=0)
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reflexes with h > 0, as the strong reflexes with h = 0 are
described by amplitude (9). In fourth column of the Table
the maximal values of multipliers are given.
Pseudoorthogonal reflexes, as well as in case of
circular nanotube [5], are formed by the main maxima of
Bessel functions, which are included in expression for
strong reflexes. Let us consider positions of pseudoortho-
gonal reflexes of the layer lines with h > 0. From (2) and
definition of radius of a chiral layer (1) it follows that:

W, =4/ (as)? + (bpr)* =2pr

Substituting this in Zy, from the Table 1 at k = 0 and
taking into account expression for py, from (2) we obtain:

« _h
Zn = 3 cose., (13)
On the other hand, the main maxima of Bessd
functions are near to points appropriating to equality of
their argument to the index. Then from (10) and the third
line of the third column of Tablel at k= 0:
2pRr , =hs,, P R,?]zhsinecm (14)
a
where x; was neglected and expression (2) for the chiral
index s, was taken into account. From comparison of
expressions (13) and (14) it follows that the maxima of m-
th addendums of amplitude (10), corresponding to
pseudoorthogonal reflex, displace along arch of a circle of
radius h/a with the centre in the origin of reciprocal space
when the chira angle changes.

Table1
Conditions of a maximum of multipliers which areincluded in function Sy
Multiplier Conditions of a maximum Value of variables r}ﬁtﬁl ioér
(2pz* by - Abyn)/2=hp | . hb®p,, +ka’s,
m =—™Mm ~ M g= - h NpPm
| @ram )2z | T abwy, 0Pt | W
20z* b, +aby)/2=hp | . hb?p.. +ka?
| (P Dot )I2200 | WPt o s |,
(2pz* @y - Gayy,)/2=kp abw,,,

3. Diffraction by a Singlewall
Chiral Nanotube

In this case in the sum over m in expressions (9)
and (10) there remains the only addendum corresponding
tom =0, and in expressions (1), (2) and (4) it is necessary
to put ¢,, = 0, Az, = 0. Then, according to (9), the intensity

of the singlewall chiral nanotube zero layer line strong

reflexes will look like:

.2
u

éo
1s(R)= NP3 ed fjao(aoRroJ-)g
j
From Table 1 it follows that h-th layer lines of
strong and diffuse reflexes of the singlewall chira
nanotube will have coordinates
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zﬁszbﬁzhcosec,and
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correspondingly. Function (11) and amplitude (10)
become:
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and the weak overlapping of Bessel functionsis taken into
account too. The corresponding intensity
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2
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has no angular dependence.

It is possible to estimate from (15) and (17)
positions of the main maxima of diffuse reflexes equating
argument of the Bessdl function to its index and omitting
addendum x;:

Intensity, arb. units
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) . 2 2
hk th » —kpo hSO f th = —hp0b * ksoa f
W0 abw, (18)
2 2
hk: R » W0 Sy Z = Mgb” - kspa”
Wo abw

where theindex k is taken in absol ute value.

From (18) it is seen that the diffuse reflex with
k > 0 has place above the layer plane z* = (Wa)coss. and is
closer to apoint R = 0, and the reflex with k < 0 is lower
and farther. The module of a reciprocal space vector of the

diffuse reflex main maximum R, =R + 272 =

(ka)? + (hb)?

diffuse reflexes occurs along the arch of a circle with
centre at the origin of reciprocal space when the chiral
indexes change. From (18) it also follows that the linear
and angular distances between the main maxima of
diffuse reflexes with opposite sign of index k can be
written down as:

. It means that the splitting of

BDrk _ 2%, J(ka)® +(hb]" | D _ 2as,
> Jorf +lsf T R Jlomf s )

When 5 = 1, a = 053 nm and bpy = 25 nm
(approanately corresponds to chrysotile) this gives
&k < 2. 5% which is in good agreement with the
experlmental results[6].

The choice of g from the expression (16) allows
obtaining the profiles of intensity of any reflexes of the
singlewall chiral nanotube from (17). The strong reflexes
are presented only by reflexes hO (Fig. 1).

The examples of profiles of diffuse reflexes with
h = 1 and various values of index k and second chiral
index spare shown in Fig. 2. The profilesin Figs. 1 and 2
are combined on one diagram conditionally, as, according
to (15), they have different coordinates z*.

R, inv. nm

Fig. 1. Reflexes 20 of the chrysotilesinglewall chiral nanotubes with chiral indexes (27,1) (solid)
and (27,3) (dotted)
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4. Diffraction by a Multiwall Chiral
Nanotube

The positions of the maxima of addendums of
scattering amplitude by the multiwall chira nanotube,
according to the third column of the Table 1, depend on a
layer number m. Therefore for modeling diffraction it is
necessary to calculate the distribution of intensity in some
area of change of values R and z*, covering the whole area
of existence of maxima of scattering amplitude
addendums. For this purpose it is necessary to present
amplitudes of scattering in another form.

The purpose of the previous analysis was finding
the conditions of simultaneous extremeness of the sums
over n and v, which gave values of coordinates of maxima
Z* and conditions for the members of series over g. Now
the purpose is finding the maxima of the pointed pair
products at any values z*, close to the values given in the
third column of Table 1.

Calculation of the sums, included in multipliers
(12), gives:

Aqm = Cngém! qu = C[qm ng (19)
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R, inv. nm
Fig. 2. Pairs of diffusereflexes 1k - 1k from chrysotile singlewall chiral nanotubes
with chiral indexes (27,1) (solid) and (27,3) (dotted)
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At arbitrary values of variable z* the values (20)
will be maximal at values g, given in the Table 2, wherein
the fourth column the maximal values of multipliers are
also given. It means that as a first approximation for every
m-th addendum it is possible to choose two members of a
series, which give the greatest contribution to amplitude
of areflex. Thus, each of the products (19) will enter into
amplitude of areflex two times: first time will be maximal
the first multiplier of product, second time — the second.

It is obvious that it is necessary to round off the
values of q from Table 2 during the calculations.
Parameter t, arisng from a condition of a maximum of
expressions (20), is integer too. The comparison of the
data of Tables 1 and 2 at z*, corresponding to the third
column of Table 1, gives conditions for this parameter,
that were given in third column of Table 2.

As it was already noted, the factor Ay, in (11)
corresponds to diffuse reflexes with k> 0, and factor By,

—to diffuse reflexes with k < 0. Then, according to (19), in
the case of diffuse reflexes with k > 0 with arbitrary
coordinate z* from multiwall chiral nanotube the
amplitude (10) may be presented as:

AR "7 )= 8 oy ()i oDy

m, j

%ap[i%(gmj - *)]Joa (2pRr m )+

+i% C(LmN exp[i s (g]mj -] *)]Jq4 (ZpRr mj )} (21)
and inthe casek < 0:
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xexp[— iqz(glmj - ] *)]‘]qz (2pRr mj )+

+iqSCdsmN exp[— iqg(g]mj -] *)]Jq3 (ZpRr mj )} (22)

where theindex "D" means diffuse reflexes.

In Fig. 3 the examples of calculated distributions of
intensity corresponding to amplitude (21) of diffuse reflex

130 from multiwall monaoclinic (Az, = mAz Az = -a/13)

nanotubes with various second chiral indexes are shown
in coordinates { R, ¢*}. The distributions have kg-multiple
symmetry, the availahility of the reciprocal lattice s centre
of symmetry in a case kg - odd is provided by the similar
distribution of a reflex 130 (at opposite value of z*),
turned on 180° [7].

Table 2
Conditions of extremeness of expressions (20)
Multiplier Values of g Conditionsfor t Va“.‘e.Of
multiplier
Y as,w W
i =-—(z*a,, -t)=- m 7% +k—m = n
Co | 07, (om0 7 T R G, | P
- 2p * Wm * Wi
Con qZ:a—(z aZm-t):aZmTz —kpr t=k Prn
im m m
+ — 2p * — bmem * Wé _
qu qS_ b—lm(z me t)— asm Z +hazsm t—h N
2
I T e A I
im
a) b)

Fig. 3. Digtributions of intensity of areflex 130 from chrysotile multiwall monoclinic nanotubes
inaplane{R, ¢*} with chira indexes: (27,1) () and (27,4) (b)
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Fig. 4. A reflex 130 from chrysotil€'s chiral monoclinic nanotube (27,4) with various angles ¢*



The Structure and Diffraction by Chiral Nanotubes of Arbitrary Composition

173

2.5
130
oog’@?'@@a@ 3 i -5Q%%g-
2,
Z*!
inv. nm
&0 L6600
1.5+
1 | | R, inv. im | ! I
3 3.5 4 45 5 5.5

Fig. 5. A doublet 130-130 from chrysatile chiral monodlinic nanotube (27,4)
inaplane{R, z*} at¢* =5°

The examples of calculation of diffraction profiles
lengthways the layer lines, marked in Fig. 3b by direct
lines, are shown in Fig. 4 by the lines of the same type.
The distinctions in profiles mean that the experimental
patterns of electron microdiffraction by separate chiral
nanotube will depend essentidly on their azimuthal
orientation on an electron beam. Hence, in spite of the fact
that the modern experimental techniques allow to register
patterns, showed in Fig. 3 only for z* = 0 it is necessary to
simulate the distributions of all reflexes in a plane
{R, ¢*} for correct interpretation of experimental data.

Fig. 5 shows the example of calculation of intensity
distribution for a chrysotile chiral monoclinic nanctube’ s
doublet 130-130 in a plane {R, z*}, that corresponds to a
usual experimental dectron microdiffraction pattern (the
intensity levels from O up to 10 % through 1 % are shown
only). On distribution the main maxima of diffuse reflexes
and oscillations of intensity in the area of their tails, which
are similar to oscillations in Fig. 4 and having same
origin, are clearly visible. Thus, though every addendum
of diffraction amplitude, appropriate to a layer of nano-

tube, has its own value of a extremum point z,, the

summation of these addendums results in forming diffuse
reflex with quite certain coordinate z*.

Determination of a chiral angle by the main
maxima gives value ¢. = 5.4°, while its calculation at
Po = 27, S = 4 and parameters of a chrysotile lattice gives
e~ 4.9°. Thereason is, apparently, the variations of chiral
angles of separate layers owing to a rounding off.

The strong reflexes result from general expression
(20) under condition of k = 0. Anindex of a seriesq> 1
by definition, that in application to the Table 2 means, that
its second line corresponds to z* < 0. Being limited by the
half-space with z* > 0 we shall take into account only

values Cyp, and Dy, that is value By, and addendums,

connected with it in (11). The taken into account members
of aseriesare

i bp,w, W,

as,, a’s,,
with a rounding off. It is necessary to remember that here
h > 1, as the strong reflexes of a zero layer plane are
aready given by expression (9). It is obvious that the
required amplitude is described by expression (22), where
parameter g, should be taken from (23):

s * [o] .
AL (R,j .z )=a Fon (z*){lC|2 PmDg,m*

m, j

>(9xp[- iqZ(glrr]' -] *)]qu (2pRr mi)"r

m 7% +h (23)

+i%C; N exp- ia(ou - § *J0g, @R i} (28
Cadlculations of intensity (Fig. 6) appropriate to
amplitude (24) in a plane {R, ¢*} show that the strong
reflexes with h > 0 from chiral nanotubes, as againg the
circular ones, have spiral character. In this case the step of
aspiral inreciproca space is much less than in the case of
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diffuse reflexes (Fig. 3), but strongly depends on the
second chiral index s. Hence, in case of strong reflexes
with h > 0 the experimenta patterns of electron
microdiffraction by separate chiral nanotube will depend
on itsazimuthal orientation about its own axis (Fig. 7).

In Fig. 8 the examples of calculation of second
layer line strong reflexes profiles from chrysotile
monoclinic nanotubes with various chiral indexes are
shown. The appreciable displacement of reflexes with
| # 0 to the beginning of a layer line with increasing of
the second chiral index isobserved. Thus thereflex 200,

Oleg Figovsky et al.

overlapped with a pseudoorthogonal reflex 20, is
displaced in an opposite direction, and itsintensity quickly
decreases. This effect proves to be true by calculations of
intensity distribution in a plane {R, z} in the area of a
second layer line (Fig. 9).

During research of chrysotile nanotube's oriented
polycrystalline preparations by the method of X-ray
scanning of reciprocal space [8] there were samples whose
reflex 201 had a considerable low-angle tail [7]. It can be
explained by spiral character of strong reflexes from chiral
nanotubes and their dependence on the chiral indexes.

b)

Fig. 6. Digtributions of intensity of strong reflexeswith h =2 from chrysotile chiral monoclinic nanotubesina
plane{R, ¢*} with chiral indexes: (27,1) (a) and (27,3) (b)
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Fig. 7. Profiles of strong reflexes of asecond layer line from chrysotile' s chiral nanotube (27,1) at various ¢*
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—(27,)

----(27.2)
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Fig. 8. Profiles of second layer line strong reflexes from monoclinic chrysotile nanotube
with various chiral indexes a ¢* =0
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Fig. 9. Distribution of intensity, diffracted by the chrysotil€'s chiral monoclinic nanotubes in the area of second layer line
onaplane{R, z*} a ¢* = 0 (the chiral indexes of nanotubes on the right are given)

5. Diffraction by a Multiwall
Azimuthal Disordered Chiral

Nanotube (Whittaker's Model)
In the model of multiwall cylindrical nanotube,
proposed by Whittaker, initial angular phases &, included

in y1y, have random character [9]. Then in intensity of

diffuse reflexes with k > O, corresponding to amplitude
(21),

hko
Ip

(R,j *’Z*)z aa {ijlx

mm'j,j'

’,‘eXp[iOa(glmj - *)]+ij4exp[iq4(gm -] *)]}x
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} Gz = Fr (2% % PrDgmdg, (opRr mi )
§Gnia = Frg (22N 9NCE 13, (20Rr )
will remain only addendums, appropriate m' = m:

where (25)
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Substituting (4) and (25), we obtain finally:

d1mj =glmj “€nm =2p
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18R 2)=& 0F|D4n
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2
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2
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é f, exp(2piz*92m- )exp(i 0y )‘Jq4 (2pRr m
j

Incase k <0, that isin case of intensity appropriate

amplitude (22), operating similarly, we obtain:

IBIZO(R, Z*)Zé pr%]|Da'2m 2
m

éfj"
j

2
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* (28)

+N23 [Coum
m

’ é fj eXP(ZPiZ*gsz )exp(' iy Mg (0RY o
]

The same expression a k = 0, that is a g and gs; from
(23), describes the strong reflexes from multiwall chiral
nanotube of the Whittaker’s model too. This meansthat in
this case in the sum over layers (over m) which generates
series of drong reflexes only positive values are
summarized and arising of the sharp and separate maxima
of intensity is impossible. Hence, in the Whittaker's
model the strong reflexes take place only on a zero layer
line according to (9). On the other layer lines the "strong”
analogue of expression (26) gives only the background
component with a pseudoorthogonal maximum. As
follows from the carried out analysis, in the Whittaker’s
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case the angular dependence of multiwall chiral
nanotube’ sreflexesis aso absent.

In Fig. 10 the examples of calculated profiles of
the strong reflexes of chrysotile nanotube' s second layer
line in the Whittaker’s case with various second chiral
indexes ) are given. The profiles represent continuous
distribution of intensity beginning from reflex 200. The
intensity oscillations in the areas 0.6-0.7 nm™* and 1.3-1.4
nm' are not associated with any strong reflex of
chrysatile. It is necessary to notice that the authors did not
face smilar diffraction patterns either during researches or
the scientific literature. Nevertheless, the presence of an
appreciable level of background in the area of layer lines
of oriented polycrystalline chrysotile samples allows

assuming a possibility of existence of such nanctubes.

(27,1) ----(27,2) — (27,4)
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Fig. 10. Profiles of strong reflexes of chrysotile nanotube’ s second layer line of Whittaker’s model
with various chiral indexes

6. Conclusions

The carried out analysis and the modeling
calculations allow making a set of conclusions. Fird,
diffraction by chiral nanotubes, in comparison with the
circular ones [5], represents a more complex phenomenon
and gives more difficult diffraction patterns for
interpretation. Dependence of the displacement of
coordinates of layer lines and reflexes of chiral nanotube’ s
microdiffraction pattern on chiral indexes makes the
determination of lattice parameters rather complicated. It
is obvious that the correct determinations are possible
only on the bass of analysis of distributions of reflexes
intensitiesin aplane {R, ¢*} with taking into account the
azimuthal orientation of nanotube about its own axis.

In the model of inheritance of layers orientation the
dependence of a diffraction pattern on the chira indexes
of layers alows determining the chiral indexes of
multiwall nanotube (po, So) and further — the whole set of
chiral indexes of nanotube's layers. The authors do not
consider a model of inheritance as the only, but assume

that this model is prevailing. Also the model in which in
(2) the chira indexes of alayer (pm,Sy) are determined not
as the nearest integers, but by rounding off in a direction
of increaseis possible. It will mean that the radiuses of the
next layers can not differ by the value smaller than d. It is
obvious that in this case the dependences of positions and
forms of multiwall nanotube's reflexes on chiral indexes,
specified inthe article, will amplify.

The essentia point of the proposed as the first
approach mathematical apparatus is taking into account
only those members of expanding of diffraction amplitude
into a series of cylindrical waves (series over g) which
make the maximum contribution. This does not cause
doubts when the selection rule arises from the lattice sum
aong a nanotube's axis (over n), as the number of
addendums in this sum is rather great and is well
approximated by J-function. However the number of
addendums in the azimuthal lattice sum (over v) is not so
great, therefore an appreciable contribution can be made
not only by the chosen member of a series but also by
members with g-1 and g+1.
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It can result in the occurrence of a set of diffraction
effects more fine than the considered above. For example,
there can be some angular dependence (on ¢*) intensity of
al reflexes of a singlewall chiral nanotube, except for
reflexes 00l. Also there can be some deviations of the
form of the given calculated diffraction patterns. The
analysis of these effects will be continued further.

The proposed mathematical apparatus simulation
of diffraction by chiral nanotubes is more genera than the
earlier published one [5] for the case of circular nanotubes
and contains it as a specia case at s, = 0. Redlly, in this
case values (2) transform into

2pr
w, =bp,, p,=—",
m pm pm b
Mg =t X, almzz—p,
P
blm:aZm:o’ b2m_a’
_2pyj+ _
i = p €nr Gy =7,

Foi (z¥)=¢ i exp(2piz* z; )exp(Zpiz* Dzm) (27)
Then the sums over v in amplitude (5) become
trivial and there will be only one condition (7), which
gives. z* = h/a — the equations of layer planes, on which
the strong reflexes of circular nanotube are located. The
substitution of the obtained values in (5) gives the
corresponding expression from [5] for amplitude of
circular nanotube' s strong reflexes.

The diffuse reflexes of chiral nanotube, as against
the circular one, are split in pairs, whose intensities are
given by the expressions (21) and (22). Hence, the sum of
these expressions corresponds to the case of circular
nanotube. If we use values (27) the conditions of
maximum of expressions (20) give: g = kpyand z* =hla—
the equations of layer planes, on which all, including
the diffuse ones, reflexes of circular nanotube are |ocated.

and
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Then both in (21) and (22) there remains only one
addendum, corresponding to this value g, and their sum
will give expression for amplitude of diffuse reflexesfrom
circular nanotube, given in [5]. The expression (24)
becomes unacceptable, as the condition of strong reflexes
(k = 0) gives: g = 0, while in amplitude (6), from which
(24) is deduced, g > 1 by definition.

In the following article of this series the
guantitative theory of diffraction by spiral nanotubes of
arbitrary chemical composition will be proposed.
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MOJIEJTIOBAHHSI JUDPAKIIT
XIPAJTbBHUMH HAHOTPYBKAMH
JTOBLILHOTO CKJIATLY

Anomauin. 3anpononosano Kinekicy meopiio ougparyii
3a 0ONOMO20I0 OKpeMux XipaibHux HAHOMpPYOOK O0BLIbHO2O Xi-
MiuHo20 cknady. JocnioxceHo enius ncegooopmo2oHaibHOCHE ma
3anedxicHicms ougpaxyii 6i0 azumymanvhoi enopsiokoganocmi. Ha-
6€0€HO PO3PAXYHKOBI Oughpakmozpamu O 6UNAOKY e1eKmpPOHHOT
MIKpOOUpParyii okpemumu Xpuzomunosumu HAaHOmMpyoKamu.

Knwuosi cnosa. nanompyoxu, xipanvui HaHoOmpyOKu, iH-
OeKcu XipanvHOCmi.





