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BukxoHaHa 4uciI0Ba mepeBipka TOro, 10 HEBU3HAYEHICTIO Yy KiHIEBOMY MOJIOKeHHI
()poHTY HaArHiTAHH$SI, 3yMOBJICHOI0 HEBHU3HAYeHICTI0O y BHOOpPI MeTOAy iHTepPNOJIIOBAHHSA
(poHTY HATHITAHHA HA KOKHOMY YacOBOMY IIapi, MOKHA 3HEXTYBATH, OLIHIOIOYH MOXUOKY
MeTOAy PO3PaxyHKY LbOT0 MOJ0KeHHS Y Mo/iesli HPOMHUCJIOBOI ieMeHTanii IpyHTy. Pe3ynbTaTu
YHCJ0BUX €KCNEePUMEHTIB BKa3ylOTh HA Te, 110 KPHUBOJdiHiliHA ciTka, HAa fAKiii BUKOHYETHCA
PO3paxyHOK, Ma€ XaO0TH4HI pPO3MillleHHsI CBOIX BY3JIiB Ha JesIKMX YaCOBUX LIapax i mio ume He
NPU3BOIMTH 10 iICTOTHOTO CIOTBOPEHHS KiHIEBOI0 MOJI0KeHHs! GPOHTY HATHITAHHS.

KurouoBi cjioBa: (ppOHT HArHiTaAHHS, iHTEPNOJIIOBAHHSA, IeMEHTAIliA IPYHTY.

It is checked numerically that the uncertainty in the final injection front position due to
uncertainty in the choice of the method of the injection front interpolation on every time layer
can be neglected in the estimation of the truncation error of the calculation of this position in
the framework of thereal scale grouting model. Results of numerical experimentsindicate that
the curvilinear grid this calculation is performed on has chactic dispositions of its nodes in
space on some time layers and that it does not give rise to significant final injection front
position distortion.

Key words: injection front, inter polation, scale grouting model.

Introduction

Strengthening a soft ground must precede the tunnel construction in it to have enough time for
installing needed support. Permeation grouting is a technique widely used for this soil reinforcement [1]. It
consists in injecting into a soil a cement grout at a constant pressure or a constant pumping rate. Grouting
is rather costly and time consuming. Its regime is determined by cement concentration distribution
evolution [2]. Therefore, a calculation of this evolution using mathematical modeling is important.

There are a lot of papers, for instance [2—4], in which a standard laboratory test is modeled to shed
light on various issues of the mathematical description of cement grout propagation in a porous medium. In
this test a cement grout is injected at a constant pumping rate in the base of a vertical tube opened at the
top and filled with water saturated sand. The problem set ups [5-7] correspond to in situ grouting. The
continuum grouting models [2—7] can be referred to the class of problems about pollution propagation, and
the formulations of these models take advantage of different sets of assumptions that simplify the system
containing the porous medium and the infiltrate. Specifically, in [3, 4, 6, 7] the ground skeleton is regarded
as absolutely rigid while in [2, 5] it is assumed to be deformable. In [7] the hydromechanical dispersion
and diffusion are neglected. In [3, 6] it is assumed that cement particles are large enough to be trapped by
small pore throats; conversely in [2, 5, 7] it is assumed and that they are much smaller than pore throats
and that they deposit over pore throats and pore bodies. Demchuk [4] assumes that cement particles can not
be trapped by pore throats and that they do not deposit over pore throats and pore bodies. Demchuk [8, 9]
neglects peculiarities of grout propagation in a porous medium and describes the real scale grouting by the
model that belongs to the class of problems with free moving boundaries. In [8, 10] the continuum real
scale grouting models of this type are presented. However, Demchuk [11] shows that the continuum
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approach was not properly adopted in them and modifies numerical modeling [8], [10] to guarantee the
appropriateness of applying this approach. A comparison of model calculations with measurements verifies
the set of assumptions used in the model formulation. The amount of information it provides depends on
values of uncertainties in the compared quantities [4]. In the models [2-7] the sought functions contain
high gradient regions which positions change as time goes and are not known in advance. Therefore, to
estimate truncation errors of calculations in the frameworks of these models one is supposed to conduct the
analysis of numerical solutions [4]. The main drawback of the models [2, 3, 5-7] is that calculations in
their frameworks require significant computer resources. Demchuk [4] explains this by the fact that each
one of these models is a system of differential equations in partial derivatives with initial and boundary
conditions that do not conform to each other and presents the standard laboratory test model that does not
have this drawback. Demchuk and Saiyouri [12] describe the method of a realization of the uncertainty
uniformity principle in calculations in the framework of the model [4]. It should be noted that the
curvilinear grid Demchuk [11] performs calculations on can have chaotic disposition of its nodes in space
on some time layers [9]. However, Demchuk [11] checks numerically that this fact does not give rise to
inconsistencies between results of these calculations. Hence, the finite difference schemes according to
which Demchuk [11] performs calculations are conditionally stable. Therefore, round off errors of these
calculations are negligible. Demchuk [11] estimates the truncation errors of the final injection front
position calculations using the assumption that contributions of uncertainties in these positions due to
uncertainties in the choices of methods of injection front interpolations on every time layer to these errors
are negligible. The goal of this work is to check this assumption numerically.

Numerical modeling of areal scale cement grout injection in adry soil
In this work we consider four problem set ups [11]. In the cases of set ups # 1 and # 3, we assume
that a long trench is made under an injector foundation. Its width is 2-ry, and its depth is hy. The

astringent infiltrate is injected in this trench at the constant pressure p, (see Figure 1 (a)). In set ups # 2
and # 4 we have a round bore-hole instead of the trench and assume that other conditions are the same. Its
radius is Iy, and its depth is hg . In the first two set ups the ground skeleton is regarded as absolutely rigid,

while in the last two ones it is assumed to be deformable. In each case, the injection front (the curve I, on

Figure 1 (a)) is a free surface and its evolution in time and space needs to be found.
Demchuk [11] divides continuum real scale grouting models that belong to the class of problems
with free moving boundaries into two types. In the models of the first type at each moment of time t

Demchuk [11] performs numerical modeling in the curvilinear quadrangle [13] G(t) bounded on Figure 1

(@) by T; where i =1,4. In this modeling on every time layer the domain G is covered with the scanty

curvilinear grid and the truncation error of the numerical calculation of the final injection front position is
estimated on the basis of the analysis of the numerical solutions. In this analysis the measure of a difference

between two splines f;(y) and f,(y) that interpolate final injection front positions is estimated as

e= max [, (y)~F, () \y* + (6 (y) ®

yel0, L

max

InEq. (1) L= max{y{“ax, yzmax} where y7

and y53'™ are the smallest positive ordinates that satisfy

fl(yf‘ax)= 0 and fz(yrznax )= 0. In the models of this type that correspond to set ups # 3 and # 4 the

truncation error is approximately equal to the uncertainty in the final injection front position due to
finiteness of increments of the above mentioned curvilinear grid. Each model of the second type
corresponds either to set up # 3 or to set up # 4. Since information about injection front motion spreads
with the aid of sound waves quickly faded due to the friction between the soil and the infiltrate, in models

of this type Demchuk [8] assumes that the curve f3 in the domain G and the moment of time t starting
from which piezometric head in points of this curve does not depend upon time can be chosen. In models
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of this type numerical modeling is performed in G(t) if t<ty.However, if t>tg, itis performed in the
curvilinear quadrangle (~3(t) bounded on Figure 1 (a) by I:i where i =1,3 and the curve I'4. In each one

of these models, the curve 1:3 divides the respective domain G(to) approximately in half; and Demchuk

[11] chooses the moment of time t; to make the uncertainty in the final injection front position due to

finiteness of increments of the curvilinear grid and the measure of the difference between the final
injection front position and the one calculated in the framework of the respective model of the first type
calculated according to Eq. (1) to be as small as possible. Since Demchuk [11] assumes that contributions
of uncertainties in final free surface positions due to uncertainties in the choices of methods of injection
front interpolations on every time layer to the truncation errors are negligible, the fact that the moment of

time ty can be chosen as described in each case Demchuk [11] considers verifies this assumption. The

shapes of G(t) and G(t) are complicated. Therefore, Demchuk [11] seeks the numerical solutions

employing the finite difference method with a usage of numerical conformal mapping. In this method on
every time layer the algorithm of numerical finding of the conformal change of variables

x=x(En 1) y=y(Ent) )
that maps the curvilinear quadrangle in which the numerical modeling is performed on the parametric
rectangle R(t) depicted on Figure 1 (b) is used [9]. In this algorithm it is assumed that on every time layer

R(t) is covered with a uniform grid. The transformation defined by Egs. (2) maps the nodes of this grid

into the nodes of the curvilinear grid. The above mentioned finding consists in the determination of
positions of these curvilinear grid nodes in space. Demchuk [9] finds the Cartesian coordinates of these
positions solving the algebraic equation system that in the general case has the infinite number of solutions.
Therefore, on some time layers this algorithm can generate the curvilinear grids with chaotic node
dispositions. Demchuk [11] performs calculations on scanty grids. Therefore, approximation errors of the final
injection front position calculations in the frameworks of the models [11] are significant. For each one of these
models Demchuk [11] checks numerically the following assumptions. On every time layer within the

a b
Fig. 1 (a): The curvilinear quadrangles G(t) and G(t); (b) The parametric rectangle R(t)

limits of the approximation error the injection front can be treated as a plot of the single-valued function
X = f(y) which all derivatives up to the second order are continuous (hypothesis # 1). All angles at the

apices of the curvilinear quadrangle in which the numerical modeling is performed are right within the
limits of the approximation error (hypothesis # 2). The chaos in space dispositions of nodes of this grid on some
time layers does not cause a significant distortion of the final injection front position (hypothesis # 3).

Free surfaceinterpolation
Let us assume that we know the values of the interpolated function f(yp) in the nodal points 'y,

where p = o,n lying on the segment [a, b] on which the injection front is interpolated. In what follows
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[A], [B], |A], and [B] denote such the vectors [A]=(yg,Y1.-.- ¥n), [B]=(F(yo)f(ys)....F(y,)),
Al= 0,91 Fn) where  Fi=yo+yn-vnis i=0n, [Bl=((ya)f(yna)-rf(yo))-
According to hypothesis #2 f(a)= 0, f'(b)=—N where N isasufficiently large positive number.

Remark 1. According to hypothesis # 2 the derivative of the function f(y) a y=0 equas zero
within the approximation error limits (see Figure 1 (a)). From the symmetry considerations we can
conclude that the values of the function f(y) in the vicinity of the point y = 0 are distorted due to gravity.

If k and m are non-negative integers such that 0 <k < n—m, then we can introduce such the

notations F™ )= (F (i f e )eor f Yieam). Y™ = (i, Yiests oo Yiem)
F™ = (6 (o) F W oo F i), ¥ = G Fieotron Ficwm) where
Vi =Yo+Yn—Yni, ad i=0,n. In what follows Pm(y, [Flgm)HYlgm)J) denotes the interpolation

polynomial [14] constructed using the values of the interpolation function f(y, ), f(Yis1)s s f(Yiem)
inthenodes Yy, Yi41: ---» Ykem - Noting that Demchuk [11] calculates the unit vector normal to the free

surface at every nodal point on every time layer and that lY(gn) J= [A] in what follows we assume that

O<s<n-1. If interpolation nodes ae aranged in the order of increasing
(a=yp<y;<...<y,=b), then we determine the piecewise polynomial local spline

o(y,s. j,[A][B]) where j is an integer and 0< j<s which all derivatives up to the order s are
continuous on the segment [a, b] asfollows

Rl R [v Jwheny <y <y,

- RS (S*l) when
o(y,s j,[A][B]) = Q25+11( [ H D ye [y, yk+1]
wherek = |, J+1 n+j—S 1,

(y’ [F(S) l [Yr(ls—)s])When yn+j—s SYSYj

3

where Qg1 i (y, l (S+1)l lY (s+1) isapolynomial of adegree not greater than 2-s+1 determined by the

following equations

mQualy FEEPINER) o ) “
dy K ‘ Y=Yy dy ) Y=Yk
de25+l,j(y’ F(S+1) Y(S+1) D‘ dm ( ,[Fés)ﬁ_l Y|£S)J+1])‘ (5)
dym ‘ . dym ‘ ) ,
Y=Yk Y=Vin

where k = j,n+j—s—1, m=0;,s.

Theorem 1. There is one and only one polynomial of degree not greater than 2-s+1 that satisfies
Egs. (4) and (5).

Proof. Rabenkii [14] proves this theorem assuming that j = 0,5—1. The fact that j # S is not used
in that proof. Therefore, thistheorem also holdsif j=s
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Theorem 2. If f(y) is a polynomial of a degree not greater than S, then the function
o(y, s, j,[A] [B]) determined by Eq. (3) coincides with this polynomial.

Proof. If j>0 and yy<y< yj, then due to the uniqueness of the interpolation polynomial
oy, s, j,[A] [B]) = P (y, [Fés)l [Yés)Dz f(y). If j<s and y,,j s <y<y,, then due to the uniqueness
of the interpolation polynomial ¢(y,s, j,[A] [B])=Ps(y, [Frﬁs_)sJ,[Yrgs_)SJ)=f(y). Let us prove that
o(y,s, j,[A] [B)=f(y) when y,<y<y,, where k=j j+1,...,n+j—s—1. Due to the
uniqueness of the interpolation polynomial P, (y, lF(s) l lY(S) =P ( lFlgs)J +1l [Y(S)J +1J) . If we
substitute f(y) for Qo +1’j(y, [Flgs_ﬁl)HYlgs_J}l) in Egs. (4) and (5), then these equations will hold.
Therefore, according to Theorem 1 Qg (y, [Flﬁsfjl)l [Ylgsfjl) = f(y). The theorem is proved.

Theorem 3. If the function (p(y,s, j,[A], [B]) is determined by Eq. (3), then its value in the
interpolation node Y, coincides with the value of the interpolated function in this node f(yp) where
p=0,n and 3°¢(y,s, j, [A] [B])/dy* is continuous on the segment [a, b].

Proof. Since 0<s<n-1, 0<j<s, the theorem will be proven if we prove it for such the values
ofj: j=0, 0<j<s,and j=s. Firstly, we consider the case j=0. In this case, according to Eq. (3) if

ye Vi, Y] where k=0,n—s—1, then ¢(y,s,0,[A] [B]):szlo(y, [FSH)J, lYlﬁsJ“l) : and if
Ve [ynss, Yol then ofy,s,0,[AL[B) =Psly, [F | [V ). herefore, o%(y.s,0, [A] [B)/ay*

continues on the segment [yn_s,yn]; and if y=y, where p=n-sn, then

(p(yp,s, 0,[A] [B])zf(yp). If k=0,n-s—1, then from Egs. (4), (5) it follows that
o(y,s,0,[A] [B]) =f(y, ) and that 9°¢(y,s,0, [A], [B])/ay® is continues on the segment [a, b]. In the
case 0< j<s, according to Eq. (3) if ye [yo,ij, then o(y,s, j,[A] [B])=P. (y, [F(S)HY(S)J)' if
ye [V, Vi) where k=jn+j—s—1, then oly,s, j, [A} [B]) = Que.;l, IF (S_+”HY(S+1)J) and if

Ve WYneso Vol then (v s, 5. [A] [B]) = Puly, [F: | [ &, ). Therefore, a%6(y.s. j,[A][B])/ay®
continuous  on [yo,yj)u(yn+j_s,ynj and if y=y, where p:O,J,n+j-s,n, then

(p(yp,s, i[A] [B]):f(yp). If kzm, then from Egs. (4), (5) it follows that ¢(y,,s, j,
[A][B])=f(y,) and that 3°¢(y,s, j, [A] [B])/dy® is continuous on the segment [a,b]. In the case
j=s, according to Eq. (3) if yelyq,Ys]. then o(y,s s [A][B])=P (y, [F(S)HY(S)J)' and if
ve Vi, Vsl where k=s,n—1, then ¢(y,s,s, [A][B]) = Q23+10(y, [F(S+1)HY(S+1)J) Therefore,
2%¢(y,s,s, [A] [B])/oy® is continues on [yq,ys] and if y=y, where p=0,, then
(p(yp,s,s, [A] [B])zf(yp). If k=s,n—1, then from Egs. (4), (5) it follows that (yy,s,s, [A]

B)=f(yy), oly,.ss [A][B)=Ff(y,), and that d¢(y.s,s,[A][B])/dy® is continues on the
segment [a, b]. The theorem is proved.
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In what follows unless otherwise specified we assumethat n > 5.

Definition 1. The spline (p(y,s, Js [A] [B]) is strongly loca in the vicinity of the point y =a (the
point y = b) if the following holds. If ye [yq,Ys] (Y€ [Ynos Yn]). then o(y,s, j,[A][B]) does not
depend on Y.,y and f(Ys.izg) (y; and f(y;)) wherei=0,n—s-1.

Remark 2. From Eq. (3) it followsthat if y e [yo,Y3] (Y€ [y3,Yn]), then for each integer j such
that 0< j<3 o(y,3,],[A][B]) dependsonly on y, y;,and f(y;) where i = 0,6— (i = n—3—j,n).
Thus, according to Definition 1 the spline (p(y, 3,3, [A], [B]) is strongly local in the vicinity of the point
y =a while the spline (p(y, 3,0, [A], [B]) is strongly local in the vicinity of the point y=Db. From
Definition 1 and Theorem 2 it follows that in the general case the splines ¢(y, 3, |, [A] [B]) where

|= 0_2 are not strongly local in the vicinity of the point y = a while the splines (p(y, 3], [A] [B]) where
j= 1,3 are not strongly local in the vicinity of the point y=Dhb.
It is convenient to introduce such the change of variables
y=a+b-y (6)
and such the numbering of the pointsin which the interpolation nodes are mapped by it

yp :a+b_yn—p1 ()

where p = 0,n. We determine the function f (¥) in the following way

f(y)=f(a+b-y). ®)

Theorem 4. The following equalities hold
o(y,1,1,[A}[B) = 0(5.2,0,[A] [B]. (©)
o(y,2,2,[A}[B)=0(72,0,[A| B], o(y.2.1[al[B) =05, 21 |A} [B]). (10)

Proof. If Yy, <y<yy,y where k=0,n-1, then according to Egs. (6) and (7)
Ynk-1 <Y< Yn k- FromEgs. (6) and (7) it followsthat y —y, = Y,_, =Y where p= 0,n. From Egs.
(7) and (8) it follows that F(yp)= f (yn_p) where p= 0,n. From Eq. (7) it follows that

Ve =Y =Ynr —Ynk Where k=0,n, r=0,n. Therefore, from the explicit form of an interpolation
polynomial [14] it follows that

PS( ’[FIES)SHL lYIES)s+1J) (a+ b-y, lFrgs)k 11 l\?r(i)k—lJ) (11)

where K =s—-1,n-1 and s=],_2.
From Egs. (4)—(7) it follows that

d™ Qs ), (y, F(S+1) Y(S+1) D‘ _ (y’ [F(S) (S) J)‘ (12)
" ‘y:vp T
d™Qpsu1, (y’ (S+1) (S+1) D‘ _ deS(y, lﬂlslfgi)is+1 F(>S)Js+1D‘ 13
o - = B (13
V=Ypu Y=¥pu
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where =12, m=0,s, j;=0, j,=01, p=js,N+js—1-5. Q28+ljs(37’ [Eé:?:)l [\7&_? is a
polynomial of degree not greater than 2-s+1 with respect to y and the change of variables determined
by Eq. (6) islinear. Therefore, Qpeyq j, (a+ b-vy, [ﬁé:?l [Véfi) is a polynomial of degree not greater
than 2-s+1 withrespect toy. If kK =n—p—1, then from Egs. (11)—(13) it follows that

a"Qa 7 F MR ) amrbeRS,, L)

ay™ ‘ oy ‘ (14)
Y=Yk Y=Yk
d" Q25+1] ( ’ anST(l)l—JJ er(lsTj)l—JsJ) dm ( ' lFIES)s+js+1J7 [Ylgi)s+js+1J) (15)
dy™ ‘ dy™ ‘
Y=Yk+ Y=Yk+

where ¥ is calculated according to Eq. (6), s=12, m=0,s, j; =0, j, =01, k=5—jq,n—1—j,.
From Egs. (4)—6), (14), (15), and Theorem 1 it follows that

Qaaei, VD IR = Qe s -y F2 UFER, ) o

where s:],_2, m= O_S j1=0, J, = 0_1 k=s-]js,n=1-js. FromEgs. (3), (11), and (16) it follows
that Egs. (9) and (10) hold. The theorem is proved.

If ye [yp_l, Yp J where p=ﬁ, then the non-local spline g(y, m, [A], [B]) where m=14 isa
cubic polynomial

gly, m[A}[B]) =a, +b™(y—yp 1 )+l ly—ypsf +dT(y-ypa ), (17)
where
m _ f(yp)_f (yp—l) 2 C?(Yp _yp—l) C&l(yp - yp—l)

ap =flyps) by = - - , (19

yp _yp—l 3 3
dm = Cg]+1 _Cg] pm :§(f (yn)_f(yn—l)) _Yn—Ynu cm _D_m (19)

P 3'(yp _yp—lj " 2 Yn—Yna 2 " 2
A = (f (yn)=f (Vn2))/ (Vn = Ynr)* - B yn ~Vaa) ~ S /Y~ Yna). (20)
In the second equation of Egs. (19) D, = dP, (y[ (m) y(m /dy‘ . In Egs. (18) and in the first

equation of Egs. (19) p = 1n. CB1 where p = 1,n that enter Eq. (17) satlsfy the following equation system

2h;ct" +hycd' =3-(f(y;)-f(yo))/h1 —3-Cpy (21)
fyiq)—flyi) fly;)—f(y,_
hi -Cim+2-(hi +hi+1)'cir?tl+hi+1‘cir:12 :{ (y|+i]) (Y|)_ (yl) - (yl 1)], (22)
i+1 i
hn—1. nm—1+(ghn—1+h_nj'cnm :E.f(yn)_f(yn—l)_f(yn—l)_f(yn—Z)_ Dm . (23
3 3 2 2 h, hp 4 2
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which solution can be found by the Thomas algorithm. In Eq. (22) i=1,n—-2 and in Eq. (21)
C,, =dP, (y, [Fém)l lYém) D/ dy‘ . In the reference [15] it is shown that
Y=Yo

ag(y. m.[A}[B])/oy|,_, =C. dg(y.m.[AL[B]/ay|,_, =D, (24)

g(yp, m, [A] [B])z f(yp) where p=0,n;if ye [a, b], then 82g(y, m, [A] [B])/ay2 is continuous.

Remark 3. On every time layer Demchuk [11] covers the parametric rectangle R(t) depicted on
Figure 1 (b) with a uniform grid. Substituting coordinates of nodes of this grid for & and 7 in Egs. (2), we
obtain the coordinates of curvilinear grid nodes. The ratio of sides a curvilinear grid cell is the conformal
mapping invariant (the parameter M(t) on Figure 1 (b)) [13], and the above mentioned number N is
rather large. Therefore, injection front interpolation nodes are situated in the vicinity of the point E
depicted on Figure 1 (a) more compactly than in the rest of the segment OE . Hence, the probability of a
chaotic disposition of nodes situated in the vicinity of the point E is higher than that of other interpolation
nodes. It results in possible distortion of the injection front stronger in the vicinity of the point E than in
other parts of the segment OE. For simplicity, in what follows we assume that this possible distortion is not
negligible only in the vicinity of the point E.

In what follows if y;,; <y; where 0<i<n-—1, then [y;,Yi.;]=0. We interpolate the free
surface on every time layer by functions determined in the following way. Under condition y =Yy, or
under conditions velyna Vol and Ve Vi, Vil where k=0,n-2

?(y,1,0,[A][B]) = Pl(y, lF(l) HY(l)J) otherwise if ye |y, Vi .| where Ky is the smallest

min

between integer numbers k such that 0<k<n-2 and ye[yu, Vil then
9(y.1,0.[A1B)=Qqolv. [F2 |[Y@ | otherwise  aly.1,0.[a1 [B)=Qqly. [F2 | [v{®)).
Under condition y =Yy, or under conditions ye [yn 1 yn] and y¢ [yk yk+1] where k=0,n—-2
aly. 2,1, [ALB) =P, ly, [F | [v2, ) otterwise if ye lyo,y] and ye lyy, Vil where

min

Kmin is the smallest between integer numbers Kk such that 1<k<n-2 and ye [yk,yk+1], then
oy, 2,1,[A][B]) = Qs 1(y, [FS)_ _11 lY(3) J) otherwise

oy 2.1, (AL BD =P, . [F? ] v 29
If y >y, orif for any integer k suchthat 0<k<n-3 ye [yy,Yeu]l and ye [y, ».y,4] orif for
any integer Kk such that 0<k<n-2 yely., Vel and yely,iyn), then

?(y,2,0,[A][B]) = P(y, lFrE)Zl lY(ZZJ) otherwise if y <y, and ye |y, ,ykmm+1J where Ko is

min

the smallest between the integer numbers Kk such that 0<k<n-3 and ye [yk,yk+1], then
9(y.2.0,[A1 [B) = Qs,oy. [FO | IY&® | othenwise aly, 2.0,[AL [B) = Qs lv. [ | V).

From Egs. (3), (9), (10) and these definitions of the functions @(y,1,0,[A][B]) and

(T)(y, 2, ], [A] [B]) where j= 0_1 it follows that if the interpolation nodes are arranged in the increasing
order, then

ala+b-y.1,0,[A|[B) = oly.1,1.[a] [B)), (26)
oly,1,0,[A] [B]) = oly.1,0,[A] [B]), (27)
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Al [B)=o(y.2.2. A} [B]), 28)
ola+b-y.2.1,[A}[B) = oly.2.1,[a] [B). (29)
oy, 2.1, (A [B) = oly. 2,1, [A][B]), a(y.2,0,[A}[B))=o(y,2,0,[A][B]), (30
Theorem 5. If interpolation nodes are distributed chaotically, then in the general case
oly. 2.1, [A} [B) % ola+b -y, 2,1, [A} [B).
Proof. To prove the theorem let us consider the following example. Let us assume that n =5,
a=0, b=2, h=04, yy=0, y;=(+1)-h, i=13, y,=h, ys =2, f(y)=(y-2)+e*—¢Y
where 0 <y < 2. According to Eq. (7) Yo =0, y; =2—h, §; =2—(6—i)-h where i =2,4, Jg =2

If y=3h/2, then according to Eq. (6) Y =2-3h/2. Since yy <y<y; and Y, <y <Yy, from Eqg.
(25) and an explicit form of an interpolation polynomial [14] it follows that

o(y, 2,1,[A}[B]) =P, (y, [ng)l [ng> ])z 4.19, (31)
o5 2.1 [Al B) =P, (7. [F2 | [V )~ 4.32, (32)

From Egs. (31) and (32) it follows that in the general case ¢(y, 2,1,[A],[B]) # (p(a+ b-y,2,1,|A l J [BD
The theorem is proved.

(a+b Y, 2,0,

Remark 4. Here we assume that the interpolation nodes are arranged in the order of increasing. From
Eq. (3) it follows that if ye [yq,Y,] (Y€ [Yn_o.Yn]), then for each integer j such that 0< j<2
o(y, 2, j,[A] [B]) depends only on vy, y;, and f(y;) where i=04—j (i =n-2-j n). Thus,
according to Definition 1 o(y, 2, 2, [A] [B]) is strongly local in the vicinity of the point y =a while
(p(y, 2,0, [A] [B]) is strongly local in the vicinity of the point y = b. From Definition 1 and Theorem 2 it
follows that in the general case (Y, 2, j, [A],[B]) where j=0,1 are not strongly local in the vicinity of the
point y = a while (p(y, 2, ], [A] [B]) where j= 1,2 are not strongly local in the vicinity of the point y =b.

Remark 5. Here we assume that the interpolation nodes are arranged in the order of increasing. From
Eq. (3) it follows that if ye [yo,y1] (Y€ [yn1,Yn]), then for each integer j such that 0<j<1
o(y,1, j,[A][B]) depends only on y, y;, and f(y;) where i=0,2—] (i =n-1-j, n). Thus,
according to Definition 1 (p(y,l,l, [A] [B]) is strongly local in the vicinity of the point y =a while
(p(y, 1,0, [A] [B]) is strongly local in the vicinity of the point y = b. From Definition 1 and Theorem 2 it
follows that in the general case ¢(y,1,1,[A],[B]) is not strongly local in the vicinity of the point y = b
while ¢(y, 1,0, [A] [B]) is not strongly local in the vicinity of the point y =a.

Remark 6. It follows from Egs. (4)—(6) and Theorem 1 that the splines q)(y, S, J, [A] [B]) where

s=1ln-1and j= 0,5 at any point of the interpolation segment depend on values of the interpolated

function in no more than s+ 2 nodes. As for the splines g(y, m, [A] [B]) where m :1,_4, from Eqgs.

(17)—(23) it follows that in the general case at any point of the interpolation segment these splines depend
on values of the interpolated function in all nodal points.

Assuming that a,, bm , and dm where p = 1,n and m =14 are calculated according to Egs.
(18)—(23), we can interpolate the free surface on every time layer by functions defined as follows.
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Under condition Yy >y, or under conditions ye[yn_l,yn] and ye[yk,yk+1] where

k=0n-2 gly,m[A}[B))=a, +bP(y-yaa)+cl(y-Yna)* +dT(y-yaa)® otherwise if
y<y, and ye [yE_l,yEJ where Kk is the smallest between such the integer numbers Kk that

1<k<n-1 and yel[y.q Yl then g(y,m,[A],[B])=aE+bE(y—yR_l)+cr~k"(y—yE_l)2+
+d(y-yg, S otherwise gly, m,[A][B)=a;, +b[(y—yo)+cl(y—yo) +dI" (y=yo)*. If

y >y, 1, then 3(y,3,2,[A][B]) = P3( , [Fﬁ):gl [Yr@?)J) otherwise if y >y, and y e [yE , yE+1J where
k is the smallest between such the integer numbers k that 2<k<n-2 and ye [yk, yk+1], then

oly. 3.2, [AL[B) = Q, ly. [F J Y2 ) otherwise ly, 3, 2, [A] [B) =Py ly, [F ) [Y& ).

From Egs. (3), (17), and the definitions of the functions ¢(y, 3,2, [A},[B]) and g(y, m,[A] [B])
given above where m = 1,4 it follows that if the interpolation nodes are arranged in the order of increasing
(a=yg <y;<...<Yy, =b), then the following equalities hold

oy, 3,2, [Al[B)=o(y,3,2,[A][B])) a(y.m [A}[B])=g(y.m [A}[B). (33)

Results of numerical experiments. We take the values of input parameters from [10], [11] for the

first two set ups and from [8], [11] for the last two ones. They correspond to real scale grouting. In what
follows analyzing numerical solutions we estimate the value of the measure of a difference between two
splines f,(y) and f,(y) that interpolate final injection front positions according to Eq. (1). Demchuk [11]
presents results of 10 calculations of final injection front positions. Calculations # 1 and # 2 are performed
in the frameworks of models of the first type and correspond to set ups # 1 and # 2 respectively.
Calculations # 3 and # 4 are performed in the frameworks of models of the first type and correspond to set
up # 3 as well as to respectively the cases of the most rigid deformable soil and the softest one.
Calculations # 5 and # 6 are performed in the frameworks of models of the first type and correspond to set
up # 4 as well as to respectively the cases of the most rigid deformable soil and the softest one. In their
turn, calculations # 7 and # 8 are performed in the framework of models of the second type and correspond
to set up # 3 and respectively the cases of the most rigid deformable soil and the softest one. Finally,
calculations # 9 and # 10 are performed in the frameworks of models of the second type and correspond to

set up # 4 and respectively the cases of the most rigid soil and the softest one. In Table 1 ¢g; is the

estimation of the truncation error of calculation # i where i =110 Demchuk [11] obtains neglecting the
contributions of the uncertainties in the final injection front position due to uncertainties in the choice of
the method of free surface interpolation on every time layer. Performing calculations Demchuk [11] uses
the function @(y, 2,1, [A] [B]) to interpolate the free surface on every time layer.
Table 1
M easur es of the difference between thefinal injection front position we obtain inter polating thefree
surfaceon every timelayer by different functionsand the respective ones Demchuk [11] obtains

' g, % 59 o4 5 o4 5;(0.7), % 8;(0.002), % £;(0.002), %
1 3.2 25.5 15.0 2.98 0.05 3.20
2 5.5 19.7 9.94 5.02 0.02 5.50
3 5.4 36.8 31.5 12.00 0.66 5.44
4 5.5 36.3 30.7 11.26 0.59 5.53
5 7.4 28.19 36.93 2.57 0.10 7.40
6 7.1 28.43 36.71 2.28 0.08 7.10
7 4.2 31.89 18.43 6.16 0.28 4.21
8 4.2 31.87 18.23 3.67 0.15 4.20
9 4.7 20.8 25.9 4.43 0.01 4.70
10 4.3 21.8 26.6 3.58 0.01 4.30
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Numerical verification of the assumption that we can neglect the uncertainty in the final injection
front position due to the uncertainty in the choice of the method of free surface interpolation on every time
layer, estimating the truncation error of calculation # i where i =110, is presented in section 2. To find

additional one in what follows we will conduct an analysis of numerical solutions having in mind that this
assumption is correct. If we do not arrive at any inconsistency, we will have the new numerical verification
of this assumption. The aim of this analysis is to find the function for the interpolation of the free surface

on every time layer as good as the one that coincides with @(y, 2,1, [A] [B]) when nodes are arranged in

the increasing order. As candidates we consider functions using which we can obtain final injection front
position in all ten cases we consider. Results of numerical calculations indicate that we can not obtain the
final injection front position in at least 5 out of ten calculations defined above interpolating the free surface

on every time layer by one of the following functions: (T)(y, 2,0, [A] [B]) (p(a+ b-vy,2,0, L&J [ED
o(y,3,2,[A] [B]), g(y, m,[A][B]) where m =24 and in calculations # 1 and # 2 interpolating the
injection front on every time layer by the function g(y, 1, [A] [B]) It can be explained by the following:

1. According to Remark 4 the spline o(y, 2,0, [A] [B]) is strongly local in the vicinity of the point E

and in the general case the spline o(y, 2,1, [A] [B]) is not strongly local in this vicinity.

Therefore, from Eqgs. (30) it follows that our failure to obtain the final injection front position in at
least 5 out of ten calculations defined above interpolating the free surface on every time layer by

?y, 2,0, [A] [B]) indicate that the possible distortions of the free surface mentioned in Remark 3

do occur. Hence, the curvilinear grids these calculations performed on do have chaotic dispositions
of their nodes on some time layers. It provides the possible explanation of our numerical result

regarding not considering the function @(y,2,0,[A],[B]) as the candidate to be the needed
function. In what follows we assume that the possible distortion of the free surface mentioned in
Remark 3 occurs in each calculation we perform.

2. According to Remark 1 the function which plot is the free surface is distorted in the vicinity of the
point O. The spline (p(y, 2,2, [A] [B]) is strongly local in this vicinity while in the general case
the spline ¢(y, 2,1, [A],[B]) is not (see Remark 4). It follows from Eq. (28) and the first equation
of Egs. (30) that the distortion of the function which plot is the free surface in the vicinity of the
point O is stronger when the injection front is interpolated by (p(a+b—y, 2,0, lAJ, [é than
when it is interpolated by @(y, 2,1, [A] [B]) This observation verifies the validity of our

numerical result regarding not considering the function (p(a +b-vy,2,0, L&J [ED as the candidate
to be the needed function.

3. According to Remark # 2 the spline (p(y, 3,2, [A] [B]) is not strongly local in the vicinities of the

points O and E. Therefore, it is unlikely that the distortions of the free surface in the vicinities of
the points O and E cause our failure to obtain the final injection front positions in some of above
mentioned 10 cases when we interpolate the free surface on every time layer by the function

®(y, 3,2,[A] [B]). It follows from Egs. (3)~(5) and Theorem 1 that the spline ¢(y,s, j, [A], [B])
where 0 <s<n-1 and 0<j<s is fully determined by interpolation polynomials of the order

S. The sensitivity of an interpolation polynomial to the errors in the values of the interpolated
function in the interpolation nodes increases with the increase in its degree. Riabenkii [14] states
that the interpolation polynomials of degree greater than 3 are really used in practice due to this
effect. Therefore, the first equation of Egs. (33), the first equation of Egs. (30), and the fact that the
sensitivities of the splines (p(y,3, J, [A] [B]) where jzﬁ to the errors in the values of the
interpolated function in interpolation nodes are likely to be higher than that of the spline
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o(y, 2,1,[A], [B]) suggest ignoring the consideration of not only the function @(y, 3,2, [A], [B])
but also any function that in the case of the interpolation node arrangement in the increasing order
coincides with one of splines q)(y, S, J, [A] [B]) where s>3 and j= ﬂ as candidates to be the
needed function.

4. From Remarks 1, 3, and 6, the second equation of Egs. (33), and the first equation of Egs. (30) it
follows that it is likely that the function @(y, 2,1, [A] [B]) better interpolates the injection front
on parts of the interpolation segment not situated in the vicinity of the point O or in the vicinity of

the point E than g(y, m, [A] [B]) where m = 1_4 do. This observation verifies the validity of our

numerical results regarding not considering the functions g(y, m,[A], [B]) where m =1,_4 as

candidates to be the needed function.
As mentioned above the function gj(y,l, [A] [B]) performs better interpolating the free surface on every
time layer than each one of the functions: (T)(y, 2,0, [A] [B]) (p(a+b Y,2,0, A l J,[B])
o(y,3,2,[A}[B]), d(y,m,[A][B]) where m=24. Since according to Riabenkii [14] the spline
o(y, 2,1,[A},[B]) is the most interesting for practical applications, there is a temptation to consider the
function o -g(y,1, [A] [B])+(@-a)-d(y,2,1,[A] [B]) where 0< o<1 as the candidate to be the
needed function. If we perform calculation # i of the final injection front positions, interpolating the free
surface on every time layer by the functions @(y,1,0,[A][B]), (p(a+ b-y,1,0, lAJ, [é])
(p(a+b y,2,1,|A [ J[B]) and a-g(y,1,[A] [B])+(1-0) ¢y, 2,1,[A] [B]), then the measure of the
difference between each one of these positions and the respective position Demchuk [11] obtains we
respectively denote as Si(l’o), Si(l'l), 8i(2’1), and 9; (oc) where i = m In calculation # 1 we can not obtain

the final injection front position interpolating the free surface on every time layer by the function
0.8-g(y,1,[A} [B]) +0.2-¢(y, 2,1, [A] [B]). We obtain that 3*" <0.01% where i=110 and the

values of 8}1’0), Si(l’l), and 8i(0c) where i:m presented in Table 1. Since on every time layer

Demchuk [11] interpolates the free surface by the function ¢(y, 2,1, [A] [B]) from Eq. (29) and the first

equation of Egs. (30) it follows that we can not estimate the uncertainty in the final injection front position
obtained in calculation # i due to the uncertainty in the choice of the method of free surface interpolation

on every time layer as Si(z’l) where i =1,10. Since §;(0.7) < 8i(1‘1) and §;(0.7)< 8i(1‘0) where i =1,10,
we can assert that it is better to use the function 0.7 -§(y, 1, [A] [B])+O 3-9(y, 2,1, [A] [B]) than either

?(y,1,0, [A] [B]) or (p(a +b-v,1,0, (A [ J [BD to interpolate the free surface on every time layer. Using
Egs. (26), (27), Remarks # 1, 3, and 5 we conclude that it is likely that the free surface is more distorted in
the vicinities of the points O and E when it is interpolated by the function ¢(y,1,0, [A] [B]) or

(p(a+b y,1,0,|A [ J [BD than when it is interpolated by the function
0.7-9(y,1,[A] [B])+ 0.3-3(y, 2,1,[A], [B]). This conclusion verifies the validity of our numerical

results regarding not considering functions ¢(y, 1, 0, [A] [B]) and (p(a +b-v,1,0, (A [ J [BD as candidates
to be the needed function. From Table 1 it follows that 85(0.7)= 8,(0.7), 85(0.7)/2 > §;(0.7), and

8,(0.7)/2>8;(0.7) where i =1,2,510. Total truncation error of the numerical calculation is estimated
as square root of the sum of squares of errors from different sources [16]. Therefore, to find the needed
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function on the segment [0,0.7] we will find the value of o at which |€i ((x)—ei|<0.1 where

g (o) = \/(Si (@))? +(g;)? and i =3,4. In Table 2 we present values of &; (ct) and &; (cr) where i =34
at different values of o from the segment [0, 0.7]. It follows from Table 2 that the function
a-g(y,1,[A] [B])+(@1-a) @y, 2,1,[A] [B]) can be used for the interpolation of the free surface on
every time layer only if 0< o <0.002. Since 85(0.7)/2>5;(0.7) and 8,(0.7)/2 > 8;(0.7) where

i =1,2,510, we should expect that [€; (0.002) —&;| < 0.1 where ;(0.002) = \/(Si (0.002))? +(g;)* and
i=12510. In Table 1 we present the values of &;(0.002) and &, (0.002) where i =1,10. It follows
from Table 1 that |§i (0.002)—8i| < 0.1 where i =110. Since there is no inconsistency in the presented
analysis, €;(0.002) can be used as an estimation of the truncation error of calculation # i where i = 1,10.

Demchuk [11] checks numerically hypothesis # 3 formulated in section 2 for all ten calculations.
From the data presented in Table 1 it follows that Si(z’l) << g (0.002) where i = 1,10. From Eqg. (29), the

first equation of Egs. (30), and Theorem 5 it follows that this fact gives the new numerical verification of
hypothesis # 3 (see section 2).

Table 2
Determination of thevalueof o at which £ (o) = €; where i = 3,4

o 83(0(),% 84((1),% 53(0(),% 54(0(,),%

0.5 14.17 13.44 15.16 14.52

0.3 14.77 14.06 15.73 15.10
0.03 6.36 5.87 8.34 8.04
0.01 2.83 2.56 6.10 6.07
0.007 2.09 1.88 5.79 5.81
0.005 1.55 1.39 5.62 5.67
0.002 0.66 0.59 5.44 5.53

Conclusion. In this work we conduct the analysis of the results of the final injection front position
calculations in the frameworks of real scale grouting models in which the injection front is the free surface,
using the assumption that we can neglect the uncertainty in the final injection front position due to the
uncertainty in the choice of the method of free surface interpolation on every time layer estimating the
truncation error of each one of these calculations. Since we have not arrived at any inconsistency, this
analysis provides numerical verification of this assumption. We perform calculations on curvilinear grids
that on some time layers can have chaotic dispositions of their nodes. We show that if such the dispositions
of the nodes occur, then they give rise to the distortion of the injection front in the vicinity of the point E
shown on Figure 1 (a). Two important numerical observations are the following

1. Demchuk [11] obtains the final injection front position in ten different cases interpolating the
injection front on every time layer by the function @(y, 2,1, [A}, [B]).

2. Between these cases there are the ones in which we can not obtain the final injection front position
interpolating the free surface on every time layer by the function (p(a +b-vy,2,0, lAJ, [é :

From Eqgs. (30) and Remarks 3 and 4 it follows that these numerical observations indicate that the chaotic
dispositions of the curvilinear grid nodes do occur on some time layers in some of these cases. In the above
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mentioned analysis we estimate the measure of the difference between two final injection front positions
according to Eg. (1). In each calculation considered in this paper if we interpolate the free surface on every
time layer by functions that in the case of arrangement of interpolation nodes in the increasing orders
coincide, then the measure of the difference between respective final injection front positions is much
smaller than the respective truncation error. This fact provides the verification of the hypothesis that the
chaos in a space distribution of nodes of the curvilinear grid on some time layers does not cause a
significant distortion of the final injection front position.

We will compare results of real scale permeation grouting model calculations with field observations.
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