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Abstract: The two-point boundary value problem of 

the differential equations of parametric sensitivity in 
addition to solving a two-point boundary value problem 
of the differential equations of state is solved. A joint 
monodromy matrix is defined by the product of matrix 
coefficients of the equations of state and the matrix of 
so-called auxiliary model of parametric sensitivity as the 
equations of first variation of the incomplete equations 
of state. The computational results are presented.  

Keywords: parametric sensitivity, mathematical 
model, steady-state process. 

1. Introduction 
The auxiliary model of parametric sensitivity is the 

very key that made it possible to use the latest 
achievements of the theory of ordinary nonlinear 
differential equations to analyze three of the four main 
stages of the analysis of any physical system, namely: 
the calculation of steady-state processes, determination 
of their static stability and parametric sensitivity. The 
auxiliary model of parametric sensitivity summarizes the 
auxiliary model of sensitivity to initial conditions. For 
the first time, the idea of this model was proposed by us 
in [1]. It proved to be a very effective method for the 
analysis of the most difficult practical problems [2]. 

2. Mathematical model 
We write the system of differential equations for a 

physical system in vector form 

 1 , ; 0 ,
dx

f x t t
dt

                      (1) 

with  txf ,1  being  Т– periodic, 1 2( , ,x x x  , )nx . 

We consider that the periodic solution to the equation (1) 

   Ttxtx   exsists. There are such initial condi-

tions  0x , which, when integrating (1) in the time interval 

[0, T], allow entering directly into the periodic solution, 
passing over the transient response. These initial conditions 
we consider as an argument for the following periodic 
equation 

        0 0 0 , 0f x x x x T   , (2) 

The expressions (1), (2) are the T-periodic two-point 
boundary value problem for nonlinear differential 
equations of state. 

The nonlinear transcendental equation (2) should be 
solved by Newton’s iterative method 

         11 '0 0 0 0
s s s s

x x f x f x
   ,           (3) 

We will obtain Jacobi’s matrix   0' xf  by differen-

tiating it with respect to  0x of the target function (2) 

    ' 0f x E T  ,                         (4) 

where 

 
  
 
0 ,

0
t T

x x t
Т

x



 


,                          (5) 

 Т  is the monodromy matrix. It is obtained from the 

equation of first variation by differentiating (1) with 

respect to  0x : 

 
 ,

.
f x td

dt x


 


 (6) 

In the s-th iteration of Newton’s formula (3), the 
linear variational equation (6) is subject to compatible 
integration with the nonlinear (1) in the time 
interval ],0[ T . The process of iteration is over when you 

reach a given accuracy of the entry into the periodic 
solution 

   0
s

f x   , (7) 

where   is the vector of the given accuracy.  
The monodromy matrix Ф (5) is essentially a matrix 

of sensitivity to initial conditions. Each of the lines can 
be considered as a gradient of a certain variable in the 
space of initial conditions, with each of its columns 
describing the sensitivity of the whole set of variables to 
the same initial conditions. Therefore, the differential 
equation (6) can be considered as a model of sensitivity 
to initial conditions.  

Multipliers (eigen values) of the matrix  Т  

determine the static stability of the process found. To do 
this, their modules must be less than one! 

The easiest way to solve the problem concerning the 
parametric sensitivity calculation is using   variational 
methods as a simple addition to the algorithm of 
accelerated search for periodic solutions to nonlinear 
differential equations based on Newton's iteration (3). 

We denote the vector of constant parameters as 

  n ,,, 21  . (8) 
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Then, the matrix of parametric sensitivities is 
determined as the partial derivative 

x
S





.                              (9) 

The element of matrix  can be any constant 
parameter of the target system.  

The argument x is found from the equation (1) which 
we write in more general form: 

 1/ , ,dx dt f x t  .                      (10) 

Differentiating (10) with respect to , we will obtain 
a linear parametric equation 

   1 1, , , ,f x t f x tdS
S

dt x

   
 

 
.              (11) 

In the steady state    Txx 0 , so the equation (11) 

also has  the  S t periodic solution. 

Obtaining partial derivatives with respect to x and 
  in the right part of (6) and (11) is rather a difficult 
task, or even unsolvable. Therefore, we introduce the 
matrix of auxiliary parametric sensitivities   in relation 

to another vector y: 

dy

d
 


.                                    (12) 

The equation of state of the target object in relation 
to the vector y we also write in general form: 

 2 3/ , , ( , , )dy dt f x t f y t    ,            (13) 

2 3,f f  are T– periodic with respect to  t. 
Differentiating (13) with respect to , and taking 

into account (5) and (6), we obtain 

   2 2, , , ,f x t f x td

dt x

   
  

 
.             (14) 

The equation (14) also has a periodic solution  t . 

The function  t , besides performing a supporting role, 

is often of an independent interest. 
The replacement of x with y should be carried out in 

such a way to make the equation (13) simpler than the 
equation (10). Such a substitution is reasonable only if 
the connection between x and y is known. In general, it 
can be represented as: 

'y G x H  ,                                   (15) 

where  ' 'G G x  is the matrix of static parameters; 

H    H t  is a vector. 

For example, in differential equations of an electric 
circuit, inductance coil currents and capacitor voltages 
are considered as components of the vector x, and their 
linkages and charges, respectively, as components of the 
vector y. In differential equations of motion, coordinates 
and velocities are considered as components of the vector 

x, and generalized impulses – as components of the vector y, 
etc. The connection between x and y must be known in any 
system under research as its internal setting. 

Let us establish the connection between the 

functions  1 ,f x t  and  2 ,f x t . For this, we differentiate 

(15) with respect to time and substitute the derivatives of 
(10) and (13) into the result obtained: 

   ''
2 1, ,

H H
f x t G f x t

x t

       
,                 (16) 

where  '' ''G G x  is the matrix of differential 

parameters. Simplifying the right-hand parts of the 
differential equation (13) in comparison with (10) is 
achieved just by these two operations – multiplication 
and addition. 

Establish the connection between the matrices of the 
parametric sensitivities S and χ. For this purpose, we 
differentiate (15) with respect to , and substitute the 
derivatives of (9) and (12) into the result obtained: 

'
'' H G H

G S x
x

           
.                 (17) 

Having solved (17) with respect to S, we finally 
obtain  

1'
''; .

G H H
S x G

x

                  
     (18) 

The structure of the matrix 'G  is much simpler than 

that of ''G , so it is easy to obtain a derivative of ' /G  . 
The matrix A is typically a matrix of coefficients of the 
equations of state written in Cauchy's normal form. 

On substituting (18) into (14), we obtain the required 
heterogeneous linear differential equation of auxiliary 
parametric sensitivity: 

 
   '

2 2, , , ,
.

f X t f X td G H
x

dt X

      
         

 (19) 

If we assume that  0x  , then (19) degenerates 

into a homogeneous equation 

 2 , ,f td

dt X

  
 


,                      (20) 

which describes the model of sensitivity to the initial 
conditions (6).  

The periodic solution to the equation of parametric 
model of sensitivity (19) is also found on the basis of (3). 
As a result of numerical calculation of the expressions 
(1), (3), and (20) we find a periodic solution to the 
equations of state of the object under research, and, 

therefore, a matrix of monodromy  TФ  (5). 

The matrix of parametric sensitivity (12) is divided 
into columns and written as a vector 

 1 2, , , m     ,                           (21) 
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where m is the number of elements of the vector of constant 

parameters  1 2, , , m     ,   = const. , with 

/ , 1, 2, ,i idy i m     ,                        (22) 

being the vectors of parametric sensitivities of the у- 
vector elements to individual constant parameters. 

A conditon of the periodic solution to the differential 
equation (19) we write similarly to (2) 

       0 0 0 , 0, 1, 2, ,i i i iF T i n        . (23) 

The equation (23) is solved by using Newton's iterative 
method, but since (19) is a linear equation, then, one iteration 
is enough to solve the equation. Provided the approximation 
equals zero, the equation (3) is as follows 

      1'0 0 , 1, , .i i iF T i n


              (24) 

Jacobi's matrix is expressed by a certain 

matrix  Ф T , derived from calculating the periodic 

solution    x t x t T  : 

    ' 0 ФiF E T   .                      (25) 

Integrating (19) of the computed according to (24) 
initial conditions, after previously changing, according to 

(18), from  0iS  to  0i , we obtain a periodic solution 

    0 Ttt . The sensitivity S  we find from the 

same algebraic expression (18). 
Time discretization of the given differential 

equations and differential equations of their sensitivity 
(to the initial conditions and constant parameters) is 
performed by the explicit or implicit methods. Their 
joint solution is especially harmoniously combined in the 
case of implicit methods, since Jacobi's matrixes of the 
basic equation and parametric equation are matched. 

Let us demonstrate the essence of the method, using 
the two easiest examples involved in the theory of 
electric circuits.  

Example 1. We will completely analyze a circuit 
formed from a resistive-inductive element r-L powered by a 
sinusoidal voltage sin .mu U t   The differential equation 

of condition (10) of such a circuit is clear (х = і) 
/ ( sin ) / ( ); 0 ,mdi dt U t ri L i t            (26) 

where і is the current; L(i) is the differential inductance  
Direct integration of (26) defines the transient process in 
the circuit. 

Steady-state currents and parametric sensitivities are 
determined in accordance with the suggested method. We 
will write the vector (8) in the following way: ( , , )mr U   . 

The parametric sensitivities have the following form: 
/ , / , / .

mr U mS di dr S di dU S di d          (27) 

Case: ( )L i const . In this case the equation (26) 

has an analytical solution 

      

2 2 2

0 sin sin

; arctg ; .
(

t
m m

m
m

i t i I e I t

U L L
I

r rr L

     


    



       (28) 

We assign an initial zero approximation  0
0i . Then, 

according to (2), and (28) 

      0
0 0 0, sin 1 T

mf i i T I e     .        (29) 

The monodromy matrix is found, using (5) and (28)  

   
 

0

0
T

t T

i t
T e

i





  


.                  (30) 

By substituting (29) and (30) into (3), provided (4), 
we obtain 

 
 sin 1

0 0 sin
1

T
m

mT

I e
x I

e





 
    


.        (31) 

We see the results of one iteration as expected. 
The obtained value of the initial condition levels 

down the constant of integration in (28), and we directly 
obtain a periodic solution. In the case of non-linear 
equations, the algorithm requires several iterations. 

We obtain any of the parametric sensitivities (27), 
using direct differentiation with respect to   

 

2 2 2

2 2 2

sin 2 sin

sin 2 .

t
r m

m

t
S I e

Lr L

I
t

r L

  
       

   


             (32) 

Case: L = var. We write the additional equation (13) 
( y   ) in linkage form 

/ sinmd dt U t ri    .                     (33) 

In this case the coupling equation (15) is clear: 
L i  , L is the steady-state inductance. Provided it is 

differentiated with respect to  , we will obtain 

/S L  .                                (34) 

We obtain the equation (19) as a result of the 
differentiation of (33), taking into account (34) 

( sin )
.mU t rid r

dt L

  
  


               (35) 

The homogeneous differential equation (35) 
corresponds to (20). Its joint implementation with (26) in 
the interval [0,T] of the iteration formula (3) makes it 
possible to find initial conditions і(0) of the integration 
into the steady process, as well as, according to (35), the 
monodromy matrix Ф(Т), which will be used in (24) and 
(25) to find initial conditions of integration into the 
steady process in compliance with the equation (35).  

The equation (26) having been differentiated with 
respect to , the equations of parametric sensitivities, from 
the perspective of (27), will have the following form 
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; mUr
dd r

i
dt L dt


      

sin ; os .m

dr r
t tU c t

L dt L
          (36) 

3. Simulation results. 
The figures below show the results of computation if 

mU = 310,5, r = 1,  

2

0,14, 4,5;

0,14 0,039( 4,5) 0,00318( 4,5) ,
( )

4,5 10,6;

0,0208, 10,6.

if i

i i
L i

if i

if i


     

 
 

.(37) 

 

 
Fig. 1. Steady-state current 

)(tii   in the interval [0,T]. 
Fig. 2. Steady-state 

parametric sensitivity 
)(tSS rr  . 

 
Fig. 3. Steady-state parametric 

sensitivity )(tSS
mm UU  . 

Fig. 4. Steady-state 
parametric sensitivity 

)(ωω tSS  . 

Example 2. Let us complicate the previous task by 
introducing a link r–L–С. In this case (26), (33), and (35) 
will become more complicated 

( sin ) / ( ); ,C
m C

dudi i
U t ri u L i

dt dt C
          (38) 

Where Cu  is the capacitor voltage; С is the capacity; 

/ sin .m Cd dt U t ri u                           (39) 

( sin )
,m CU t ri ud r

dt L

   
  


         (40) 

with ( , , , )m Cr U u   . 

In the expanded form, (40) will be as follows: 

( sin )
;C

i
Ui m CU t ri ud r

S
dt L

   
    


 

( / )
.

CU idS i C

dt LC

 
 


                             (41) 

The results of the joint use of (3)–(5), (38), and (41) 
are shown in Fig. 5–10. 

Fig. 5–8 show the results of the calculations of ferro-
resonant conditions of a circuit: two resistant and one non-
resistant. Any of the conditions is reached by variation of a 
zero approximation in Newton’s formula (3), specified in the 
captions. Input values: mU = 135, r = 0,1, С = 0,00001966, as 

well as the curve (37). Curve 3 (Fig.7) is obtained from the 
transient process at the 1000th period. As we see, the process 
is still alive as the transient component can be seen 

 

 
Fig. 5. Curves )(tii   (1), 

)(tuu CC  (2) if 0)0( 0 i . 

Fig. 6. Curves )(tii   (1), 

)(tuu CC  (2) if 08.0)0( 0 i

 
Fig. 7. Steady-state curves 

)(tii   (1), (3), 

)(tuu CC  (2) if 100)0( 0 i . 

Fig. 8. Comparative curves  
of constant currents Fig. 5 
(1), Fig. 6 (2) and Fig. 7 

(3). 
 
Fig. 9–16 demonstrate the results of the parametric 

sensitivities computation. Input values: mU = 282, r = 1, 

С = 0,00055, as well as the curve  (37). 

 
Fig. 9. Steady-state parametric 

sensitivity )(tSS i
r

i
r  . 

Fig. 10. Steady-state 
parametric sensitivity 

)(tSS u
r

u
r  . 

108



Auxiliary Model of Parametric Sensitivity 

 
Fig. 11. Steady-state parametric 

sensitivity )(tSS i
C

i
C  . 

Fig. 12. Steady-state 
parametric sensitivity 

)(tSS u
C

u
C  . 

  
Fig. 13. Steady-state parametric 

sensitivity )(tSS i
U

i
U mm

 . 

Fig.14. Steady-state 
parametric sensitivity 

)(tSS u
U

u
U mm

 . 

   
Fig. 15. Steady-state parametric 

sensitivity )(ωω tSS ii  . 

Fig. 16. Steady-state 
parametric sensitivity 

)(ωω tSS uu  . 

 
The multipliers of the monodromy matrix Ф solve 

the problem of asymptotic stability of the steady state 
found [2]. Let us show the values of the matrixes and 
their multipliers for the existing ferroresonance 
conditions in Fig. 5–7 in succession. 

5 12

6 1 2

7 12

0,7551 15,4034
( ) ; 0,7563 0,6463;

0,0271 0,7575

2,6974 32,4389
( ) ; 0,1798; 5,3742;

0,2077 2,8566

01676 24,4782
( ) ; 0,0867 0,9724.

0,0389 0,0057

T j

T

T j

 
     



     

    


 

Taking the multiplier modules of all the three 
matrixes into consideration, we come to an clear  
conclusion that the existing ferroresonans conditions 

presented in Fig. 5–7 are asymptotically consistent, and 
those in Fig. 6  are asymptotically inconsistent, that are 
well complied to physics of the prosess. 

Generally, the existing parametric sensitivities are 
characterized by their root-mean-square values. 

Taking into account a small value of the integration 
time step, it is expedient to substitute the integral for the 
formula of rectangles (1.46) 

2

1

1
( ) ,

n

i
i

S S t
n 

                            (41) 

where n is the number of integration time steps in the 
period. 

For example, we show the corresponding values for 
the parametric sensitivities in Fig. 9, 11, 13 and 15 
respectively: 

S  0,7570; 40223,41; 0,2789; 0,2072. 
It is interesting to know how a transitional parametric 

sensitivity behaves in time. For example, we show two of 
them, namely according to the formula (32) as a linear case, 

 

 
Fig. 17. Transitional sensitivity )(tSS rr   

 that corresponds to Fig. 2 if L = const. 
 

And according to Fig. 9, as a non-linear case 
 

 
Fig. 18. Transitional sensitivity )(tSS rr    

that corresponds to Fig. 9. 
 
The effectiveness of using the results of calculation 

of parametric sensitivity can practically be judged by the 
curves presented in Fig. 19. Curve 1 characterizes the 
state of the circle at the given input data for simulation. 
Curve 2 illustrates the extent to which maximum of 
current at 4-fold increase in the resistor’s resistance gets 
reduced. Curve 3 illustrates the same, but at a similar 
increase in capacity of the capacitor. 

According to the root-mean-square value of the corres-

ponding parametric sensitivities of current i
rS  (0,7570) and 
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i
CS (40223,41), we should be interested in how the capaci-

tance must be increased to ensure maximum of current which 
is reached by 4-fold increase in the resistor’s resistance. The 
answer is given by the curve in Fig. 4 – only by 7%. 

 

 
Fig. 19. Steady-state value of 

current in the state that 
corresponds to Fig. 9-16. 1 – at 
the given parameters of circle; 

2 – at 4-fold increase in 
resistance of the resistor; 3 –  at 
4-fold increase in the capacitor 
capacitance ; 4 – at 1.07 times 

increase in the capacitor 
capacitance. 

Fig. 20. Steady-state values 
of parametric sensitivity 

)(tSS i
U

i
U mm

 , which 

correspond to ferroresonant 
states: 1 – Fig. 5, 2 – Fig. 6, 

3 – Fig. 7. 

 
It is interesting to observe that, in ferroresonance states, 

not only currents and voltages depend on the initial 
conditions, but also certain parametric sensitivities. 

 
Example 3. The previous example is complicated in 

the case of a nonlinear capacitor: matrices (9), (12) will 
be as follows 

( , ); ( , ),S diag diag z g                        (42) 

where 

; ; ; ,Cui q
z g

  
     

   
           (43) 

where q is the capacitor charge. 
The differential equations, that correspond to the last 

two expressions (43), take a clear form 

sin / ; .m

d dq
U t ri q C i

dt dt


                  (44) 

The corresponding variational equations (44) will be as 

; .
dz r g dg

z z
dt L C dt

                    (45) 

Communication of matrices (42) becomes apparent 
1 1; ( , ).S diag L C                       (46) 

Since the formula (13) has two right parts, the function 

 2 , ,f x t  leads simpler to targets, but with the possible loss 

of some constant parameters in an explicit form in the 
equations of the auxiliary parametric sensitivity. In this case, 
we must use the function 3 ( , , )f y t . Then equations (44) 

will take the following form 
1 1sin / ; .m

d dq
U t rL q C L

dt dt
             (47) 

4. Conclusions 
In complex circuits which are formed of multipolar 

nonlinear elements, such as electromechanics, method of 
auxiliary parametric sensitivity (including sensitivity to 
initial conditions) is only one means of achieving the 
goal, i.e. developing common algorithms of analysis of 
transition processes, steady-state processes, identifica-
tion of asymptotic stability of established processes and, 
finally, calculating parametric sensitivities. 
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ДОПОМІЖНА МОДЕЛЬ  

ПАРАМЕТРИЧНОЇ ЧУТЛИВОСТИ 

Василь Чабан, Сергій Костючко, Зорана Чабан 

Розв’язується доточкова крайова задача для 
диференціальних рівнянь параметричної чутливости як 
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додаток до розв’язання доточкової крайової задачі для 
диференціальних рівнянь стану. Матриця монохромії 
визначається добутком матриці коефіцієнтів диферен-
ціальних рівнянь стану і матриці так званої допоміж-
ної моделі параметричних чутливостей як рівнянь 
першої варіації неповних рівнянь стану. Подаються 
результати комп’ютерної симуляції. 
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