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Abstract: Necessary and sufficient conditions for
the reachability and observability of fractional positive
continuous-time linear electrical circuits are established.
Effectiveness of the proposed conditions is demonstrated
on examples of electrical circuits.
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1. Introduction

A dynamical system is called positive if its
trajectory starting from any nonnegative initial state
remains forever in the positive orthant for all
nonnegative inputs. An overview of state of the art in
positive theory is given in the monographs [5, 9].
Variety of models having positive behavior can be found
in engineering, economics, social sciences, biology
and medicine, etc.

The notion of controllability and observability and
the decomposition of linear systems have been
introduced by Kalman [22, 23]. These notions are the
basic concepts of the modern control theory [1, 21, 27,
30, 31]. They have been also extended to positive linear
systems [5, 9]. The decomposition of the pair (4,B) and
(4,C) of the positive discrete-time linear system has been
addressed in [7]. The positive circuits and their
reachability has been investigated in [12] and contro-
llability and observability of electrical circuits in [10].

The reachability of linear systems is closely related
to the controllability of the systems. Specially for
positive linear systems, the conditions for the
controllability are much stronger than for the
reachability [9]. Tests for the reachability and
controllability of standard and positive linear systems are
given in [9, 16]. The positivity and reachability of
fractional electrical circuits have been addressed in [12,
13]. The finite zeros of positive discrete-time and
continuous-time linear systems have been investigated in
[28-30] and the decoupling zeros of positive discrete-
time linear systems in [11].

Mathematical fundamentals of fractional calculus
are given in the monographs [24-26]. The positive
fractional linear systems have been introduced in [8,].
Stability of fractional linear 1D discrete-time and

continuous-time systems has been investigated in the
papers [2, 4, 17, 18], and that of 2D fractional positive
linear systems in [6]. The notion of practical stability of
positive fractional discrete-time linear systems has been
introduced in [15], and the positive linear systems
consisting of » subsystems with different fractional order
has been analyzed in [14]. Some recent interesting
results in the fractional systems theory and its
applications can be found in [3, 18, 24-26]. The reacha-
bility and observability of fractional positive continuous-
time linear systems have been addressed in [20] and

constructability and observability of standard and
positive electrical circuits in [19].
In this paper, new necessary and sufficient

conditions for the reachability and observability of
fractional positive continuous-time linear electrical
circuits will be established.

The paper is organized as follows. In section 2, some
basic definitions and theorems concerning positive
continuous-time linear systems are recalled. The
fractional positive electrical circuits are addressed in
section 3. The main result of the paper is given
in sections 4 and 5. In section 4, new necessary and
sufficient conditions for the reachability of fractional
positive electrical circuits are established and for their
observability - in section 5. Concluding remarks are
given in section 6.

The following notation will be used: R is the set of

nxm
real numbers, R represents the set of nxm real
matrices, R} denotes the set of 7 xm matrices with
nonnegative entries, and R” =R, M, stand for the
set of mxmn Metzler matrices (real matrices with

nonnegative off-diagonal entries), [, is the nxn

identity matrix.

2. Fractional positive linear continuous-time systems
The following Caputo definition of the fractional
derivative will be used [18, 24, 25]

wpn_d* 1 )
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where @ € R is the order of fractional derivative and

d” ® !
)= f (T) and [(x)=[e’r'dt is the
0
gamma function.

Consider the continuous-time fractional linear

system described by the state equations
D%x(t) = Ax(t)+ Bu(t), 0<a<l1, (2.2a)
y(t) =Cx(t) + Du(t), (2.2b)

where x(7) e R", u(t)eR", y(t)eR? are the state,

input and output vectors and AeR"" BeR”",

CeR”™, DeR"™™.
Theorem 2.1. [18] The solution to equation (2.2a) is
given by

x(t) =D, (t)x, + j@(t —7)Bu(r)dr,
0

B

x(0) = x,
A © Ak ka
® E, .
o) =E, (At*)= Zol“(ka e 24)
K ke+Da-
(@)= 2L 2.5)

k=0 I'[(k + D]

and E,(At") is the Mittag-Leffler matrix function.

Definition 2.1. [18] Fractional system (2.2) is called
an internally positive fractional system if and only if

x(1)eR! and y()eR? fort>0 for any initial
conditions X, € R" and all inputs u(r) e R}, 120.

Theorem 2.2. [18] Continuous-time fractional
system (2.2) is internally positive ifand only if the
matrix A4 is a Metzler matrix and

AeM,,BeRT", CeRY", DeRI™ . (2.6)

Lemma 2.1. The Mittag-Leffler matrix function
(2.4) satisfies the equation

d“@, (1)
dr”
Proof. From (2.2a) and (2.3) for Bu(¢) =0 we have

= AD (1). 2.7)

d @, (1)x,

1 = AD,(1)x,.

(2.8)
Therefore, Equality (2.7) holds since equation (2.8)
is satisfied for arbitrary x, #0.

3. Fractional positive electrical circuits

Let the current i(¢) in a supercondensator (shortly
condensator) with the capacity C bethe a order
derivative of its charge g(¢) [13, 19]

C(t)— () 0<a<l. 3.1)
Using g(¢) = Cu(t) we obtain
i(t) =2l S"; *) (3.2)

where u(7) is the voltage on the condensator.

Similarly, let the voltage u;(f) on a coil (inductor)
with the inductance L be the f order derivative of its
magnetic flux W (¢) [13, 19]

B
u (1) = d lI’(t)

,0< <1, 3.3)

Taking into account that ‘¥ (¢#) = Li, (f) we obtain

d”i, (1)
dt”?

where i;(¢) is the current in the coil.

Consider an electrical circuit composed of resistors,
n capacitors and m voltage sources. Using equation (3.2)
and Kirchhoff’s laws we may describe the transient
states in the electrical circuit by the fractional differential
equation

u,(t)=L , 3.4

d?x(r)
dr”

x(1)eR", u(t)eR"™, AeR"™", Be R,

The components of the state vector x(#) and input

=Ax(t)+Bu(?),0<a <1, (3.5)

where

vector #(?) are the voltages on the condensators and

source voltages respectively.

Similarly, using equation (3.4) and Kirchhoff’s laws
we may describe the transient states in the electrical
circuit by the fractional differential equation

d” x(1)
dr?

= Ax(t)+ Bu(?), 0< f <1, (3.6)

where x(1)eR", u(t) e R", AeR™, BeR"™ . In
this case, the components of the state vector x(¢) are
the currents in the coils.

The solution to equation (3.5) (or (3.6)) satisfying
the initial condition x(0) = Xx, is given by (2.3).

Now let us consider an electrical circuit composed

of resistors, capacitors, coils and a voltage (current)
source. As the state variables (the components of the

state vector X(7)) we choose the voltages on the

capacitors and the currents in the coils.
Using equations (3.2), (3.4) and Kirchhoff’s laws, we
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may write for the fractional linear circuits in the transient
states the state equation

d“x.

de® :{An Alz}{xc}{ﬂu,ka,ﬁd,(3.7a)
d’x, Ay Ayp |1 X, 2

e’

where the components x. € R" are the voltages on the
condensators, the components x;, € R™ are the currents

in the coils and the components of u e R"™ are the
source voltages and

4; € R B eR"™i,j=1,2. (3.7b)

Theorem 3.1. The solution to equation (3.7) for
0<a<1;0< B <1 with the initial conditions

Xc(0) =X, and x,(0) = xy (3.8)
has the form
x(1) =Dy (1)x, +
: , (3.92)
+[[®,(t —7)B,y + D, (1 —7)By, Ju(r)dz
0
where
t B 0
x(t):{XI( )}:xo :[xlo:|,310 :[ 1}9301 :{ }
x, (%) X9 0 B,
I, for k=1=0
A, A4
{ 1 ”} for k=1,/=0
0 0
T, = ., (3.9b)

0 0
for k=0,/=1
Ay Ay

BTy + T T for k+1>0

o o tka+lﬂ
o)=Y 3T, —
(! kzozzo “T(ka+1B8+1)
w w (ki1
D ()= T, ,
=25 Tk +Da+1p]

frat(+Dp-1

[[ka+(+1)B]

D, =2 2T,
k=01=0
The proof'is given in [18].
The extension of Theorem 3.1 to the systems
consisting of n subsystems with different fractional
orders is given in [14].

Definition 3.1. The fractional electrical circuit (3.5)
(or (3.6), (3.7)) is called a (an) (internally) positive

fractional system if the state vector x(z) e R, >0 for

any initial conditions and all
u(t)e R, 1>0.
Theorem 3.2. Fractional electrical circuit (3.5) (or
(3.6)) is (internally) positive if and only if
AeM,, BeR™

where M, is the set of nXx n Metzler matrices.

X, € R inputs

(3.10)

The proof is given in [14, 18].
Theorem 3.2 applied to the fractional circuit (3.7)
proves that the electrical circuit is positive if and only if
A, eMnk, k=12;
Ay €RY™, Ay e NPT,
B e R, B, e R (3.11)
Consider the fractional electrical circuit shown in

Figure 3.1  with the given conductances
G,,k=0,1,...,n; capacitances C/., j=1..,n and

source voltage e.
\

Y

(D &3 o3

v,=0

Fig. 3.1. Fractional electrical circuit.

Using (3.2) and Kirchhoff’s laws, we may write the
equations

dd
C, k=G, (v=u,) k=1,.on  (3.12)
dr”
and
Gye—v)=Y.G,(v=u,). (3.13)
=1
From (3.13) we have
1 n -
v=—Ge+>XGu; |, G= ZGi . (319
G =l i=0
Substitution of (3.14) into (3.12) yields
4 U U
=4 + Be, (3.15a)
dr”
ul’l uVl
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where
| GG-G} GG, GG, |
eYe C,G C,G
G,G, G,G-G; G,G,
A=| G GG C,G |,
G,G, G,G, G,G-G:
| CG C,G GG
6.6
GG (3.15b)
B=|
GOGn

From (3.15b) we can see that AeM,, and
BeWR. Therefore, the

has been proved.
Theorem 3.3. The fractional electrical circuit shown
in Fig. 3.1 is positive for any values of the conductances

following  theorem

G,, k=0,1,...,n; capacitances C]-, j=1..,n and

source voltage e.
Consider the electrical circuit shown in Fig. 3.2 with

given  resistances R, ,k=1,...,n, inductances

L, L,,..,L,, capacitances CI,C3,...,CWl and source

n, >

voltages ¢,,¢,,...,€

ne

Fig. 3.2. Fractional electrical circuit.

Using Kirchhoff’s laws, we can write the equations
a

d
e =R,C, dTZ‘kW" for k=1,23,...,n (3.16a)

d?i.
— J : L
e te; = LJ. v + R].l]. for j=2,4,...,n,,(3.16b)
which can be written in the form
d%u
a u
ds =A{1+Be, (3.17a)
d’i i
de?

where
_e,_
U )
u i ©
u=\ " , 1= ! , u=le, |, (n=n+n,) (3.17b)
un in
1 2 _en_
and
. 1
A=d1ag{— ,— yeeey—
G RG

5 seeey

RC, L’ L, L

m
1 X
— (m+ny)
B—[ }E‘RZ )

2

1R R R_}

i 00 .. 0
Rlcl
! 0 0 0
31 = R3C3 D
1 0 0 0
R}’ll C}’ll
11y 0
LZ L2
1 1
— 0 — 0
BZ — L4 L4 (317C)
LI 1
an an

The electricd circuit described by equation (3.17)
is positive for all value of the resistances

R, k=1..n+n, L.,k=24,.,n,,

capacitances C,, k =1,3,...,n, . Therefore, the following

inductances

theorem has been proved.

Theorem 3.4. The fractional linear electrical circuit
of the structure shown in Fig. 3.2 is positive for any
values of its resistances, inductances and capacitances.

The positivity and reachability of the fractional
electrical circuits have been investigated in [13].

4. Reachability

Consider the fractional positive electrical circuits
described by equation (3.7a).

Definition 4.1. Fractional positive electrical circuits

(3.7a) is called reachable in time [O,tf] if for every
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Xcr n ) .
T leR . there exists an input

given final state X, ——{
X,
Lf

u(t)eRy, te [0, tf} which steers the state tic} of
L

X,
the circuit from the zero initial state X, =[

final step x Iz

A real square matrix is called monomial if each row
and each its column contains only one positive entry and
the remaining entries are zero.

Theorem 4.1. Fractional positive electrical circuit

(3.7a) is reachable in time [O, ty ] if and only if the matrix

t
R, = (j; O (7)BB'®" (r)dr e R (4.1a)

is monomial, where
®(7)B=®,(7)B, +@,(7) By . (4.1b)
where d)l(r),(l)z(r) and B,,,B,, are defined by
(3.9b).
Proof. Note that R}l e RT" if and only if the
matrix (4.1a) is monomial. The input

u(t)=B"®" (1, ~1)R,'x, (4.2)

steers the state of electrical circuit (3.7a) from x, =0 to

X € R’ , since using (3.9) for x, =0 and (4.2), we obtain

x(tf ) = ti ) (tf - T)Bu(r)dr =

= £ d)(tf —T)BBT(DT (tf —T)drR_;le =

t
= ch(T)BBTqﬂ (r)d7R;'x, =x,. (4.3)
0

Example 4.1. Consider the fractional electrical circuit
shown in Fig. 4.1 with given resistancesR;, R,, R;;
inductances L,, L, , and source voltages e,,e, . Give the
condition under which the electrical circuit is reachable in

time [O, tf] and find the input u(t) € iRi, t >0 which

steers the system from x;, =0 to the final state x /-
Using Kirchhoff’s laws, we can write the equations
L .4l
e =Ry (i, — i)+ Rji; + L, o

0<p<1, 4.4
P
e, =R3(12 —ll)+R212 +L2d7,

which can be written in the form

ﬂ . .
L N LR (4.5)
de” | i, i e,
where
B R +R, R, 1 0
L L L
A= , B= . (4.6)
& _R2 + R, 0 i
L, L, L,
Ry Rs
L1 RB L2
Lo ol
€1 €92

Fig. 4.1. Fractional electrical circuit.

The electrical circuit is positive since the matrix A4 is
a Metzler matrix and the matrix B has nonnegative
entries.

We shall show that the positive electrical circuit is

reachable if and only if R; =0.If R; =0, then

Ry
L,
A= (4.7)
0o R
L,
and
i w gk kDp
O(N=2———=
= I [(k+1)p]
k
R
-1 4.8
o kD L 0 (4.8)
STk +1)B] 0 R
L,
and from (4.1) we obtain
s
R, = _(f)CD(T)BBTCDT(T)drz
L 0 4.9
t/ Lf 5 ( . )
= ®(r)d7
0l o L
L2
2

Matrix (4.9) is monomial and by Theorem 4.1 the
fractional positive electrical circuit is reachable if and

only if R, =0, since for R; #0 the matrix R s is not

monomial.
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The desired input which steers the state
i(f 0
x(t)z 1() from x, = to the final state
iy (t) 0
X; eﬂ?i is given by
u(t)=B"®" (1, -1)R;'x, =
1
k+pp-1|— O ||— O

w t,—t L L
:zf 1 1

S TR0 | 1|, R

Example 4.2. Consider the fractional electrical
circuit shown in Fig. 4.2 with given conductances G,

G/, G,, G,, G,,; capacitances C;,C, and source

voltages ¢,,e, .

Gi oy G2 oy Go
—|:l—'—<—|:|—-4-|:I—
€1<D Ci1== T ur Co=—= T U2 €2<D
G G’Qﬁ
Vo — 0

Fig. 4.2. Fractional electrical circuit.

Using Kirchhoff’s laws, we can write the equations

LS/ LS/
d” | _ G vl G u,
dt” | u, 0 G |[v 0 Gy |[u, ’
G, G,
O<ax<l 4.11)
and
{_Gn G, M"l}:
G, -G %
2 2L . (4.12a)
G0y G 0 |e¢
10 Gllu| |0 G le
where

G,=G+G +G,,G, =G, +G,+G},. (4.12b)
Taking into account that the matrix
-G G,
{ e } (4.13)
G, -Gy

is nonsingular and

33
-G, G, [
{ a ‘2} e R>? (4.14)
GIZ _Gzz
from (4.12) we obtain
-1
{Vl}:_[_Gn G12j| )
v G -G
’ 2 . . (415)
G 0 ||y . G 0 |e¢
0 Gj|lu, 0 G, e
Substitution of (4.15) into (4.11) yields
L R N P , (4.16a)
de” | u, | U, e,
where
G L
A=_ G , |:_Gll G12i| )
0 =z G12 _Gzz
G, |
Gy
G 0 G
’ | ' EMZ’
0 G G,
0 ==
G
G/ 0
- -1
Be_ (e ’ |:—G11 G12:| |:G1 Ojlemixz.(4,l6b)
0 i G, -Gy 0 G
C

From (4.16b) we can see that 4 is the Metzler matrix
and the matrix B has nonnegative entries. Therefore, the
fractional electrical circuit is positive for all values of
conductances and capacitances.

We shall show that the fractional positive electrical

circuit is reachable in time [O,If] if and only if
G, =0.

If G, =0, then matrices (4.16b) are diagonal of the
form

_ GIGIV 0
S G (G1 + Gl')
GG |
0 T A
G (G, +G,)
GIG{ O
5 |G (G, +G))
= (4.17)
0 G2G2’
G, (G2 + Gé)
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and
w gk (kl)a-1
o) =3 A1 - (4.18)
=0 [[(k+D]
' k
_ GlGl 0
_ i t(k+l)a—l Cl (Gl + Gl')
i Mk +1)a] 0 GG
G, (G2 + Gé)

From (4.1) we obtain
t,
R, = i(l)(r)BBTCDT(r)dT =.

2

0
T GG +6i) ® ()7 (4.19)
0 0 GZGé ‘
C, (G, +G)

From Theorem 4.1, the fractional positive electrical
circuit is reachable if and only if G;, =0, since the

matrix R, is monomial only if G, =0.

The input  which

x(t):u[el(t)} from xoz{o} to the final state
12(1) 0

X, € iRi is given by

desired steers the state

u(t)=B"®" (1, -1)R,'x,

(k+Da—1

¢ (1, -7) (4.20)

k=0 T[(k+Da]
B G] Gl, 0 k+1
CI(G1 +G{) 2l
- G.G 7 Xr
O 242
G (G, +Gy)

5. Observability

Consider the fractional positive electrical circuits
described by the equations

d“xc (1)
de” :|:A11 A12i||:xC (’)
d’x, () Ay Ay || x, (1)
de?

(5.1b)

where
X (1t A, A
x(f)=|: C( ):|,A=|: 11 12j|eiRn><n’CeiRpxn (5.10)
XL (t ) 4 Ay
and y(t) € R” is the output of the electrical circuit.
It is well-known that [10] fractional electrical circuit

(5.1) is positive if and only if

Ae M, and Ce R, (5.2

Definition 5.1. Fractional positive electrical circuit
(5.1) is called observable in time [O,zf] if (knowing)
the output y(I)E‘Rf for tE[O,tf]is known, it is
possible to  find
Xy = x(O) e R’ of the state vector x(l) eR.

uniquely the initial value
Theorem 5.1. Fractional positive electrical circuit

(5.1) is observable in time | 0,7 ifand only if the
7 y
matrix
Iy

V,=[® (£)C"CD,(r)dr

0

(5.3)

is monomial, where @, (t) is defined by (3.9b).
Proof. From (3.9a) for u(t) =0,7>0 we have

x(t) =Dy (1)x,. (5.4)
Substitution of (5.4) into (5.1b) yields
y(t)zCCDO(t)xo. (5.5

Premultiplying (5.5) by q)g (I)C " and integrating

the product in the interval [O,t f] , we obtain

)

[ @ (1)C"y(1)dr =

0
iy
= [ g (1)CTCOy(t)xy =V,x,.  (5.6)
0

From (5.6) we can find x, € R} if and only if
matrix (5.3) is monomial, and V' e R,

Having compared Theorem 4.1 and 5.1, we have the
following remark.

Remark 5.1. The conditions for observability of the
fractional positive electrical circuits are dual to the
reachability ones. By substituting in the reachability

conditions CD(t) and B by ¢)g (t) and C”, we obtain
the observability conditions.

6. Concluding remarks

The reachability and observability of the fractional

positive electrical circuits composed of resistors,
capacitors, coils and voltage (current) sources have been
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addressed. New necessary and sufficient conditions for
the reachability and observability of the fractional
positive electrical circuits have been proposed (Theo-
rems 4.1 and 5.1). The conditions for the observability
are dual to the conditions for the reachability (Remark
5.1). The effectiveness of the proposed conditions has
been demonstrated on examples of electrical circuits.

These considerations can be extended to fractional
positive discrete-time linear systems and to fractional
positive 2D continuous-discrete linear systems.
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