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Abstract: The positive and cone fractiona
continuous-time and discrete-time linear systems are
addressed. Sufficient conditions for the reachability of
positive and cone fractiona continuous-time linear
systems are given. Necessary and sufficient conditions
for the positivity and asymptotic stability of the
continuous-time linear systems with delays are
established. The realization problem for positive
fractional continuous-time systems is formulated and
solved. Necessary and sufficient conditions for the
positivity and practical stability of fractional linear
discrete-time systems are established. The linear matrix
inequality (LMI) approaches are applied to testing the
asymptotic stability of the positive fractional discrete-
time linear systems. Sufficient conditions for the
existence are established and procedures for computation
of positive and cone realizations of the discrete-time
linear systems are proposed.
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1. Introduction

In positive systems inputs, state variables and
outputs take only non-negative values. Examples of
positive systems are indudtrial processes involving
chemical reactors, heat exchangers and distillation
columns, storage systems, compartmenta systems, water
and atmospheric pollution models. A variety of models
having positive linear systems behavior can be found in
engineering, management science, economics, social
sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced. An
overview of state of the art in positive systems is given
in the monographs [8, 13]. The stability and robust
stability of positive and fractional 1D linear systems has
been investigated in many papers and books [1-8, 11-14]
aswdll as of 2D linear systems[15, 16, 21, 36, 39]. The
redization problem of positive continuous-time and
discrete-time linear systems has been considered in [18,
20, 22, 24, 29, 31, 37]. Recently, the reachahility,
controllability and minimum energy control of positive

linear discrete-time systems with time delays have been
considered in [47].

The first definition of the fractional derivative was
introduced by Liouville and Riemann at the end of the
19th century [50-52, 54, 55]. This idea was used by
engineers for modeling different processes in the late
1960s. The mathematical fundamentals of fractional
calculus are given in monographs [51, 52, 54, 55]. The
fractional order controllers were developed in [54].
Some other applications of fractional order systems can
be found in [53, 60, 61].

The main purpose of this paper is to give an
overview of some recent results on positive fractiona
and cone fractional continuous-time and discrete-time
linear systems with delays.

The paper is organized as follows. In section 2 the
positive and cone fractional linear continuous-time
systems are introduced and sufficient conditions for the
reachability are established. Necessary and sufficient
conditions for the positivity and asymptotic stability of
continuous-time system with delays are given in section 3.

The fractional discrete-time systems and their
practical stability are addressed in section 4. The LMI
approaches to testing the asymptotic stability of the
fractional systems are applied in section 5. The cone
redization problem for discrete-time linear systems is
formulated and solved in section 6. Concluding remarks
and open problems are outlined in section 7.

The following notation will be used: A - the set of

real numbers; A"™™ - the set of n” m real matrices;
AT™ _ the set of n” m matrices with nonnegative
entries;, AT=AT! M_ - the st of n" n Metzler
matrices (real matrices with nonnegative off-diagonal
entries); |, -the n” n identity matrix.

n

2. Pasitive fractional continuous-time linear
systems and cone fractional systems
The following Caputo definition of the fractional
derivative will be used asfollows[27, 44, 52]
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k-1<a £ki N={12..}, where al A is the order

k
of fractional derivativeand ™ ()= % .
Consider the continuous-time fractional linear
system described by the state equations
da
e X(t) = AX(t) + Bu(t), O<a £1, (29)
y(t) = Cx(t) + Du(t) (2b)

where x(t)T A", u@®)T A™, yt)T AP are the state,

input and output vectors and Al A"", BT A"™,
Cl APM DI AP™,

Theorem 1. [44] The solution of equation (2a) is
given by

t
X(t) =F o(t)% + ¢F (t- )But )dt, X(0) =%, ,(3)
0

where

¥ ks ka
o At
Fo)=E, (A*)=Qq

2 Ga +1)’ (4)

¥ Akt(k+1)a-1

F)=8 & —— 5
® ka:‘oq(k+1)a] ®)

and E, (At*) is the Mittag-Leffler matrix function,
¥
G(x) = (¢ "t*"*dt isthe gamma function.
0
Definition 1. [44] The system (2) is called the
internaly positive fractional system if and only if
x)T AT and y(t)T AP fort3 0 for any initia
conditions x,T A} andal inputs u(t)T AT, t3 0.
Theorem 2. [44] The continuous-time fractional
system (2) isinternally positive if and only if the matrix
AisaMetzler matrix and
Al M, BTAT™ Ci AP" DI AP™. (6
Following [18, 26] the definitions are recalled.

épr )
Definition 2. Let P:gM ﬂT A™" be nonsingular
&
and py bethek-th (k= 1,2,...,n) itsrow.
The set
I ~ 20 & 1]
P:=ix1T A": ] px3 Oy (7)
) k=1 g

is called thelinear cone generated by the matrix P.

In a similar way we may define for the inputs u the
linear cone

m
Q =ful A™: Jqus o) ©
1 k=1
ey U
generated by the nonsingular matrix Q:gM ﬂT Amm
&mfl
and for the outputs Y thelinear cone
p
V=ly AP fyye o) ©)
1 k=1
v, U
generated by the nonsingular matrix V = gM ﬂT APP
&5l

Definition 3. The fractional system (2) is caled
(P,Q .,V ) cone fractional system if xt)i P and
y®) TV, t20 forevery x,7 P, u)i Q ,t30.

The (P,Q ,V ) cone fractional system (2) will be
shortly called the cone fractional system. Note that if
P=A",Q =A™ V =A" thenthe (A}, AT,AP) cone
system is equivalent to the classical positive system [18,
26].

] Theorem 3. The fractiond system (2) is
(P ,Q ,V') cone fractional system if and only if

A=PAP'T AT", B=PBQ'T AT™,
C=VCP'T AP", D=VvDQ'T AP™ (10
Proof is given in [34].

3. Pogitive continuous-time sysemswith delaysand
their asymptotic gability

Consider the continuous-time linear system with g
delaysin sate

(1) = AX(t) +§ AX(t-d)+But) (113

y(t) = Cx(t) + Du(t) (11b)
where x(t)T A", u®)T A™, y(t)T AP are the dtate,
input and output vectors, A, k=0,1,..,q; B, C, D are
rell matrices of appropriate dimensions and d,,
k=12,...,q aeddays (d, 3 0).

Theinitia conditions for (11a) have the form

X(t) = %, (t) for t1 [-d,0], d = max d, (12)

where x,(t) isagiven vector function.
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Definition 4. The system (11) is called (internally)
positive if and only if x)I A7, yl A" for any
%, t)T A" andfor all inputs u(t)T AT, t3 0.

Theorem 4. The system (11) is (internally) positive
if and only if

ATM, ATA", k=1.,q, BT AT™ (13)
Cl AP", DT AP™
Proof isgiven in [35].

The positive system (11) is caled asymptotically
stable if and only if the solution of (11a) for
ut)=01 AT satisfies the condition limx(t)=0 for

t® ¥
x®)T A", 1 [-d,0].
Definition 5. Let a constant input u(t) =ul A™ be
applied to the positive asymptatically stable system (11).
A vector x T A" satisfying the equality

o:élq A X, +Bu (14)

k=0
is caled the equilibrium point of the system (11)
corresponding to theinput u.
If the positive system (11) is asymptotically stable,
then the matrix

q
A= AT M, (15
k=0
isnonsingular, and from (14) we have
x, =- A'Bu (16)

Theorem 5. The equilibrium point X, corresponding
to gtrictly positive Bu > 0 of the positive asymptotically
stable system (11) is trictly positive, i.e. x> 0.

Remark 1. For the positive asymptotically stable
system (11)

AT AT (an

This followsimmediately from (16) since Bul A"
isarbitrary.

Theorem 6. The positive sysem (11) is
asymptotically stable if and only if a drictly positive
vector| T A" exists and satisfies the equality

A <0, A= A (18)

k=0
Proof is given in [35].
Remark 2. As a grictly positive vector A the
equilibrium point (16) of the system can be chosen, since

A =A(-A'Bu)=-Bu<0 for Bu>0 (19)

Theorem 7. The positive system with delays (11) is
asymptotically stable if and only if the positive system
without delays

AT M, (20)

Qoo

k=Ax, A=

=~
1l

0
is asymptotically stable.

Proof is given in [35].

From Theorem 7 it follows that the checking of the
asymptotic stability of positive systems with delays (11)
can be reduced to checking the asymptotic stability of
corresponding positive systems without delays (20). To
check the asymptotic stability of positive system (11) the
following theorem can be used.

Theorem 8. [44, 45] The positive system with
delays (11) is asymptotically stable if and only if one of
the following equivalent conditions holds:

1) Eigenvalues s,s,,...,s, of the matrix

A have negativereal parts, Res, <0,k =1,...,n

2)  All coefficients of the characteristic

polynomial of the matrix A are positive
3) All leading principal minors of the matrix

gaﬂ am@ ,

— u

-ASgl .y (21)
&, - a,f

are positive, i.e.

|aaa|>0,‘a“ % >0,..,det[- AI>0 (22

1 2

Example 1. Using the conditions 2) and 3) of
Theorem 8, let us check the asymptotic stability of the
positive system (11) for g = 1 with the matrices

é-1 03u €0.5 0.1u

=z . =z p (23)
& &2 -14f A &.2 0.8
The characteristic polynomia of the matrix
é&05 04
A=A +A =4 - (24)
€04 -06y
has the form
s+05 -04
det[1 s- Al = =5’ +1.1s+0.14(25)
-04 s+0.6

and its coefficients are positive.
Leading principal minors of the matrix

505 -0.40
—A=§ H (26)
£04 064

are positive, since D, = 0.5, det[- A] =0.14.
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Therefore, the conditions 2) and 3) of Theorem 8 are
satisfied and the positive system (11) with (23) is
asymptotically stable.

Theorem 9. The positive system with delays (11) is
ungable for any matrices A, k = 1,...,q if the positive
system

%= AX (27)
isunstable.
Proof. By Theorem 6 if the system (27) is ungtable,

then a dtrictly positive vector | | A" does not exist as
far as Al <0. In this case a drictly positive vector
| T A" satisfying the inequality (18) does not exist,
since for the positive system AT A™" and Al 1 A",
k=1,..,0.

Theorem 10. [35] If at least one diagonal entry of
the matrix A, is positive, the positive system (11) is
unstableforany AT A"", k=1,...,q.

These considerations can be extended to positive
fractional continuous-time systems with delays.

4. Positive fractional discrete-time systems and
their practical stability

In this paper the following definition of the
fractional discrete derivative

k
D', =4 (-3 @)
i=0
is used, where al A

discrete difference, and

a§ Sxk_j ,0<a <1
8] [}

is the order of the fractiona
]

11 for j=0

.|

o i

(29)

a(a DL (a- j+)

T j!
Consider the fractional discrete linear system,
described by the state-space equations

A% +Buy,
=Cx, +Du,

for j=12,..

D* X4y = kT z, (30a)

(30b)
where x T A", u 1 A™, vy 1 AP are the state, input
and output vectorsand AT A"", BT A™™ Ci AP ",
DI AP™

Using the definition (28), we may write the
equations (30) in the form

k+l

ata 1)J

j=1

_xk = A% +BU, kT Z,(313)
lo

Y = Cx + Duy (31b)

Definition 6. The system (31) is called the (internaly)

positive fractional system if and only if X 1 A" and

y I AP, ki z, for any initid conditions x,1 A"
ki z,

Theorem 11. The solution of equation (31a) isgiven

and all input sequences u, 1 A",

by
k1
% =Fota Fy.i.Bu (32)
i=0
where F isdetermined by the equation
k+1 . w O
k+1 (A+I a)F +a ( 1)I 18 —Fk i+1 (33)
with F, =
The proof isgiven in [25, 44].
Lemma 1. According to [25, 44] if
O<a £1 (34
then
12050 for i=12,.. (35)
g

Theorem 12. According to [25, 44] let0<a <1.
Then the fractional system (31) is positiveif and only if

A+lal AT", BT A™™, CT A"", DI A"™ (36)
From (29) and (35) it follows that the coefficients

¢ =c,@)=(-1)' gilf j=12.. (37
%)

decrease steeply with increasing j and they are positive
for 0<a <1. In practical problemsit isassumed that j is
bounded by some natural number h. In this case the
equation (31a) takes the form

h
=Ax+acx.  +Bu, kiz (39
j=1

where
A =A+la (39)

Note that the equations (38) and (31b) describe a
linear discrete-time system with h delaysin Sate.

Definition 7. The positive fractional system (31) is
called practically stable if and only if the system (38),
(31b) isasymptotically stable.

Defining the new state vector

éx,
e u
%k eXklu
gMu

(40)

(3<<'D
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we may write the equations (38) and (31b) in the form

%., =A% +Bu, ki Zz, (413)
Y, :d/Exk + If@uk (41b)
where
éA, cl, cl, Craln GlaU N
é a eBl
g, 0 0 0 0 4 &l
k=0 1. o0 0 0 ai A" g=¢€"Uj AMm
é u éllu
é... ee aee was U eog
@ 0 0 I, 0 H e
¢=[c 0 .. O]l AP" B=D= AP", H=(1+h)n

(41c)
To test the practica dability of the positive
fractional system (31) the well-known conditions for

positive systems [13] can be applied to the system (41).
Theorem 13. The positive fractional system (38) is
practically stable if and only if one of the following

conditions is satisfied:

1) the moduli of eigenvalues %, k=1..,h of the
matrix A arelessthen 1,i.e
| % |<1for k=1,..,f,

2) det[zl, - At O for |z<1,
3 r(A) <1, where r(A) is the spectra radius
defined by r (A) = max{| %, [} of thematrix A,
1EKER

(42)

4) al coefficients &, i =0,1,...,fi- 1 of the charac-
terigtic polynomial
p,(2) =delfl,(z+1)- K=2"+8, 2" +. +8z+4

43
of the matrix [A- |,] are positive.
All principal minors of the matrix
& - A
(Io- A=l .. g (44)
En - axfl
are positive, i.e.
|4, >0, b & >0,..,detfl, - A|>0 (45
8y 8y
There exist grictly positive vectors
xT Al i=01,..,h satisfying
X <Xy X <X Xyg <X (46)
such that
AX+CX .. +GX <X (47)

Proof isgivenin [17, 44].
Example 2. Check the practical stability of the
positive fractional system

D'x.,, =01x, ki Z (48)

+

fora =05and h=2

Using (37), (39) and (41c), we obtain

_a(l-a)_1 1

, C,=—, a =06  (49)
2 8" ? 16 %

and

)
o .0
I
(@]
o

(D:(D> (D> (D> (D> (DD~
o 0l

=

[e])

c

ol (50

=

1
@D D> D
(@)
o o$
[co Y Y
o
[EEY

In this case the characterigic polynomial (43) has
the form

z+04 -0.125 - 0.062
p:(2) =det[l;(z+])- A]=| -1  z+1 0
0 -1 z+1
=74 +2.47° +1.6752+0.2125
(51)

All coefficients of the polynomial (51) are positive
and by Theorem 13 the system is practically stable.

Theorem 14. The positive fractional system (31) is
practically stable only if the positive system

X =A X, kI Z (52)
is asymptotically stable.
Proof. From (47) we have
(A - 1)%+cX +..+¢ X, <O0. (53)

Note that the inequdity (53) may be satisfied only if
such adtrictly positive vector x, T A" existsthat

(A - 1.)% <0
and since ¢ X, +...+c. X, >0.

The condition (54) implies the asymptotic stability
of the positive system (52).

From Theorem 14 we have the following important
corollary.

Corollary 1. The positive fractional system (31) is
practically unstable for any finite h if the positive system
(52) isungable.

Theorem 15. The positive fractional system (31) is
practically unstable if at least one diagonal entry of the
matrix A isgreater than 1.

(54)

Proof. The proof follows
Theorems 14 and 13.

Example 3. Consider the autonomous positive
fractional system described by the equation

205 10, -
= o Kz,
g2 osf

for a =0.8 andany finite h. Inthiscase n=2 and

immediately from

D" Xt (55)
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€0.3 1y
A+l a =
A= e2 1.3”

By Theorem 15 the positive fractional system is
practically unstable for any finite h since the entry (2,2)
of the matrix (56) is greater than 1. The same result
follows from the fact that the characterigtic polynomial
of thematrix A - I

(56)

pA(2) =det[l;(z+1) - A]:é =72+04z- 221

+07 -1
g -2

z+2. 3L<'
(57)
has one negative coefficient §, =-2.21.

5. Application of LMI
discrete-time systems
Definition 8. [38] An inequality of the form

F(x)+F>0 (58)
where x takes values in the real vector space V, the
mapping F:V ® S" islinear, and F1 S", iscalled the
linear matrix inequality (LMI). The LMI is cdled
feasible if such xi1 Vv exigts that the inequdity (58) is
satisfied; otherwise the LMI is called infeasible.

Lemma 2. [38] A nonnegative matrix A=A"" is

Schur matrix if and only if the LMI

approach to positive

:A -B,- ARA -cAR
e "GPA  R-R-GR
blockdlag%g 1 I (@]
& -GuPRA e Ry
f& -aRA - cGR
is feasible with respect to the diagonal matrices B,...,P,,, .

2) The LMI

|eAiP+PAi 2B, R, +c¢PR
1é

1 & P, +c P - 2R,
blockdiag |§ M W @)
é
:(:3 (onn o1 0
i& cR 0
is feasible with respect to the diagonal matrices p,,...,R., -
3) TheLMI
e R 0 0 -AR -PR
ié
ie O ) 0O -¢R O
Tée N N N N
g0 o0 P, -GR O
blockdiag | g h+1 h'1
ia PA -cR ah R 0
fe-p 0 0 0o PR
:.:g [ [ [ [ [
i§0 0 . -R, 0 0

Proof is given in [38].

blockdiag[P- ATPA, P] f0
is feasible with respect to the diagonal matrix P.
Lemma 3. [38] A Metzler matrix A=A"" is
Hurwitz matrix if and only if the LMI
blockdiag[- (A'TP+PA), P]fO0
is feasible with respect to the diagonal matrix P.
It is well-known [38] that A=A"" is Schur matrix
if and only if (A- 1) isHurwitz matrix.

(59)

(60)

Lemma 4. [38] A nonnegative matrix A=A"" is
Schur matrix if and only if the LMI

blockdiagl[- ((A- 1,)"P+P(A- 1,)), P]F0(61)
is feasible with respect to the diagonal matrix P.

Lemma 5. [38] A nonnegative matrix A=A"" is
Schur matrix if and only if the LMI

éP -API _{
blockdlag] & 3 nyo (62)
fe P o p

is feasible with respect to the diagonal matrix P.

Theorem 16. The positive fractional system (31) is
practically stable if and only if one of the following
equivalent conditions

- ¢, AR GARU & 0 .. 0 ogﬁ
U e
- CGy1P - CCR a O R .. 0 0y 63
N W4 @& u o Mé'/fo (63)
u e :
-Ru-CiiR - Ch-lchplg (E:‘O 0 .. R O Oy
- Ch1GhR B - CﬁFiH g€ 0 .. O Ph+1lj'3
Cy, 1P1 ChP:L U ePl 0 0 0 []U
e !
0 0y & PR 0 0y -~
! T -VI I o T % 0
u e ]
- 2R, Ra a g0 0 R0 l:l:‘
P, -2PH 80 O 0 Rt
0 u a
u |
0 g ¢ 0 o ol
hu e a
p U g0 R 00y (65)
mUe O 0 N Gyfo
u éO 0 Ph 0 Oy
0a ¢ Ui
i 80 0 .. 0 R,H
M ” .I.
l} .
Pl b
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6. Cone-realization problem for discrete-time
systemswith delays

Consider the discrete-time linear systems with
delays

X = ApX + AX ., +Bou + B, (662)

y, =Cx, +Du,, il Z, ={01,..} (66b)

where x T A", u1T A™, y 1 AP are the state, input
and output vectors and A, AT A"", B,, BT A"™™,
CiT A"", DT A"™.
Using Definition 2, it is easy to show that [32] the
transfer matrix
T(2)=C[l,2*- Az- A]"'(B,z+B,) +D(67)
of the (P ,Q ,V )-system (66) and the transfer matrix
T(2=C[l,2*- Az- A]"'(B,z+B,)+D (69)
of the positive system (66) are related by the equality
T(2=VT(9Q™ (69)

Consider the linear system (66) with its transfer
matrix (67). Let A" ™(z) be the set of p° m rational
proper matrices.

Definition 9. Matrices AT A", B/ A"™,
k=01 CT A®" DI A"" aecdleda(P,Q,V )-
cone realization of a given proper T(z) if they satisfy
the equality (67) and the conditions

PAP*T AT", PBQ'T AT™ k=01,

+ 1

VCP'T AP, vDQ'T AP (70)

where P, Q and V are nonsingular matrices generating
theconesP ,Q andV , respectively.

The (P,Q,V )-cone redlization problem can be
stated as follows: being given a proper rational matrix
T(2)1 A"™(2) and non-singular matrices P, Q, V
generating cones P ,Q andV , finda(P,Q ,V )-cone
redlization of T(z2).

A procedure for computation of a (P,Q ,V )-cone
redization of T(z) will be proposed and solvability

conditions of the problem will be established.
From (68) we have

D =1imT(2) (71)
Z® ¥
since limz*(1,2* - Aiz- A)"" =0.
The strictly proper part of T(z) isgiven by
T,(29=T(9-D. (72)

It is easy to show that if the matrices Aq and A; have
the following forms

© . 0 au
é a
Q0 .. 0 3 a
A=80 .. 0 a Gl A"
é a
80 : 0 a2n-1H
é0 0 0 & u
é a
al O 0 a a s
A=€0 1 .. 0 a G A™ (3
é a
& 0 1 3yl
then
d(2) =det[l ,z° - Ayz- A]=2""- a,,, 2" - .- az- q,
(74)
and the n-th row of the adjoint matrix
Adj[l,,2* - Ajz- A] hastheform
R(=1 z*2 z* .. z2"™V] (75)

The strictly proper T,(2) can be aways written in

theform
&N,(2) 0
ed(Z)U
— e 1\’
T.2=a I § (76)
&N, (2
&d, (24
where

2

d(2)=2" - & 2q-1Z l--a,2- 8y, i=1..,p

77
is the least common denominator of the i-th YO\EV 31‘
Ty (2) and
Ni(2) =[n.(2) n,(2) Nm(2)], 1=1.., P 78
n (2 =n"*z% "+ +niz+ng, j=1..m

To the polynomial (77) we associate the pair of the
matrices

€0 .. 0 a u
é a
B é0 0 a, a
A, =€0 0 ag Ul Av 9,
é a
& .. 0 ay..f
€0 0 0 a, U
&L 0 0 a, §
A =60 1 0 a, U Avai=l , p(79)
é a
& 0 .. 1 a,,.4H
satisfying the condition
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d (2) =det[l,z*- Ayz- A)l, i=1...p (80)

Let
C =block diag[C, C, C,l.
C=[0 0 1T A™8i=1..p (81)
and
€0 éhu
G U Gyel
2jU pk = €% U k=0Li=L..,p; j=1..,m
eyu™ eyd
G Y Gka Y
Psa @0

(82
be the j-th column of the matrix B, (k=0,).

It is easy to show [32] that the entries of By, k =0,1
are given by

0 — 201 ol — ~2(c-1) 01 _ 1l il — 10 L

blj =n; ,blj =n;* 7., blj —nlj,blj =n;, j=1..m

0q, _ 20,-1 p1q, _ 2(d,-1) 0l _ 1 il _ 20

by” =g b" =g by =My, by =Ny (83)

Theorem 17. [32] There exists a positive realization
A" BT AT™ CI AP" DI AP™ of 'T(z)hc
(84)

|

DTE)=limT ()T AL"
2) the coefficients of d (), i =1,.., p ae nonnegative,
i.e
a;%0 fori=1..p;j=01..2q -1 (85)
3) ny 3 ofori=04,...,p; j =1,...m k=01...2q - 1 (86)
If the conditions (84), (85) and (86) are satisfied, a
positive realization of T (z) can be computed by the use
of the following procedure.
Procedure 1.
Step 1. Using (71) and (72) find D] AP™ and the
strictly proper matrix T_Sp (2)-
Step 2. the  coefficients a;
(i=04..,p; j=04,..,2q - 1) of d (2, i =1..,p, find
the matrices (79) and
A, =block diag[A,,, ..., pr]T Amn
A =block diag[A;,..., Klp]T Amn
Step 3. the  coefficients ”i'f
(i=04...,p;j=1...mk=01..2q -1) of N. (2
(i=1..,p)and using (82) find B, for k=041 and the
matrix C of the form (81).
A (P,Q,V )-cone
T(2)T AP™(z) and non-singular matrices P, Q, V can
be computed by the use of the following procedure.

Knowing

(87)

Knowing

realization for a given

Procedure 2.
Step 1. Knowing T(z) and the matrices V, Q and using
(69) compute the transfer matrix T ().
Step 2. Using Procedure 1, compute a positive
redization A , B,, k=01, C, D of thetransfer matrix
T(2).
Step 3. Using therelaions

A =P'AP, B, =P'BQ, k=01,
C=V''CP, D=V'DQ

compute the desired redlization.

Theorem 18. A (P,Q,V )-cone redlization of

(88)

T(2) existsif and only if a positive realization of T (2)
exists.

The proof follows immediately from Procedure 2

From Theorem 17 for single-input single-output
system (m= p=1) we obtain the following important
corollary.

Corollary 2. There exists a (P,Q,V )-cone

redization A, By, k = 0,1, C, D of the transfer function
T(2) if and only if there exist a positive realization A ,
B., k=01, C, D of T(z) and the redlization are
related by

A =P'AP, B =P'Bg, k=01 C=CP

(or B, =P'B, and C=gCP) D =kD
where g =QV ' isascaar.

For m= p =1 thetransfer functions T(z) and T(z)

relateto T(2) = gT(2).

(89)

7. Concluding remarks and open problems

The positive fractional and cone fractional linear
continuous-time and discrete-time systems have been
addressed. The cone fractiona linear systems have been
introduced. Necessary and sufficient conditions for the
positivity and asymptotic stability of the continuous time
linear systems with delays have been given. It has been
shown that the checking of the asymptotic stability of
these positive systems can be reduced to checking the
asymptotic stability of corresponding positive systems
without delays. Necessary and sufficient conditions for
the positivity and practical stability of fractiona linear
discrete-time systems have been established. It has been
shown that the LMI approaches can be successfully
applied to testing the asymptotic stability of the positive
fractional linear discrete-time systems. The realization
problem for the discrete-time linear systems with delays
have been formulated and solved. Sufficient conditions
for the exigence and procedures for computation of the
positive and cone redlizations have been proposed. Many
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of these results can be extended to 2D positive fractional
linear systems.

Extensions of these considerations for the following
classes of systems are open problems:

1) 1D and 2D varying positive linear systems,

2) 2D hybrid systems without and with delays,

3) 2D Lyapunov systems,

4) 1D and 2D positive fractional switching systems.
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JOJATHI JPOBOBI TA KOHIYHI IPOBOBI
JITHIAHI CHCTEMM 13 3BATPUMKOIO

Taneym Kagopex

VY crarTi po3MISIHYTO JOAATHI Ta KOHIYHI JPOOOBI
HETepepBHI Ta JMCKPETHI B 4Yaci JHIHHI CHUCTEMHU.
Hapemeno mocTaTHi yMOBHM I JMOCSDKHOCTI TaKHX
cucreM. BcTaHOBIIEHO HEOOXIHI Ta JOCTaTHI YMOBH JIJIS
JIOAATHOCTI Ta aCUMITOTHYHOI CTaOlLIBHOCTI Herepeps-
HUX y 4Yaci JIHIHHUX cucTeM i3 3atpumkoro. Cdop-
MYJIbOBAHO Ta PO3B’sA3aHO MPOOJIEMY peaizalii Joaat-
HUX JIpoOOBHX HENEpepBHUX y Yaci cucTeM. BcraHoB-
JIHO HEOOXiZHI Ta JOCTaTHI YMOBH IJIsl JONATHOCTI Ta
MPaKTHYHOI CTaOIBHOCTI qPOOOBUX AMCKPETHHX Y Yaci
JMHIHHUX cucTeM 3acTOCOBAHO MiJXiJ JIHIMHHOI MaT-
puunoi HepiHocti (JIMH) mis mepeBipku acumr-
TOTHUYHOI CTA0IJILHOCTI TOJATHUX IPOOOBHUX JTUCKPETHUX
y 4aci JiHIHHUX cucTeM. BCTaHOBJIEHO JOCTAaTHI YMOBH
JUIs ICHYBaHHS Ta 3alpoNOHOBAaHO MpOLEAYpPH IS
PO3paxyHKy JOAATHUX Ta KOHIYHHMX peai3allii JHCK-
PETHHX Y Yaci JTiHIHHAX CHCTEM.
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