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Abstract: The positive and cone fractional 

continuous-time and discrete-time linear systems are 
addressed. Sufficient conditions for the reachability of 
positive and cone fractional continuous-time linear 
systems are given. Necessary and sufficient conditions 
for the positivity and asymptotic stability of the 
continuous-time linear systems with delays are 
established. The realization problem for positive 
fractional continuous-time systems is formulated and 
solved. Necessary and sufficient conditions for the 
positivity and practical stability of fractional linear 
discrete-time systems are established. The linear matrix 
inequality (LMI) approaches are applied to testing the 
asymptotic stability of the positive fractional discrete-
time linear systems. Sufficient conditions for the 
existence are established and procedures for computation 
of positive and cone realizations of the discrete-time 
linear systems are proposed. 

Key words: fractional, positive, continuous-time, 
discrete-time, linear, system, reachability, controllability, 
realization problem, LMI approach. 

1. Introduction 
In positive systems inputs, state variables and 

outputs take only non-negative values. Examples of 
positive systems are industrial processes involving 
chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water 
and atmospheric pollution models. A variety of models 
having positive linear systems behavior can be found in 
engineering, management science, economics, social 
sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive 
systems is more complicated and less advanced. An 
overview of state of the art in positive systems is given 
in the monographs [8, 13]. The stability and robust 
stability of positive and fractional 1D linear systems has 
been investigated in many papers and books [1-8, 11-14] 
as well as of 2D linear systems [15, 16, 21, 36, 39]. The 
realization problem of positive continuous-time and 
discrete-time linear systems has been considered in [18, 
20, 22, 24, 29, 31, 37]. Recently, the reachability, 
controllability and minimum energy control of positive 

linear discrete-time systems with time delays have been 
considered in [47]. 

The first definition of the fractional derivative was 
introduced by Liouville and Riemann at the end of the 
19th century [50-52, 54, 55]. This idea was used by 
engineers for modeling different processes in the late 
1960s. The mathematical fundamentals of fractional 
calculus are given in monographs [51, 52, 54, 55]. The 
fractional order controllers were developed in [54]. 
Some other applications of fractional order systems can 
be found in [53, 60, 61].  

The main purpose of this paper is to give an 
overview of some recent results on positive fractional 
and cone fractional continuous-time and discrete-time 
linear systems with delays. 

The paper is organized as follows. In section 2 the 
positive and cone fractional linear continuous-time 
systems are introduced and sufficient conditions for the 
reachability are established. Necessary and sufficient 
conditions for the positivity and asymptotic stability of 
continuous-time system with delays are given in section 3.  

The fractional discrete-time systems and their 
practical stability are addressed in section 4. The LMI 
approaches to testing the asymptotic stability of the 
fractional systems are applied in section 5. The cone 
realization problem for discrete-time linear systems is 
formulated and solved in section 6. Concluding remarks 
and open problems are outlined in section 7. 

The following notation will be used: ℜ  - the set of 
real numbers; mn×ℜ  - the set of mn ×  real matrices; 

mn×
+ℜ  - the set of mn ×  matrices with nonnegative 

entries; 1×
++ ℜ=ℜ nn , nM  - the set of nn ×  Metzler 

matrices (real matrices with nonnegative off-diagonal 
entries); nI  - the nn ×  identity matrix. 

2. Pasitive fractional continuous-time linear 
systems and cone fractional systems 

The following Caputo definition of the fractional 
derivative will be used as follows [27, 44, 52] 
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Consider the continuous-time fractional linear 
system described by the state equations 

 10),()()( ≤<+= α
α

α

tButAxtx
dt
d , (2a) 

 )()()( tDutCxty += , (2b) 

where ,)( ntx ℜ∈  ,)( mtu ℜ∈  pty ℜ∈)(  are the state, 

input and output vectors and ,nnA ×ℜ∈  mnB ×ℜ∈ , 
npC ×ℜ∈ , mpD ×ℜ∈ . 

Theorem 1. [44] The solution of equation (2a) is 
given by 
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and )( α
α AtE  is the Mittag-Leffler matrix function, 

∫
∞

−−=Γ
0

1)( dttex xt  is the gamma function. 

Definition 1. [44] The system (2) is called the 
internally positive fractional system if and only if 

ntx +ℜ∈)(  and pty +ℜ∈)(  for 0≥t  for any initial 

conditions nx +ℜ∈0  and all inputs ,)( mtu +ℜ∈  .0≥t  
Theorem 2. [44] The continuous-time fractional 

system (2) is internally positive if and only if the matrix 
A is a Metzler matrix and 
 mpnpmn

n DCBMA ×
+

×
+

×
+ ℜ∈ℜ∈ℜ∈∈ ,,, . (6) 

Following [18, 26] the definitions are recalled. 
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np

p
P ×ℜ∈
















= M

1

 be nonsingular 

and pk be the k-th (k = 1,2,…,n) its row. 
The set 
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is called the linear cone generated by the matrix P. 

In a similar way we may define for the inputs u the 
linear cone 
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and for the outputs y  the linear cone 
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Definition 3. The fractional system (2) is called 
( VQP ,, ) cone fractional system if ( )x t ∈P  and 

( )y t ∈V , 0t ≥   for every P∈0x , ( )u t ∈Q , 0.t ≥  

The ( VQP ,, ) cone fractional system (2) will be 
shortly called the cone fractional system. Note that if 

n
+= ℜP , ,m

+ℜ=Q  n
+ℜ=V   then the ),,( pmn

+++ ℜℜℜ cone 
system is equivalent to the classical positive system [18, 
26]. 

Theorem 3. The fractional system (2) is 
( VQP ,, ) cone fractional system if and only if  

 1 ,n nA PAP− ×
+= ∈ℜ  1 ,n mB PBQ− ×

+= ∈ℜ  

 1 ,p nC VCP− ×
+= ∈ℜ  mpVDQD ×

+
− ℜ∈= 1 . (10) 

Proof is given in [34]. 

3. Positive continuous-time systems with delays and 
their asymptotic stability 

Consider the continuous-time linear system with q 
delays in state 
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k k
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x t A x t A x t d Bu t
=

= + − +∑&  (11a) 

 ( ) ( ) ( )y t Cx t Du t= +  (11b) 

where ( ) ,nx t ∈ℜ  ,)( mtu ℜ∈  pty ℜ∈)(  are the state, 
input and output vectors, , 0,1,..., ;kA k q=  B, C, D are 

real matrices of appropriate dimensions and ,kd  

1, 2,...,k q=  are delays ( 0)kd ≥ . 
The initial conditions for (11a) have the form 

 0( ) ( )x t x t=  for [ ,0], max kk
t d d d∈ − =  (12) 

where 0 ( )x t  is a given vector function. 
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Definition 4. The system (11) is called (internally) 
positive if and only if ( ) ,nx t +∈ℜ  ny +∈ℜ  for any 

0 ( ) nx t +∈ℜ  and for all inputs ( ) , 0.mu t t+∈ℜ ≥  
Theorem 4.  The system (11) is (internally) positive 

if and only if 
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Proof is given in [35]. 
The positive system (11) is called asymptotically 

stable if and only if the solution of (11a) for 
( ) 0 mu t += ∈ℜ  satisfies the condition lim ( ) 0

t
x t

→∞
=  for 

0 ( ) , [ ,0].nx t t d+∈ℜ ∈ −  

Definition 5. Let a constant input ( ) mu t u += ∈ℜ  be 
applied to the positive asymptotically stable system (11). 
A vector n

ex +∈ℜ  satisfying the equality 
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is called the equilibrium point of the system (11) 
corresponding to the input u. 

If the positive system (11) is asymptotically stable, 
then the matrix 
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q

k n
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A A M
=
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is nonsingular, and from (14) we have 

 1
ex A Bu−= −  (16) 

Theorem 5. The equilibrium point xe corresponding 
to strictly positive Bu > 0 of the positive asymptotically 
stable system (11) is strictly positive, i.e. xe > 0. 

Remark 1. For the positive asymptotically stable 
system (11) 

 1 n nA− ×
+− ∈ℜ  (17) 

This follows immediately from (16) since nBu +∈ℜ  
is arbitrary. 

Theorem 6. The positive system (11) is 
asymptotically stable if and only if a strictly positive 
vector nλ +∈ℜ  exists and satisfies the equality 
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Proof is given in [35]. 
Remark 2.  As a strictly positive vector λ the 

equilibrium point (16) of the system can be chosen, since 

 1( ) 0A A A Bu Buλ −= − = − <   for  0Bu >  (19) 

Theorem 7. The positive system with delays (11) is 
asymptotically stable if and only if the positive system 
without delays 
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is asymptotically stable. 
Proof is given in [35]. 
From Theorem 7 it follows that the checking of the 

asymptotic stability of positive systems with delays (11) 
can be reduced to checking the asymptotic stability of 
corresponding positive systems without delays (20). To 
check the asymptotic stability of positive system (11) the 
following theorem can be used. 

Theorem 8. [44, 45]  The positive system with 
delays (11) is asymptotically stable if and only if one of 
the following equivalent conditions holds: 

1) Eigenvalues 1 2, ,..., ns s s  of the matrix 

A have negative real parts, Re 0, 1,...,ks k n< =  
2)  All coefficients of the characteristic 

polynomial of the matrix A are positive 
3)  All leading principal minors of the matrix 
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are positive, i.e. 
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| | 0, 0, ... , det[ ] 0aa
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Example 1. Using the conditions 2) and 3) of 
Theorem 8, let us check the asymptotic stability of the 
positive system (11) for q = 1 with the matrices 

 
0 1

1 0.3 0.5 0.1
,

0.2 1.4 0.2 0.8
A A

−   
= =   −   

 (23) 

The characteristic polynomial of the matrix 

 
0 1

0.5 0.4
0.4 0.6

A A A
− 
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 (24) 

has the form 

 20.5 0.4
det[ ] 1.1 0.14

0.4 0.6n

s
I s A s s

s
+ −

− = = + +
− +

(25) 

and its coefficients are positive. 
Leading principal minors of the matrix 

 0.5 0.4
0.4 0.6

A
− 

− =  − 
 (26) 

are positive, since 1 0.5, det[ ] 0.14.A∆ = − =  
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Therefore, the conditions 2) and 3) of Theorem 8 are 
satisfied and the positive system (11) with (23) is 
asymptotically stable. 

Theorem 9. The positive system with delays (11) is 
unstable for any matrices Ak, k = 1,…,q if the positive 
system 

 0x A x=&  (27) 
is unstable. 

Proof. By Theorem 6 if the system (27) is unstable, 
then a strictly positive vector nλ +∈ℜ  does not exist as 
far as 0 0.A λ <  In this case a strictly positive vector 

nλ +∈ℜ  satisfying the inequality (18) does not exist, 

since for the positive system n n
kA ×

+∈ℜ  and ,n
kA λ +∈ℜ  

1,..., .k q=   
Theorem 10. [35] If at least one diagonal entry of 

the matrix A0 is positive, the positive system (11) is 
unstable for any ,n n

kA ×
+∈ℜ  1,..., .k q=  

These considerations can be extended to positive 
fractional continuous-time systems with delays. 

4. Positive fractional discrete-time systems and 
their practical stability 

In this paper the following definition of the 
fractional discrete derivative  
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is used, where α ∈ℜ  is the order of the fractional 
discrete difference, and 

 
1 for 0

( 1) ( 1) for 1,2,...
!

j

j
j j

j

α

α α α


 =
  =  

   − − + =


L

 (29) 

Consider the fractional discrete linear system, 
described by the state-space equations 

 1 ,k k kx Ax Bu k Zα
+ +∆ = + ∈  (30a) 

 k k ky Cx Du= +  (30b) 

where ,n
kx ∈ℜ  ,m

ku ∈ℜ  p
ky ∈ℜ  are the state, input 

and output vectors and ,n nA ×∈ℜ  ,n mB ×∈ℜ  ,p nC ×∈ℜ  

.p mD ×∈ℜ  
Using the definition (28), we may write the 

equations (30) in the form 
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 k k ky Cx Du= +  (31b) 
Definition 6. The system (31) is called the (internally) 

positive fractional system if and only if n
kx +∈ℜ  and 

,p
ky +∈ℜ  k Z+∈  for any initial conditions 0

nx +∈ℜ  

and all input sequences ,m
ku +∈ℜ  k Z+∈  

Theorem 11. The solution of equation (31a) is given 
by 
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where kΦ  is determined by the equation 
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with 0 .nIΦ =  
The proof is given in [25, 44]. 
Lemma 1. According to [25, 44] if 

 0 1α< ≤  (34) 
then 

 1( 1) 0i

i
α+  

− > 
 

  for  1,2,...i =  (35) 

Theorem 12. According to [25, 44] let 0 1α< < . 
Then the fractional system (31) is positive if and only if 

 ,n n
nA I α ×

++ ∈ℜ  ,n mB ×
+∈ℜ  ,p nC ×

+∈ℜ  p mD ×
+∈ℜ  (36) 

From (29) and (35) it follows that the coefficients  

 ( ) ( 1) , 1,2,...
1

j
j jc c j

j
α

α
 

= = − = + 
 (37) 

decrease steeply with increasing  j and they are positive 
for 0 1.α< <  In practical problems it is assumed that j is 
bounded by some natural number h. In this case the 
equation (31a) takes the form 
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x A x c x Bu k Zα+ − +
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where 
 nA A Iα α= +  (39) 

Note that the equations (38) and (31b) describe a 
linear discrete-time system with h delays in state. 

Definition 7. The positive fractional system (31) is 
called practically stable if and only if the system (38), 
(31b) is asymptotically stable. 

Defining the new state vector 
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we may write the equations (38) and (31b) in the form 
 1 ,k k kx Ax Bu k Z+ += + ∈% %% %  (41a) 

 k k ky Cx Du= +% %  (41b) 
where

[ ]

1 2 1...
0 0 ... 0 0
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... ... ... ... ... ...
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To test the practical stability of the positive 
fractional system (31) the well-known conditions for 
positive systems [13] can be applied to the system (41). 

Theorem 13. The positive fractional system (38) is 
practically stable if and only if one of the following 
conditions is satisfied: 

1) the moduli of eigenvalues , 1,...,kz k n= %%  of the 

matrix A%  are less then 1, i.e. 
 | | 1kz <%  for 1,...,k n= % , (42) 

2) det[ ] 0nzI A− ≠%
%  for | | 1z < ,  

3) ( ) 1Aρ <% , where ( )Aρ %  is the spectral radius 

defined by 
1

( ) max{| |}kk n
A zρ

≤ ≤
=

%
% % of the matrix A% , 

4) all coefficients , 0,1,..., 1ia i n= −% %  of the charac-
teristic polynomial 

1
1 1 0( ) det[ ( 1) ] ...n n

n nAp z I z A z a z a z a−
−= + − = + + + +% %

% % %
% % % %  

 (43) 
of the matrix [ ]nA I− %

%  are positive. 
All principal minors of the matrix 
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21 22
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There exist strictly positive vectors 
, 0,1,...,n

ix i h+∈ℜ =  satisfying  

 0 1 1 2 1, ,..., h hx x x x x x−< < <  (46) 
such that 

 0 1 1 0... h hA x c x c x xα + + + <  (47) 
Proof is given in [17, 44]. 

Example 2. Check the practical stability of the 
positive fractional system 

 1 0.1 ,k kx x k Zα
+ +∆ = ∈  (48) 

for 0.5α =  and 2.h =  
Using (37), (39) and (41c), we obtain 

 6.0,
16
1,

8
1

2
)1(

21 ===
−

= α
αα acc  (49) 

and 

 
1 2

1 10.6
8 16

1 0 0 1 0 0
0 1 0 0 1 0

a c c
A
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 
  
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In this case the characteristic polynomial (43) has 
the form 

2125.0675.14.2

110
011
0625.0125.04.0

]~)1(det[)(

23

~~

+++=

+−
+−

−−+
=−+=

zzz

z
z

z
AzIzp nA

 (51) 
All coefficients of the polynomial (51) are positive 

and by Theorem 13 the system is practically stable. 
Theorem 14. The positive fractional system (31) is 

practically stable only if the positive system 

 1 ,k kx A x k Zα+ += ∈                        (52)  

is asymptotically stable. 
Proof. From (47) we have 

 0 1 1( ) ... 0n h hA I x c x c xα − + + + < . (53) 
Note that the inequality (53) may be satisfied only if 

such a strictly positive vector 0
nx +∈ℜ  exists that 

 0( ) 0nA I xα − <  (54) 

and since 1 1 ... 0.h hc x c x+ + >  
The condition (54) implies the asymptotic stability 

of the positive system (52).  
From Theorem 14 we have the following important 

corollary. 
Corollary 1. The positive fractional system (31) is 

practically unstable for any finite h if the positive system 
(52) is unstable. 

Theorem 15. The positive fractional system (31) is 
practically unstable if at least one diagonal entry of the 
matrix Aα

 is greater than 1. 
Proof. The proof follows immediately from 

Theorems 14 and 13.  
Example 3. Consider the autonomous positive 

fractional system described by the equation 

 
1

0.5 1
,

2 0.5k kx x k Zα
+ +

− 
∆ = ∈ 

 
 (55) 

for 0.8α =  and any finite h. In this case 2n =  and  
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 0.3 1
2 1.3nA A Iα α

 
= + =  

 
 (56) 

By Theorem 15 the positive fractional system is 
practically unstable for any finite h since the entry (2,2) 
of the matrix (56) is greater than 1. The same result 
follows from the fact that the characteristic polynomial 
of the matrix 

nA Iα −  

21.24.0
3.22

17.0
])1(det[)( 2

~ −+=







+−
−+

=−+= zz
z

z
AzIzp nA

 (57) 
has one negative coefficient 0ˆ 2.21.a = −  

5. Application of LMI approach to positive 
discrete-time systems 
Definition 8. [38] An inequality of the form  
 ( ) 0F x F+ >  (58) 
where x takes values in the real vector space V, the 
mapping nS→V:F  is linear, and nSF ∈ , is called the 
linear matrix inequality (LMI). The LMI is called 
feasible if such V∈x exists that the inequality (58) is 
satisfied; otherwise the LMI is called infeasible. 

Lemma 2. [38] A nonnegative matrix n nA ×
+= ℜ  is 

Schur matrix if and only if the LMI 

 0],[ fPPAAPblockdiag T−    (59) 
is feasible with respect to the diagonal matrix P. 

Lemma 3. [38] A Metzler matrix n nA ×= ℜ  is 
Hurwitz matrix if and only if the LMI 
 0]),([ fPPAPAblockdiag T +−  (60) 
is feasible with respect to the diagonal matrix P. 

It is well-known [38] that n nA ×
+= ℜ  is Schur matrix 

if and only if )( nIA −  is Hurwitz matrix. 

Lemma 4. [38] A nonnegative matrix n nA ×
+= ℜ  is 

Schur matrix if and only if the LMI 
 ( ) 0],)()([ fPIAPPIAblockdiag n

T
n −+−− (61) 

is feasible with respect to the diagonal matrix P. 
Lemma 5. [38] A nonnegative matrix n nA ×

+= ℜ  is 
Schur matrix if and only if the LMI 

 , 0
TP A P

blockdiag P
PA P

  − 
  −   

f  (62) 

is feasible with respect to the diagonal matrix P. 
Theorem 16. The positive fractional system (31) is 

practically stable if and only if one of the following 
equivalent conditions 
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 (63) 

is feasible with respect to the diagonal matrices 11,..., +hPP . 
2) The LMI 
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is feasible with respect to the diagonal matrices 11,..., +hPP . 
3) The LMI 
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Proof is given in [38]. 
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6. Cone-realization problem for discrete-time 
systems with delays 

Consider the discrete-time linear systems with 
delays 

11101101 −−+ +++= iiii uBuBxAxAx         (66a) 

iii DuCxy += , ,...}1,0{=∈ +Zi          (66b) 

where ,n
ix ℜ∈  ,m

iu ℜ∈ p
iy ℜ∈  are the state, input 

and output vectors and ,, 10
nnAA ×ℜ∈  ,, 10

mnBB ×ℜ∈  
mpnp DC ×× ℜ∈ℜ∈ , . 

Using Definition 2, it is easy to show that [32] the 
transfer matrix 

 DBzBAzAzICzT n ++−−= − )(][)( 10
1

10
2 (67) 

of the ( VQP ,, )-system (66) and the transfer matrix 

 DBzBAzAzICzT n ++−−= − )(][)( 10
1

10
2 (68) 

of the positive system (66) are related by the equality 
 1)()( −= QzVTzT  (69) 
Consider the linear system (66) with its transfer 

matrix (67). Let )(zmp×ℜ  be the set of mp ×  rational 
proper matrices. 

Definition 9. Matrices ,nn
kA ×ℜ∈  ,mn

kB ×ℜ∈  

,1,0=k  ,npC ×ℜ∈  mpD ×ℜ∈  are called a ( VQP ,, )-
cone realization of a given proper )(zT  if they satisfy 
the equality (67) and the conditions 

 ,1 nn
k PPA ×

+
− ℜ∈  ,1 mn

k QPB ×
+

− ℜ∈  ,1,0=k  

,1 npVCP ×
+

− ℜ∈  mpVDQ ×
+

− ℜ∈1                 (70) 

where P, Q and V are nonsingular matrices generating 
the cones P ,Q  and V , respectively. 

The ( VQP ,, )-cone realization problem can be 
stated as follows: being given a proper rational matrix 

)()( zzT mp×ℜ∈  and non-singular matrices P, Q, V 
generating cones P ,Q  and V , find a ( VQP ,, )-cone 
realization of ).(zT  

A procedure for computation of a ( VQP ,, )-cone 

realization of )(zT  will be proposed and solvability 
conditions of the problem will be established. 

From (68) we have  
 )(lim zTD

z ∞→
=  (71) 

since .0)]([lim 1
10

21 =−− −−

∞→
AzAzIz nz

 

The strictly proper part of ( )T z  is given by 
 DzTzTsp −= )()( . (72) 

It is easy to show that if the matrices A0 and A1 have 
the following forms 

 

1

3

0 5

2 1

0 ... 0
0 ... 0
0 ... 0 ,
... ... ... ...
0 ... 0

n n

n

a
a

A a

a

×

−

 
 
 
 = ∈ℜ
 
 
  

 

 

0

2

41

2( 1)

0 0 ... 0
1 0 ... 0
0 1 ... 0
... ... ... ... ...
0 0 ... 1

n n

n

a
a
aA

a

×

−

 
 
 
 = ∈ℜ
 
 
  

 (73) 

then 

01
12

12
2

10
2 ...]det[)( azazazAzAzIzd n

n
n

n −−−−=−−= −
−

 (74) 
and the n-th row of the adjoint matrix 

][Adj 10
2 AzAzI n −−  has the form 

 ]...1[)( )1(242 −= n
n zzzzR  (75) 

The strictly proper )(zTsp
 can be always written in 

the form 
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where

1

2 2 1
2 1 1 0( ) ... , 1,...,i iq q

i i q i id z z a z a z a i p−
−= − − − − =  

 (77) 
is the least common denominator of the i-th row of 

)(zTsp  and 

mjnznznzn

piznznznzN

ijij
qq

ijij

imiii

ii ,...,1,...)(

,...,1)],(...)()([)(
011212

21

=+++=

==
−−

(78) 

To the polynomial (77) we associate the pair of the 
matrices 
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pi ,...,1= (79) 

satisfying the condition 
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 piAzAzIzd iiqi i
,...,1],det[)( 10

2 =−−=  (80) 

Let 
 ]...[diagblock 21 pCCCC = , 

 1[0 0 ... 1] ,iq
iC ×= ∈ℜ  pi ,...,1=  (81) 

and 
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 (82) 
be the j-th column of the matrix kB  (k = 0,1). 

It is easy to show [32] that the entries of Bk, k = 0,1 
are given by 

011101)1(21120
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 (83) 
Theorem 17. [32] There exists a positive realization 

,n n
kA ×

+∈ℜ  ,n m
kB ×

+∈ℜ  ,p nC ×
+∈ℜ  

p mD ×
+∈ℜ  of )(zT if 

1) ( ) lim( ( )) p m

z
T T z ×

+→∞
∞ = ∈ℜ                  (84) 

2) the coefficients of )(zd i , pi ,...,1=  are nonnegative, 
i.e. 

 0≥ija   for 12,...,1,0;,...,1 −== iqjpi  (85) 

3) 0≥k
ijn for 12,...,1,0;,...,1;,...,1,0 −=== iqkmjpi  (86) 

If the conditions (84), (85) and (86) are satisfied, a 
positive realization of )(zT can be computed by the use 
of the following procedure. 

Procedure 1. 
Step 1. Using (71) and (72) find p mD ×

+∈ℜ  and the 

strictly proper matrix )(zTsp . 

Step 2. Knowing the coefficients 
ija , 

( 12,...,1,0;,...,1,0 −== iqjpi ) of ),(zd i  pi ,...,1= , find 
the matrices (79) and 

0 01 0block diag[ ,..., ] ,n n
pA A A ×

+= ∈ℜ  

1 11 1block diag[ ,..., ] n n
pA A A ×

+= ∈ℜ              (87) 

Step 3. Knowing the coefficients k
ijn  

( 12,...,1,0;,...,1;,...,1,0 −=== iqkmjpi ) of )(zN i   

),...,1( pi = and using (82) find kB  for 1,0=k  and the 

matrix C  of the form (81). 
A ( VQP ,, )-cone realization for a given 

)()( zzT mp×ℜ∈  and non-singular matrices P, Q, V can 
be computed by the use of the following procedure. 

Procedure 2. 
Step 1. Knowing )(zT  and the matrices V, Q and using 
(69) compute the transfer matrix ).(zT  
Step 2. Using Procedure 1, compute a positive 
realization kA , kB , 1,0=k , C , D  of the transfer matrix 

).(zT  
Step 3. Using the relations 

 ,1 PAPA kk
−=  ,1 QBPB kk

−=  1,0=k , 

,1 PCVC −=  QDVD 1−=                      (88) 
compute the desired realization. 

Theorem 18.  A ( VQP ,, )-cone realization of 

)(zT  exists if and only if a positive realization of )(zT  
exists.  

The proof follows immediately from Procedure 2  
From Theorem 17 for single-input single-output 

system ( 1== pm ) we obtain the following important 
corollary. 

Corollary 2. There exists a ( VQP ,, )-cone 
realization Ak, Bk, k = 0,1, C, D of the transfer function 

)(zT  if and only if there exist a positive realization kA , 

kB , 1,0=k , C , D  of )(zT and the realization are 
related by 

 ,1 PAPA kk
−=  1 ,k kB P B g−=  ,1,0=k  PCC =  

(or kk BPB 1−=  and C gCP= ) DkD =             (89) 

where 1g QV −=  is a scalar. 

For 1== pm  the transfer functions )(zT  and )(zT  

relate to ( ) ( )T z gT z= . 

7. Concluding remarks and open problems 
The positive fractional and cone fractional linear 

continuous-time and discrete-time systems have been 
addressed. The cone fractional linear systems have been 
introduced. Necessary and sufficient conditions for the 
positivity and asymptotic stability of the continuous time 
linear systems with delays have been given. It has been 
shown that the checking of the asymptotic stability of 
these positive systems can be reduced to checking the 
asymptotic stability of corresponding positive systems 
without delays. Necessary and sufficient conditions for 
the positivity and practical stability of fractional linear 
discrete-time systems have been established. It has been 
shown that the LMI approaches can be successfully 
applied to testing the asymptotic stability of the positive 
fractional linear discrete-time systems. The realization 
problem for the discrete-time linear systems with delays 
have been formulated and solved. Sufficient conditions 
for the existence and procedures for computation of the 
positive and cone realizations have been proposed. Many 
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of these results can be extended to 2D positive fractional 
linear systems. 

Extensions of these considerations for the following 
classes of systems are open problems: 

1) 1D and 2D varying positive linear systems, 
2) 2D hybrid systems without and with delays, 
3) 2D Lyapunov systems, 
4) 1D and 2D positive fractional switching systems. 
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ДОДАТНІ ДРОБОВІ ТА КОНІЧНІ ДРОБОВІ 
ЛІНІЙНІ СИСТЕМИ ІЗ ЗАТРИМКОЮ 

Тадеуш Качорек 

У статті розглянуто додатні та конічні дробові 
неперервні та дискретні в часі лінійні системи. 
Наведено достатні умови для досяжності таких 
систем. Встановлено необхідні та достатні умови для 
додатності та асимптотичної стабільності неперерв-
них у часі лінійних систем із затримкою. Сфор-
мульовано та розв’язано проблему реалізації додат-
них дробових неперервних у часі систем. Встанов-
лено необхідні та достатні умови для додатності та 
практичної стабільності дробових дискретних у часі 
лінійних систем Застосовано підхід лінійної мат-
ричної нерівності (ЛМН) для перевірки асимп-
тотичної стабільності додатних дробових дискретних 
у часі лінійних систем. Встановлено достатні умови 
для існування та запропоновано процедури для 
розрахунку додатних та конічних реалізацій диск-
ретних у часі лінійних систем. 
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