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Abstract: This paper presentsa a method of analysis 
of distributed slot discontinuity in a microstrip line 
ground plane based on transverse resonance technique. 
The scattering characteristics of symmetrical and 
nonsymmetrical slot resonators of a complex shape have 
been calculated by Galerkin’s procedure and taking into 
account the harmonics of current density in the 
microstrip line and waveguide modes in the slot 
aperture. As a computational example the analysis of a 
finite cell periodic structure on the basis of Π- and O-
shaped slot resonators in the ground plane of a 
microstrip line are presented. The effectiveness and 
accuracy of the proposed algorithm has been verified by 
the comparison with measurements conducted on 
experimental prototypes. 

Key words: microstrip line, slot resonator, trans-
verse resonance technique, eigenfrequency, scattering 
matrix, periodic structure. 

1. Introduction 
Planar structures in the form of microstrip 

transmission lines with a slotted ground plane are widely 
used for designing various microwave devices, for 
example, periodic structures, wideband filters [1-4] and 
antenna elements [5-7]. The analysis of discontinuities in 
planar transmission lines with borders shaped parallel to 
rectangular coordinate axes can be performed using strict 
numerical techniques, a transverse resonance technique 
in particular.  

The transverse resonance technique was originally 
developed for the calculation of characteristics of ridged 
waveguides [8] and quasi-planar transmission lines [9]. 
In [10] the transverse resonance technique was extended 
to the calculation of the characteristics of open, 
conductor-backed or shielded structures. Noticeably, the 
transverse resonance algorithm can be applied even to 
open structures owing to the representation of boundary 
conditions by reflection coefficient matrices. 

Later on, the transverse resonance technique was 
further extended to the analysis of step discontinuities in 
transmission lines, for example, a width step in a finline 
[11] and a microstrip line [12]. In [13] the theory of long 

lines combined with transverse resonance techniques 
was presented for calculation of scattering parameters of 
a microstrip line with step discontinuity printed on a bi-
anisotropic substrate. 

In [14] while solving boundary problem for a 
resonator with discontinuity in the form of two 
microstrip lines crossed and positioned on the different 
sides of a dielectric substrate, the current density 
components in the lines were represented as double 
series with basis functions of two types: a harmonic and 
a singular one, thus taking into account the peculiarity of 
the field behavior on a thin edge. The analysis of more 
complex discontinuity in the form of a stripline resonator 
in a unilateral finline was performed in [15]. In that work 
a finline discontinuity, which consists of a rectangular 
conducting strip placed on the opposite face of dielectric 
substrate transversely to the slot, was analyzed. 
Appropriate basis functions were chosen to model a field 
in the slot and a current in the strip. Herewith in the 
expression for cross-slot electric field the harmonics of 
the electromagnetic field caused by the resonator length 
were taken into account. Since the discontinuities 
considered in [15] had small sizes compared with the 
wavelength, the parameters of an equivalent circuit were 
calculated from the condition of transverse resonance. 
Full wave solutions in the frequency domain for crossed 
microstrip line and slotline were implemented [16]. 

In [17] the method of the calculation of amplitude 
characteristics and phase shift characteristics for one- 
and multi-stage 1-D periodic structures comprising 
narrow-slot resonators in the ground plane of a 
microstrip line was presented. 

2. Transverse resonance method for irregular slot 
resonators in the ground plane of a microstrip line 

The transverse resonance technique is based on the 
solution of a boundary problem for a resonator on a feed 
line with discontinuity, and serves for calculating 
scattering matrix elements [17, 18]. The scattering 
matrix S  of the two-port network consisting of the 
microstrip line with a complex shape slot resonator in its 
ground plane (Fig. 1) has the following form: 
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Fig. 1. Π -shaped slot resonator in the microstrip line ground 
plane: (a) non-symmetric and (b) symmetric discontinuity. 

It is typically assumed that the electromagnetic 
boundaries of the resonator (electric or magnetic walls) 
are situated at such a distance from the discontinuity that 
the higher wave modes of the microstrip line may be 
considered as already attenuated. Under the condition of 
existence of electric walls in 1= −z L  and 2=z L  planes 
(e.w.−e.w. condition or so-called «electric» boundary 
problem, Fig. 1a), the characteristic equation of the 
transverse resonance has the following form [18]: 

 ( )( ) 2
11 1 22 2 12 0+ Γ + Γ − =S S S , (1) 

where ( )1 1exp 2 jβΓ = zl , ( )2 2exp 2 jβΓ = zl , β z  is the 
phase constant of the fundamental wave of the microstrip 
line. For structures nonsymmetric with respect to 0=z  
plane, Fig. 1a, the scattering matrix elements in A−A` 
planes ( 11 22 21 12,≠ =S S S S ) are calculated from the three 
pairs of solutions of the “electric” boundary problem for 
the microstrip resonator with respect to its dimensions 
( )1 2,k kl l , where k=1, 2, 3 is the solution number. 

For the analysis of the structure which is symmetric 
with respect to 0=z  plane, for example, a symmetric 
П-shaped slot resonator, Fig.1b, it is sufficient to solve 
two boundary problems: one under electric wall 
condition at the region's boundary =z L  and at the plane 
of symmetry 0=z , and another with electric wall 

condition at =z L  plane and magnetic wall (m.w.) 
condition at 0=z  plane [17, 18]. Then the elements of 
the scattering matrix 11 22 12 21,   = =S S S S  are calculated 
from the solutions of the “electric” (e.w.-e.w.) and 
“magnetic” (m.w.-e.w.) boundary problems with respect 
to the dimensions of the resonator kl  (k=1, 2 is the 
number of solution) according to the formulae obtained 
from the solution of two equations (1): 
 11 2 1( ) / 2= − Γ + ΓS , 12 1 2( ) / 2= Γ − ΓS , (2) 
where 1Γ , 2Γ  are defined above. From (2) we conclude 
that the frequencies of resonant interaction are 
determined by the intersection points of the spectral 
curves (when 1 2Γ = Γ ) obtained from the solutions of 
two boundary problems. For the calculation of the 
scattering matrix of a single distributed discontinuity, it 
is preferably to solve the “magnetic” boundary problem 
under magnetic wall conditions in the symmetry plane 
and at the longitudinal boundary of the resonator 
(m.w.−m.w.) [11]. 

In filtering or matching networks periodic structures 
of finite size are considered to consist of several 
discontinuities in the transmission line positioned at 
some distance from one another. If the interrelation 
between the series-connected discontinuities can be 
neglected, the overall scattering matrix of the finite 
periodic structure can be calculated using formulae for 
the cascade connection of the matrices of each 
discontinuity. However, for multi-cell periodic structures 
with the interrelation between discontinuities it is 
necessary to solve the boundary problem for the 
structure as a whole. 
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Fig. 2. Topology of the boundary problem: cross section (a) 
and top view (b) of the microstrip resonator with non-

symmetrically located Π-shaped slot discontinuity in the 
ground plane. 
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Fig. 2 shows a resonant structure non-symmetric in 
the transverse direction with of a П-shaped slot resonator 
in the microstrip line's ground plane (the cross-section 
and the top view are shown). The structure is symmetric 
with respect to 0=x  plane. 

The first layer ( 1=i ) represents a dielectric 
substrate with relative dielectric permeability 1εr  and 
thickness h , the second and third layers are the air ones, 

2 3 1ε ε= =r r . The field components have to satisfy the 
conditions of an ideally conductive electric wall at 

= ±x A , =y B , 2= −y b  and electric wall conditions at 
the longitudinal boundaries 0=z  and =z L  for the 
“electric” boundary problem. 

The boundary problem for the resonator is solved by 
dividing the original region into 3 partial subregions 
(Fig. 2(a)). Then for each subregion the Helmholtz 
equation is solved for electric (denoted by e subscript) 
and magnetic (denoted by h subscript) Hertz vector 
potentials ( )( )0, ,0h e yA : 

 2
( ) , 0 ( ) , 0ε∆ + =h e y i ri h e y iA k A , 

where 0 0ω=k c  is the wavenumber and ε ri  is the 
relative dielectric permittivity of the i-th layer. 

Electric and magnetic Hertz vector potentials are 
represented in the chosen coordinate system as double 
Fourier series expansions of the following form: 

( )

( )

, ,
1 1
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1 0
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= =
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A P k x k zF y
 (3) 

where i=1, 2, 3 is the partial region number. The follo-
wing notations are introduced here: 

 ( ) 1
02 2 δ χ −= −mn n mnP A L , 2 2 2χ = +mn xm znk k , 

 ( )2 1 2π= −xmk m A , π=znk n L , 

0δn  is the Kronecker symbol. The functions ( )( ) ,e h i mnF y  

are written as follows ( 0 2=y h ): 
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where 2 2 2 2
, 0 ε= − −yi mn ri xm znk k k k  and 11,e mnR , 12,e mnR , 

2,e mnR , 3,e mnR , 11,h mnR , 12,h mnR , 2,h mnR , 3,h mnR  are 
unknown coefficients of the Fourier series expansions 
for the partial regions. 
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Fig. 3. Topology of the boundary problem of the microstrip 
resonator with symmetrically located Π-shaped slot 

discontinuity in the ground plane. 

For the scattering matrix calculation of a single 
discontinuity being symmetrical in transversal direction, 
the two boundary problems, “electric” and “magnetic” 
ones, are solved for a half of the structure shown in Fig. 
3. In addition, as far as the problem is nonsymmetrical 
with respect to x=0 plane, the electric and magnetic 
Hertz vector potentials are expanded into the double 
Fourier series of the following form: 

 ( ) ( ), ,
1 1(0)

sin
sin

cos= =

 
= −  
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“electric” and “magnetic” boundary problems, 
correspondingly, where 2π=xmk m A ; the upper 
expressions in the braces correspond to the “electric” 
boundary problem and the lower expressions in the 
braces correspond to the “magnetic” boundary problem; 
other notations are the same as previously introduced. 

The boundary problem is solved by Galerkin’s 
method. In order to do so, the field in the slot resonator 
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is written as the series of eigenfunctions ( ) ,h e y kT  of the 
H- and E-waves of a П-shaped waveguide [19, 20] (odd 
modes for the resonator in Fig. 2). 
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where ( )h e kV  are unknown coefficients of the expansion. 
Current density in the microstrip line defined through the 
difference of tangential components of the magnetic 
field in the =y h  plane ,1 ,2− = ×t t yH H J e , is written in 
the form of double series of Chebyshev polynomials 
(along the x axis) and eigenfunctions of the resonator 
(along the z axis) with the unknown coefficients of the 
expansions , ,,q k q kc d : 
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where qN  is the order of trigonometric series truncation 
(the number of spatial harmonics in the current density 
spectrum) and ( )2ϕk x w , ( )2ψ k x w  are functions 
normalized with weight taking into account the field's 
behavior on a thin edge [16, 17, 19]. 

From the formal point of view the summation in 
trigonometric series (5) starts from a zero index, how-
ever in nonsymmetrical structures with absence of exter-
nal charge sources the zero component of longitudinal 
current density ,0zJ  (the DC component) does not have 
physical sense. Due to this, while solving the boundary 
problem for a nonsymmetrical structure, the current den-
sity in the microstrip line is approximated with trigo-
nometric series with summation running from index one. 

By applying Galerkin’s procedure to continuity 
equations of the field's tangential components on the 
partial regions’ boundaries 0=y  and =y h , we obtain 
the homogeneous linear system of algebraic equations 
with an unknown parameter (longitudinal size L  of the 
resonator or its eigenfrequency resf ) with respect to 
unknown coefficients of the field expansion on the П-
shaped slot , ,,h k e kV V  and current density , ,,n k n kc d  in the 
microstrip line. By equating the determinant of the linear 
system of equations to zero the characteristic equation 
for determining that unknown parameter is obtained. 

3. Results of numerical analysis 
After investigating the convergence of the 

algorithms, the numerical computation of eigen-
frequencies of the microstrip resonator with distributed 

discontinuity in its ground plane has been performed by 
applying double Fourier series truncated to 300 terms. In 
the series of the complex-shape slot resonator’s 
eigenwaves the two waves of both H- and E-types were 
taken into account, while in the double series (5) the 
summations of spatial harmonics and the Chebyshev 
polynomials were limited to five terms ( 5=qN  and 

0, 5=k ). 
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b 

Fig. 4. The characteristics of the microstrip resonator with 
nonsymmetric П-shaped slot, Fig 1a: (a) eigenfrequency 

spectrum, and (b) insertion losses of 3-cells periodic structure. 
The resonator parameters (in mm): substrate h=1.0, εr1=9.8, 

the microstrip line width w=1.0 (characteristic impedance 
Z0=50 Ohm), screen dimensions b1=9.0, b2=5.0, A=24.0, slot 

resonator dimensions: a=8.0, b=8.0, s1=0.5, s2=0.75. 

Fig. 4a shows the eigenfrequency spectrum resf  of 
the microstrip line resonator with the П-shaped slot in 
the groundplane (Fig. 1a) versus the resonator size 1L  
and its length ratio 2 1=pK L L , 2 , 1, 2= + =i iL l b i . 

The eigenfrequency spectrum in the range from 
1.5 GHz to 5.5 GHz consists of two branches, therefore, 
while solving the boundary problem with respect to the 
resonator's sizes 1 2,l l  it is necessary to make a transition 
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to the second spectrum branch at the frequency appro-
ximately equal to 2.6 GHz. 

Fig. 4b shows the characteristic of the transmission 
coefficient of the microstrip line’s fundamental wave for 
the periodic structure consisting of three (n=3) series-
connected П-shaped slot resonators in the ground plane. 

The scattering matrix of the periodic structure with 
finite number of cells is obtained as a cascade connec-
tion of the scattering matrices of the single slot resonator 
through the sections of microstrip line with the length 

md  [17]. Fig.4 also shows the measurement results of 
the structure prototype. 

 
a 

 
b 

Fig. 5. The characteristics of the microstrip resonator with 
symmetric П-shaped slot, Fig 1b: (a) eigenfrequency spectrum, 

and (b) insertion losses of 5-cell periodic structure. The 
resonator parameters (in mm): screen dimensions b1=b2=12.0, 
A=24.0; slot resonator dimensions:2a=4.4, b=2.2, s1=s2=0.5. 

Fig. 5a shows the results of eigenfrequency spec-
trum calculation for the microstrip resonator with 
symmetrically located distributed discontinuity (Fig. 3). 
The calculation has been performed taking into account 
the spatial zero harmonic of current density. In this case 
the eigenfrequency spectrum obtained from the solution 

of the “electric” boundary problem contains one solution 
branch in the frequency range from 2 GHz to 8 GHz, 
while the eigenfrequency spectrum of the “magnetic” 
boundary problem contains two solution branches. This 
is explained by the fact that the symmetry of the 
structure with the magnetic wall in 0=z  plane 
corresponds to the fundamental wave of the П-shaped 
waveguide. Fig. 5b shows the characteristic of the 
transmission coefficient of a 5-cell periodic structure 
comprising П-shaped slot resonators located with the 
period of 5.4 9.8= + =d a  mm.  

It can be seen that the characteristics calculated for 
both nonsymmetric and symmetric resonant structure 
correspond well to the measurement results. The 
characteristics of transmission coefficient were measured 
using Agilent N5230A vector network analyzer. 

4. Analysis of coupled distributed slot resonators 
in microstrip line ground plane 

Fig. 6 shows a structure topology consisting of three 
series-connected O-shaped (i.e. shaped as a coaxial 
rectangular transmission line) slot resonators in the 
groundplane of a microstrip line. As a performed 
numerical calculation shows, a resulting scattering 
matrix obtained from elementary scattering matrices for 
the cascade connection of the single discontinuities does 
not correspond to the measurement results of the 
transmission coefficient for the experimental prototype. 
This is due to the fact that, as it was shown in [20], 
distributed discontinuities interact with each other on 
distances comparable with the size of the discontinuities 
themselves, giving rise to additional frequencies of the 
resonant interaction of the feed line with several series-
connected discontinuities. 

For taking into account the mutual interaction 
between discontinuities, the 3-cell periodic structure is 
analyzed as a whole. Just as it has been done above, due 
to the symmetry of the structure the scattering matrix 
elements are determined by solving two boundary 
problems, the “electric” (e.w.−e.w.) and “magnetic” 
(m.w.−m.w.) one, see Fig. 6. 
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Fig. 6. 3-cell periodic structure: the topology of the resonator 
for the boundary problem to solve. 
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In that case in the expansion of the field in the O-
shaped slot the TEM-wave of the coaxial waveguide is 
taken into account in addition to even (e) and odd (o) 
wave modes of the O-waveguide 
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where ,he kV  and ,ee kV  are the amplitudes of even H- and 

E-waves of the O-waveguide, ,ho kV  is the amplitude of 
odd H-waves of O-waveguide, V  is the amplitude of the 
TEM-wave of the coaxial waveguide. 

 
a 

 
b 

Fig. 7. The characteristics of the 3-cell periodic structure with 
symmetric O-shaped slot resonators in the microstrip line’s 

ground plane:(a) eigenfrequency spectrum, and (b) insertion 
losses of the structure. Dimensions of the O-shaped slot 

resonator (in mm): a=12.9, b=2.15, s1=s2=0.5. 

Fig. 7a shows the eigenfrequency spectrum of the 
microstrip resonator with three serially connected slot 
resonators in the ground plane of the microstrip line. The 

spectrum is obtained from the solutions of “electric” and 
“magnetic” boundary problems. The parameters of the 
microstrip line are the same as mentioned above, the 
dimensions of the O-shaped slot resonator are marked at the 
figure. In the frequency range from 2 GHz to 6 GHz the 
resonance frequency spectrum consists of four branches.  

Fig. 7b shows calculated and measured transmission 
coefficient characteristics of the periodic structure, 
which consists of three O-shaped slot resonators. The 
calculated characteristic is obtained from the solutions of 
“electric” and “magnetic” boundary problems. Just like 
in [20, 21], the stopband of the fundamental wave of the 
microstrip line in the system of interacting slot 
resonators is wider than that of the system of isolated 
discontinuities. 

5. Conclusion 
A new type of discontinuity in the microstrip line 

ground plane has been analyzed using the transverse 
resonance technique. Appropriate basis functions have 
been chosen to model the field in the microstrip 
resonators with Π- and O-shaped slot resonators and the 
current density on the discontinuity strip. Herewith in 
order to account for the mutual interaction between 
discontinuities, the spatial zero harmonic of the current 
density is taken into account in solving the boundary 
problems for the symmetric resonator. The spectral 
curves and characteristics of the transmission coefficient 
for the distributed discontinuities are also presented. It is 
demonstrated that the calculated results match the 
measured ones reasonably well, what confirms the 
choice of basis functions. 
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АНАЛІЗ РОЗПОДІЛЕНИХ ЩІЛИННИХ 
НЕОДНОРІДНОСТЕЙ В УЗЕМЛЮЮЧОМУ 

ШАРІ МІКРОСТРІЧКОВОЇ ЛІНІЇ 
ПЕРЕСИЛАННЯ 

Юлія Рассохіна, Владімір Кріжановскі 

У роботі представлено метод аналізу розподілених 
щілинних неоднорідностей в уземлюючому шарі 
мікросмужкової лінії пересилання методом поперечного 
резонансу. Характеристики розсіювання симетричних та 
несиметричних щілинних резонаторів складної форми 
розраховано за методом Гальоркіна з урахуванням 
гармонік густини струму в мікросмужковій лінії та 
хвилевідних мод на апертурі щілини. Як приклад 
проектування представлено аналіз періодичних структур 
на базі Π- та О-подібних щілинних резонаторів в уземлю-
ючому шарі. Ефективність та точність запропонованого 
методу демонструється шляхом порівняння розрахованих 
характеристик із даними, отриманими в результаті вимі-
рювань на експериментальних макетах. 
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