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Abstract: Construction of mathematical models for 

nonlinear dynamical systems using optimization requires 
significant computation efforts to solve the optimization 
task. This makes it reasonable to use parallelization of 
calculations for optimization task solving, especially 
taking into account current tendency for increasing the 
number of CPU cores in a single chip. The effectiveness 
of particular parallel implementation of optimization 
process is the subject of investigation in this paper. 
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1. Introduction  
The complexity of dynamical systems to be designed 

and analysed is constantly increasing. Now the systems 
of such a type include components of different nature 
thus they should be described by mathematical models of 
different types. So, mathematical description of these 
systems becomes a complex task, which requires 
significant computation resources. One more problem is a 
complexity of available mathematical models of some 
components included into the system under design or 
analysis. These problems lead to the necessity of developing 
an universal approach intended for mathematical description 
of single components as well as the entire system with 
minimal required computational resources.  

In such conditions the usage of macromodels allows 
significant reducing of required computation efforts 
because it makes it possible to ignore effects not 
important for particular analysis. Macromodels can be 
used to describe both single components and subsystems 
of significant size including elements of different nature. 
They can replace complex models in a simulation 
process as well as describe elements for which regular 
models are not available. 

Considerable number of existing approaches to 
macromodel constructions [4, 5] can’t be considered as 
the universal approaches as they apply many restrictions 
relatively to the modelled object and required input 
information, which is not always available 

An alternative approach for the macromodel 
construction which does not have such drawbacks is the 
usage of optimization. This approach can be used to 
construct macromodels in any mathematical form 
described by a limited set of unknown coefficients. It 

also does not apply any constraints to the required input 
information except the obvious requirement to describe 
the object fully enough. 

Also the optimization allows eliminating computational 
problems related to the ill-conditioned problems which 
often appear in macromodel identification. 

The main problem which complicates the usage of 
optimization approach for the macromodels creation is a 
complexity of optimization task, which requires the 
application of significant computational resources. There 
are techniques to simplify this task [2]. One of them is to 
parallelize calculations related to optimization task 
solving [1]. The analysis of effectiveness of such 
parallelization is a subject of presented paper. 

2. Macromodel construction with optimization 
Let’s consider the process of macromodel 

construction based on the “black box” approach which 
allows us to ignore a real internal structure of the object 
and, as a result to construct more simple models. 

The object for which the macromodel will be 
constructed is shown schematically in the Fig. 1. 
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Fig. 1. An object for the macromodel construction. 

In the Fig. 1 vector v


 describes input values, vector 

y


 are output values, vector x


 reflects values 

corresponding to the internal state of the object. The goal 
of the research is to find an operator which will allow 
calculating output values of the object y


 using known 

input values v


 and initial values of the internal state of 

the object x


.  
We use a discrete state equations form of model 

mathematical representation: 
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where F , G , C , D  are matrices of the model 
coefficients;   is some nonlinear vector-function of 
many arguments; k  is a discrete index. 

The discrete form of representation is best suited for 
computer calculations because it allows omitting 
approximation of input data arrays. The state form of 
equations is also determined by convenience of further 
usage of the model as a component of a dynamic system 
containing a greater number of elements. 

Let us consider some object for which the model 
should be constructed using the form (1) or any other 
form which can be described by a limited set of 
unknown coefficients. Input information about the object 
can be presented in the form of an array of it’s transient 

characteristics     ;
k k

i iv y , where  k  is a discrete index, 

i  is an index of transient characteristic. Let us introduce 
some goal function representing a measure of inaccuracy 
with which our model describes the object. Its simplest 
mathematical representation can take a form of the root-
mean square deviation: 
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where  k
iy

  is the object response calculated using it’s 

model, 


 is a set of unknown coefficients. For the 

model form (1) the vector 


 includes elements of 
matrices F , G , C , D  and coefficients of vector-

function  . The set of the model coefficients *


 can be 
considered to be optimal if the goal function (2) 
approaches its minimum. Thus, the model coefficients 
determination can be carried out by finding the global 
minimum point of the function (2). 

The proposed approach is suitable for the coefficients 
identification when the model is presented in any form and 
it does not apply any special restriction concerning the input 
information used for the coefficients identification. This 
makes it possible to use proposed approach effectively as a 
universal method for coefficients identification during the 
creation of the dynamical models. 

Taking into account the complexity of an 
optimization task (in case the goal function under 
research is significantly non-linear with many unknown 
parameters and considerable difference at the level of its 
dependency on different coefficients), an attention 
should be paid to the selection of an optimization 
algorithm. As practice shows, the stochastic optimization 
algorithms are the most suitable ones for such 
optimization tasks. They are also less sensitive to the 
great amount of local minimums produced by rounding 
errors and considerable calculation efforts. 

3. Parallel implementation of optimization 
algorithm 

Most optimization algorithms, including Rastrigin’s 
director cone method [3] with adaptive algorithms of 
step size and cone aperture angle, used by authors, do 
several (sometimes dozens) goal function calculations to 
perform a single iteration of algorithm. The set of points 

(values of vector 


) for which a goal function needs to 
be calculated is generally known at the very beginning of 
the iteration (this is true for both deterministic and 
stochastic algorithms). This permits to do the calculation 
of the goal function for different points using several 
CPUs simultaneously. 

The practical implementation of this method can 
look like shown in Fig. 2: 

 
Fig. 2. Structure of software for the optimization algorithm 
with the parallel calculation of a goal function for different 

points. 

The optimization algorithm itself in this 
implementation is executed in a separate thread. It forms 
a list of points for which the goal function should be 
calculated and puts them into a queue. After all points 
needed for current iteration are known, the process waits 
for goal function calculation results. When values of 
goal function for all added points are calculated, the 
algorithm process starts performing, analyses the results 
and switches to the next iteration.  

Goal function calculations for needed points are done in 
a set of threads, which are coordinated by a dispatcher and 
can be executed on a same computer or other computers. The 
limitation here is the proportion of time needed for a single 
calculation of goal function and communication time 
between the dispatcher and the calculation process. 
Communication time increases in case when several 
computers are used, but for complex goal functions which are 
calculated based on tens of thousands of samples 
communication time can be negligible comparing with the 
single calculation of goal function even when communication 
is done via the internet. 

8



Acceleration of the Parameters Identification for Dynamic Models Construction…  

Key points of this approach are: 
– Optimization algorithm thread does not perform 

goal function calculations itself. It only prepares 
the set of points for which the goal function 
should be calculated; 

– Optimization algorithm determines all points 
needed for the iteration and only then waits for 
the goal function calculation results. 

Here it should be noted that this parallelization 
approach is suitable for many but not for all optimization 
algorithms. In particular it can be used for optimization 
algorithms satisfying the following requirements:  

1. An algorithm should calculate the goal function 
several times during one iteration, because the effectiveness 
of parallelization grows with the increasing of the number 
of goal function calculations at one iteration 

2. The set of coefficients 

  for all points where goal 

function is calculated during one iteration, should not 
depend on the result of the goal function calculation in 
other points at same iteration. 

An example of the algorithm, which satisfies these 
requirements, is Rastrigin’s director cone method. Another 
example of algorithm, which cannot be used with considered 
parallelization, is the Nelder–Mead method [6]. Also there 
are algorithms for which mentioned criteria are satisfied 
partially. For such algorithms effective usage of the proposed 
parallelization technique requires changing over parallel and 
sequential calculations of a goal function during the 
optimization process. An example of such algorithm is 
Gradient descent method [4], which does not satisfy the 
second criterion because after the determination of a gradient 
direction the algorithm requires the goal function to be 
calculated one more time, and the position of a point where it 
should be calculated depends on results of the goal function 
calculations already conducted at the same iteration. 

Total CPU time needed for algorithm with paralleli-
zation will be greater than CPU time without parallelization. 
This is caused by the need to switch between threads. This 
includes both time needed to perform thread switching and 
delays caused by thread synchronization. One more potential 
problem is the usage of software libraries not designed for or 
not effective in parallel algorithms. For example this problem 
was faced by authors with a memory manager in Delphi 5.0 
as it works in a single thread. 

4. Theoretical analysis of parallelization 
effectiveness 

Because the optimization algorithm in this 
implementation works in a single thread, parallelization 
efficiency will depend on the number of discretes used 
for the goal function calculation. 

Time required to perform one iteration without 
additional time needed for parallelization can be 
estimated next way: 

    , , A Q
m M

T m M N T m T
N


     (3) 
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where m  is the number of points for which the goal function 
is calculated at one iteration; M  is the number of discretes 
used for the goal function calculation; N  is the number of 

CPUs; ( )AT m  is a time needed for one CPU for one iteration 

of the algorithm (making decisions, the determination of 
points for which the goal function needs to be calculated. 
This time depends on the number of points for which the goal 
function is calculated during one iteration); QT  is a time 

needed for one CPU to account a single discrete in the goal 
function calculation. 

From (3) we can get a maximum limit for a paralleliza-
tion factor. Without additional time needed for parallelization 
itself the limit can be estimated by a next formula: 
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To account additional time needed for parallelization 
we need to add an additional element to the 
denominator: 
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At practice we always have  Q PT T N  for 

1N  . In this case we can do two more important 
estimations of the parallelization factor: 

– For small values of M : 
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– For big values of M  (when  Q PT M T N   

and  Q AT M T m  ): 

  , ,
Q

Q

T M
m M N N

T M

N




 


 (7) 

So the parallelization will be not effective for small 
number of discretes in input information and will be 
effective for a big number of discretes. 
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5. Experimental verification of effectiveness of 
parallelization 

To measure the real effectiveness of the considered 
parallel implementation of the optimization process authors 
compared average time needed to conduct 400 iterations of 
optimization algorithm (the goal function was calculated 30 
times at one iteration) for different number of discretes in 
input information. The average was found for 3 experiments. 

The results are presented in table 1, and in fig. 3 and 4. 
Obtained experimental results conform to theoretical 
estimates (5), (6) and (7), and shows, that parallelization 
factor can reach its theoretical limit equal to the number of 
CPUs in case of great number of discretes in transient 
characteristics. 

It should be noted, that proposed parallelization 
approach generally does not solve the problem of 
optimization task complexity, but can only speed-up the 
process by using all available CPU power. Other 

techniques should be used together with parallelization 
to get best results. 

Proposed parallelization approach can be easily 
combined with other techniques of optimization task 
simplification. Particularly it can happen in the case 
when a macromodel construction is split into the set of 
stages [2]. The limiting factor in this case will be total 
computational power of all available CPU cores.  

As the total performance in case of great number of 
discretes in input information increases with the number 
of used CPUs and actual execution steps done in all 
calculation threads are exactly the same, we can expect 
that considered parallelization approach can be 
implemented in such a way when computation power of 
modern graphical processors, for example NVIDIA 
GeForce cards, will be used. This option looks to be 
promising, though it is out of scope of this paper.

Table 1 
Results of experimental testing of considered parallelization approach 

1 CPU 2 CPUs 3 CPUs 4 CPUs 
Points in 
input data Time (sec) 

Points  per 
second 

Time (sec) 
Points  per 

second 
% from 

one CPU 
Time (sec) 

Points  per 
second 

% from 
one CPU 

Time (sec) 
Points  per 

second 
% from 

one CPU 

3 1.500 800.0 5.141 233.4 29% 25.555 47.0 6% 30.089 39.9 5% 

10 2.037 1964.0 4.104 974.7 50% 25.611 156.2 8% 28.458 140.6 7% 

30 3.166 3789.9 3.537 3392.7 90% 23.355 513.8 14% 29.589 405.6 11% 

100 7.000 5714.6 4.543 8805.4 154% 15.704 2547.2 45% 21.547 1856.4 32% 

300 17.682 6786.4 9.679 12398.4 183% 12.500 9599.7 141% 15.740 7624.0 112% 

1000 54.968 7276.9 29.125 13733.9 189% 23.573 16968.3 233% 19.984 20015.7 275% 

3000 172.186 6969.2 83.755 14327.6 206% 60.349 19884.3 285% 47.635 25191.6 361% 

 

 
Fig. 3. Performance (number of discretes accounted in goal 
function calculation per second) as a function of the number  

of discretes in used transient characteristics. 

 
Fig. 4. Parallelization factor as a function  
of the number of discretes in used transient  

characteristics. 
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6. Conclusion  
Theoretical estimations and experimental data shows, 

that the proposed parallel implementation of the optimization 
process used for the construction of the dynamical models 
allows to speed-up the macromodel construction in case 
when the model is built based on transient characteristics 
with a big number of discretes. Parallelization factor in this 
case almost reaches the theoretical limit equal to the number 
of CPUs. This allows to state, that proposed approach is 
highly effective in case if the model is built based on transient 
characteristics with a big number of discretes. 

The parallelization of the calculation can be combined 
with other techniques of optimization task simplification, for 
example it can be done, as it was mentioned above, when the 
macromodel construction is split into a set of stages. 

One more advantage of the considered parallelization 
approach is its potential ability to be implemented for usage 
of the high computation power of modern graphical 
processors. 
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ПРИШВИДШЕННЯ ПАРАМЕТРИЧНОЇ 
ІДЕНТИФІКАЦІЇ ДЛЯ ПОБУДОВИ 

ДИНАМІЧНИХ МОДЕЛЕЙ  
З ВИКОРИСТАННЯМ РОЗПАРАЛЕЛЕННЯ  

Ліліана Бичковска–Ліпіньска, Петро Стахів,  
Юрій Козак 

Побудова математичної моделі нелінійних динамічних 
систем з використанням оптимізації вимагає значних 
обчислювальних затрат для вирішення задачі оптимізації. 
Це робить доцільним  використовувати  розпаралелення  

обчислень для вирішення завдань оптимізації, особливо з 
урахуванням поточної тенденції збільшення числа 
процесорних ядер в одному чіпі. Ефективність зокрема 
паралельної реалізації процесу оптимізації є предметом 
дослідження в даній роботі. 
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