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Abstract: The positive fractional and cone fractional 

continuous-time and discrete-time linear systems are 
addressed. Sufficient conditions for the reachability of 
positive and cone fractional continuous-time linear 
systems are given. Necessary and sufficient conditions 
for the positivity and asymptotic stability of the 
continuous-time linear systems are established. The 
realization problem for positive fractional continuous-
time systems is formulated and solved.  

Key words: cone, continuous-time, fractional, 
positive, realization problem. 

1. Introduction  
In positive systems inputs, state variables and 

outputs take only non-negative values. Examples of 
positive systems are industrial processes involving 
chemical reactors, heat exchangers and distillation 
columns, storage systems, compartmental systems, water 
and atmospheric pollution models. A variety of models 
having positive linear systems behavior can be found in 
engineering, management science, economics, social 
sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive 
systems is more complicated and less advanced. The 
overview of a state-of-the-art situation in the field of 
positive systems is given in the monographs [8, 9]. The 
stability and robust stability of positive and fractional 1D 
linear systems has been investigated in many papers and 
books [1-9, 13, 23, 28]. Realization problem of a 
positive continuous-time and discrete-time linear system 
has been considered in [10, 12-15, 19, 20, 22]. Recently, 
the reachability, controllability and minimum energy 
control of positive linear discrete-time systems with 
time-delays have been considered in [9, 16-18, 21, 24]. 

The first definition of the fractional derivative was 
introduced by Liouville and Riemann at the end of the 19th 
century [50-52, 54, 55]. This idea was used by engineers for 
modeling different processes in the late 1960s. Mathematical 
fundamentals of fractional calculus are given in the 
monographs [23, 25-30]. The fractional order controllers 
were developed in [29]. Some other applications of fractional 
order systems can be found in [31, 32].  

The main purpose of this paper is to give an overview of 
some recent results on positive and cone fractional 
continuous-time and discrete-time linear systems. 

The paper is arranged as follows. In section 2 the 
positive fractional linear continuous-time systems are 
introduced. In section 3 the fractional cone systems are 
discussed. Sufficient conditions for the reachability are 
established in section 4. The realization problem for positive 
fractional continuous-time linear system is investigated in 
section 5. Positive fractional discrete-time linear systems are 
addressed in section 6. Sufficient conditions for the 
reachability of discrete-time linear systems are established in 
section 7. Concluding remarks are given in section 8. 

The following notation will be used:   - the set of 

real numbers, mn  - the set of mn  real matrices, 
mn

  - the set of mn  matrices with nonnegative 

entries and 1
  nn , nM

 
- the set of nn  Metzler 

matrices (real matrices with nonnegative off-diagonal 
entries), nI

 
- the nn  identity matrix.  

2. Positive fractional continuous-time linear systems 
The following Caputo definition of the fractional 

derivative will be used [23, 25, 27, 29] 

,
)(

)(

)(

1
)(

0
1

)(

 


t

k

k

d
t

f

k
tf

dt

d 



 


                (1) 

,...}2,1{1  Nkk    

where   is the order of fractional derivative and 

k

k
n

d

fd
f


 )(

)()(  . 

Consider the continuous-time fractional linear 
system described by the state equations 
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where ,)( ntx   ,)( mtu   pty )(  are the state, 

input and output vectors and ,nnA   mnB  , 
npC  , mpD  . 

Theorem 1. [23] The solution of equation (2.2a) is 
given by 

 
t

xxdButxttx
0

000 )0(,)()()()(  , (3) 



Tadeusz Kaczorek 

 

where  




 


0
0 )1(

)()(
k

kk

k

tA
AtEt






 ,                   (4) 











0

1)1(

])1[(
)(

k

kk

k

tA
t




                              (5) 

and )( 
 AtE  is the Mittag-Leffler matrix function, 





0

1)( dttex xt  is the gamma function. 

Definition 1. [23] The system (2) is called the 
internally positive fractional system if and only if 

ntx )(  and pty )(  for 0t  for any initial 

conditions nx 0  and all inputs ,)( mtu   .0t  

Theorem 2. [23] The continuous-time fractional 
system (2) is internally positive if and only if the matrix 
A is a Metzler matrix and 
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3. Cone fractional systems  
Following [10, 23] the definitions are recalled. 
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is called the linear cone generated by the matrix P. 
In a similar way we may define the linear cone 
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for the inputs u , and the linear cone 
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Definition 3. The fractional system (2) is called 
(P Q V, , ) cone fractional system if ( )x t P  and 

( )y t V , 0t    for every 0x P , ( )u t Q , 0.t   

The (P Q V, , ) cone fractional system (2) will be 

shortly called the cone fractional system. Note that if n P , 

,m Q  n V , then the ),,( pmn
  cone system is 

equivalent to the classical positive system [18, 26]. 
Theorem 3. The fractional system (2) is (P Q V, , ) 

a cone fractional system if and only if  
1 ,n nA PAP 

   1 ,n mB PBQ 
   

1 ,p nC VCP 
   mpVDQD 


  1 .          (10) 

Proof is given in [23, 17]. 

3. Reachability of positive fractional systems 
Definition 4. The state n

fx   of the fractional 

system (2) is called reachable in time tf if there exists an 

input ],0[,)( f
m tttu    which steers the state of 

system (2) from zero initial state 00 x  to the state xf. If 

every state n
fx   is reachable in time tf , the system is 

called reachable in time tf. If for every state n
fx   

there exists such a time tf that the state is reachable in 
time tf, the system (2) is called reachable. 

A real square matrix is called monomial if and only 
if each its row and column contains only one positive 
entry and the remaining entries are zero. 

Theorem 4. The continuous-time fractional system 
(2) is reachable in time tf if the matrix 

0

( ) ( ) ( )
ft

T T
fR t BB d                           (11) 

is a monomial matrix. 
The input which steers the state of the system (2) 

from 00 x  to fx  is given by the formula 

fff
TT xtRttBtu )()()( 1                     (12) 

where T denotes the transposition. A proof is given in [21]. 
Definition 5. A state fx P  of the cone fractional 

system (2) is called reachable in time tf if there exists an 
input ( ) [0, ]fu t t t Q,  which steers the state of the 

system from zero initial state 00 x  to the desired state 

xf, i.e. ( ) .f fx t x  If every state x f P  is reachable in 

time tf , then the cone fractional system is called 
reachable in time tf. If for every state x f P  there 

exists a time tf , then the cone fractional system is called 
reachable. 
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Theorem 5. The cone fractional system (2) is 
reachable in time tf  if and only if the matrix 

( )fR t   

1 1

0

( ) ( ) ( ( ) )

ft

T T T T T TP BQ Q B d P Q Q         (13) 

is a monomial matrix. A proof is given in [21]. 
From Theorem 5 we have the following corollary. 

Corollary 1. If 
mQ I , then ( ) ( ) T

f fR t PR t P , 

and the cone fractional system (2) is reachable in time tf 
if the positive fractional system is reachable and P is a 
monomial matrix. 

Example 1. Consider the cone fractional system (2) 
with   

1 1 1 0 1 0 0 1
, , , ,

1 1 0 1 0 0 1 0
P Q A B

       
                 

(14) 

The P -cone generated by the matrix P is shown in 
Fig. 1. 

 

Fig. 1. P -cone. 

It is easy to show that 
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The matrix (16) is monomial and according to Theorem 
4 the positive fractional system is reachable in time tf. 

In the case Q = I2 the matrix 
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is not monomial, since 2 2
1 2( ) ( ).     

Therefore, the sufficient condition for the 
reachability in time tf of Theorem 5 is not satisfied. 

From this example and comparison of (11) and (13) 
it follows that the sufficient condition for the reachability 
of the cone fractional systems is much stronger than for 
the positive fractional systems. 
A state 

0x P  of the cone fractional system (2) is called 

controllable to zero in time tf if there exist an input 
( ) , [0, ]fu t t t Q  which steers the state of the system 

from x0 to the zero state xf = 0 Following [26] it is 
possible to extend the considerations to the 
controllability to zero of the cone fractional linear 
system.  

4. Realization problem for positive fractional  
systems 

Consider the continuous-time fractional linear system 
described by the state equations 
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where ,)( ntx   ,)( mtu   pty )(  are the state, 

input and output vectors and ,nnA   ,mnB   

,npC   .mpD   

Applying the Laplace transform to (19), it is easy to 
show that the transfer matrix of the system is given by 
the formula  

DBAsICsT n  1][)(  .                    (20) 

The transfer matrix is called proper if and only if  
mp

s
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and it is called strictly proper if and only if K = 0.  
From (20) we have 
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Definition 6. Matrices A, B, C, D are called a 
positive fractional realization of a given transfer matrix 

x2 

x1 

x2    = -x1 

x2   =    x1 

0 
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)(sT  if they satisfy the equality (20). A realization is 

called minimal if the dimension of A is minimal among 
all realizations of ).(sT  

The positive fractional realization problem can be 
stated as follows. Being given a proper transfer matrix 

),(sT  find its positive realization. 

First the realization problem will be solved for single-
input single-output (SISO) linear fractional systems with 
the proper transfer function 
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From (27) it follows that if 0ka  and 0kb  for 
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Theorem 6. There exist positive fractional minimal 
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of the transfer function (4.4) if  
i)  0kb  for nk ,...,1,0 , 

ii) 0ka  for 2,...,1,0  nk  and 

011   nnn bab . 

Proof is given in [37]. 
The matrices (28) are minimal realizations if and 

only if the transfer function (24) is irreducible. 
If the conditions of Theorem 6 are satisfied then the 

positive minimal realizations (28) of the transfer 
function (24) can be computed by use of the following 
procedure. 

Procedure 1. 
Step 1. Knowing )(sT  and using (25), find D and 

the strictly proper transfer function (26). 
Step 2. Using (28), find the desired realizations. 
Example 1. Find the positive minimal fractional 

realizations (28) of the irreducible transfer function  
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Step 2. Taking into account that in this case 

1,7 10  bb  and using (28), we obtain the desired 

positive minimal fractional realizations 
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Let’s consider a multi-input multi-output (MIMO) posit-
ive fractional system (19) with a proper transfer matrix )(sT . 

Using the formula 
)(lim sTD
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we can find the matrix D and the strictly proper transfer 
matrix which can be written in the form 

( ) ( )spT s T s D    

111

1
1

1

1

( )( )
...

( ) ( )

... ... ... ( ) ( )

( ) ( )
...

( ) ( )

m

m

p pm

m

N sN s

D s D s

N s D s

N s N s

D s D s



 
 
 
  
 
 
 
 

,       (34) 

Where 

11 1

1

( ) ... ( )

( ) ... ... ... ,

( ) ... ( )

m

p pm

N s N s

N s

N s N s

 
 

  
 
 

 

 1diag ( ),..., ( )mD D s D s                  (35) 

1 1 1 0( ) ( ) ... ,

1,..., ; 1,...,

k kd d
ik ik ikikN s c s c s c

i p k m

     

 
 

1
1 1 0( ) ( ) ( ) ...k k

k
d d

k k d k kD s s a s a s a  
     (36) 

Theorem 7. There exists the positive fractional 
realization 

1

,0 ,1 ,2 , 1
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d
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




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





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




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
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




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








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of the transfer matrix )(sT  if the following conditions 

are satisfied: 

i)   mpT 
)(  

ii)  0kla  for ;,...,1 mk   2,...,1,0  kdl  and 

1kdka  can be arbitrary 

iii) 0j
ikc  for ;,...,1 pi   ;1,...,1,0  kdj  

mk ,..,1 . 

A proof is given in [22]. 
If the conditions of Theorem 7 are satisfied, then the 

positive fractional realization of the transfer matrix )(sT  

can be computed by use of the following procedure. 
Procedure 2. 
Step 1. Knowing the proper transfer matrix )(sT  

and using (33), compute the matrix D and the strictly 
proper matrix ).(sTsp  

Step 2. Find the minimal degrees mdd ,...,1  of the 

denominators )(),...,(1 sDsD m and write the matrix 

)(sTsp  in the form (34). 

Step 3. Using the equality 

SaasssD m
dd m ],...,[diag])(,...,)[(diag)( 1

1    (38) 

find ]...[ 110 
kdkkkk aaaa  for mk ,...,1  and the 

matrix A. 
Step 4. Knowing the matrix )(sN  and using  

1 1

1

110 0 1
11 11 1, 1,

110 0
, ,,1 ,1

1

( )

1 0 ... 0

0 ... 0

...

... ... ... ( ) 0 ... 0

... ... ... ...

0 0 ... 1... ... ...

0 0 ...

...

0 0 ... ( )

m

m

m

dd d
m m

dd
p m p mp p

d

N s CS

s

c c c c s

c c c c

s

s









 







 
 
 
 
 

  
  
    
    




 

  

      

  







(39) 

find the matrix C. 
Example 2. Find the positive fractional realization 

(37) of the transfer matrix 



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






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
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
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




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
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3
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
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



ss

s

s

s

ss

ss

s

s

sT                      (40) 

Using the Procedure 2, we obtain the following. 
Step 1. From (33), (34) and (40) we have 











 01

12
)(lim sTD

s
                               (41) 

and 
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


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s

s
DsTsTsp        (42) 
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Step 2. In this case ,)()( 2
1

 sssD   

,32)()( 2
2   sssD  221  dd  and the matrix (42) 

takes the form 


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


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
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
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


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s

sTsp                (43) 

Step 3. Using (38) we obtain 
2

2

2

2

( ) 0

0 ( ) 2 3

1 0

( ) 0 0 1 0 0 0

0 0 3 2 0 10 ( )

0

s s

s s

s s

s

s

 

 

 





 
  
   

 
                  
  

   (44) 

and 
   ,1011101  aaa     2321202  aaa  (45) 

Therefore, the matrix A has the form 







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













2300
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][diagblock 21 AAA           (46) 

Step 4. Using (39) we obtain 
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51
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and 











2120

1511
C                                 (48) 

The matrix B in this case has the form 





















10

00

01

00

B                                          (49) 

The desired positive fractional realization (37) of 
(40) is given by (41), (46), (48) and (49). 

A dual approach for MIMO systems is given in [37]. 
Necessary and sufficient conditions for the existence of 
cone-realization with delays and a procedure for 
computation of cone-realization are given in [32]. 

5. Positive fractional discrete-time systems 
In this paper the following definition of the fractional 

discrete derivative will be used 

0

( 1)
k

j
k k j

j

x x
j

 




 
    

 
 ,   0 1                (50) 

where   is the order of the fractional difference, and 

1 for 0

( 1) ( 1)
for 1, 2,...

!

j

j
j

j
j



  


     

      




    (51) 

Consider the fractional discrete linear system 
described by the state-space equations 

1 ,k k kx Ax Bu k Z
                  (52a) 

k k ky Cx Du                               (52b) 

where ,n
kx   ,m

ku   p
ky   are the state, input 

and output vectors and ,n nA   ,n mB   

,p nC   .p mD   

Using the definition (50) we may write the equations 
(52) in the form 

1

1 1
1

( 1) ,
k

j
k k j k k

j

x x Ax Bu k Z
j



   


 
     

 
      (53a) 

k k ky Cx Du                      (53b) 

Definition 7. The system (53) is called the (internally) 

positive fractional system if and only if n
kx   and 

,p
ky   Zk  for any initial conditions 0

nx   and 

all input sequences ,m
ku   Zk . 

Theorem 8. The solution of equation (53a) is given by 
1

0 1
0

k

k k k i i
i

x x Bu


 


                              (54) 

where 
k  is determined by the equation 

1
1

1 1
2

( ) ( 1)
k

i
k n k k i

i

A I
i







  


 
       

 
            (55) 

with 0 .nI   

The proof is given in [16, 23]. 
Lemma 1. [16] If 

0 1                                    (56) 

then 

1( 1) 0i

i

  
  

 
  for  1, 2,...i                   (57) 
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Theorem 9. [16] Let 0 1  . Then the fractional 
system (53) is positive if and only if 

,n n
nA I  

   ,n mB 
  ,p nC 

  p mD 
 . (58) 

6. Reachability of positive fractional linear systems 
Consider the positive fractional linear system (53). 
Definition 8. A state n

fx   of the positive 

fractional system (53) is called reachable in q steps if 
there exist an input sequence m

ku  , 0,1, , 1k q   

which steers the state of the system from zero (x0 = 0) to 
the final state xf, i.e. xq = xf. 

Let ei, 1,...,i n  be the i-th column of the identity matrix 

In. A column aei for a > 0 is called the monomial column. 
Theorem 10. The positive fractional system (53) is 

reachable in q steps if and only if the reachability matrix 
],...,,[: 11 BBBR qq                         (59) 

contains n linearly independent monomial columns. 
Proof. Using (54) for  k = q and x0 = 0 we obtain 































1

0

0

2

1

1

q

i

q

q

qiiqqf

u

u

u

RBuxx


         (60) 

From Definition 8 and (60) it follows that for every 
n

fx   there exist an input sequence ,m
iu   

1,...,1,0  qi  if and only if the matrix (59) contains n 

linearly independent monomial columns. □ 
From (5.6) it follows that for positive fractional systems 

the coefficients ai, i = 0,1,…,k – 1 in the equality 
1

1

1 0

( ) ( ) ...

( )

k k
k n k n

n n

A I a A I

a A I a I

 



     

  
        (61) 

are nonnegative. 
Theorem 11. The positive fractional system (53) is 

reachable only if the matrix 

 ,nA I B                                   (62) 

contains at least n linearly independent monomial columns. 
Proof.  From the form of the matrix (59) and the 

equality (61) it follows that the number of linearly 
independent monomial columns of (59) can not be 
greater than of the matrix (62). □ 

The following example shows that the condition of 
Theorem 11 is necessary but not sufficient. 

Example 3. It is easy to show that the positive 
fractional system (53) with the matrices 

1 0 0
, for 0 1

0 1
A B 


   

         
         (63) 

is not reachable in spite of that in this case the matrix 

  1 0 0
,

0 0 1nA I B



 

   
 

                      (64) 

contains two linearly independent monomial columns. 
The following example shows that for positive 

fractional systems the matrix (59) in Theorem 10 can not 
be substituted by the matrix  

1, ( ) , , ( )q
q n nR B A I B A I B                  (65) 

Example 4. Consider the positive fractional system 
(53) with the matrices 

0 1 0 0

0 1 , 0

1 0 1

A B


   
        
      

                     (66) 

In this case 

3 3

1 0

0 0 1

1 0 0
nA I


 



 
    
  

                    (67) 

and the matrix (65) has the form 

2
3

0 0 1

, ( ) , ( ) 0 1 0

1 0 0
n nR B A I B A I B 

 
        
  

   (68) 

and it contains three linearly independent monomial 
columns. Using (55) for k = 0,1 for (66) we obtain 

1

2 1

1 0

( ) 0 0 1 ,

1 0 0

( )
2

( 1)
1

2
( 1)

1 0 ,
2

(1 )
1

2

n

n n

A I

A I I







  

 

 

 
      
  

 
      

 
 

 
 

   
  
  

            (69) 

and the matrix (59) has the form 

3 1 2

0 0 1

[ , , ] 0 1 0

( 1)
1 0

2

R B B B

 

 
 
 

     
 
 
 

          (70) 

This matrix contains only two linearly independent 
monomial columns. 

Definition 9. Let the j-th column bj (j = 1,…,m) of the 
matrix B be monomial. The column 

1 1 ( 1, , )j jb j n     
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of the matrix Φ1 is called monomial column corresponding to 
the j-th column of B if and only if it is monomial and linearly 
independent of the monomial column bj. 

In the new test for checking the reachability of the 
positive fractional systems a crucial role will play the 
following procedure [11]. 

Procedure 3. (finding linearly independent mono-
mial columns). 

Using Definition 9 find all monomial linearly indepen-
dent columns (starting from the first column of B)  

for 1, , ; 2, , 1kj k jb j m k q        (71) 

of the matrix (59). Stop the procedure if the last column 
is not monomial or/and linearly dependent from the 
previous monomial columns. 

Theorem 12. The positive fractional system (53) is 
reachable if and only if using Procedure 3 to the matrix 
(59) it is possible to find its n monomial linearly 
independent columns. 

Proof. By Theorem 10 the positive fractional system 
(53) is reachable in q steps if and only if the reachability 
matrix (59) contains n monomial linearly independent 
columns. Thus, the system is reachable if and only if 
using the procedure it is possible to find n monomial 
linearly independent columns of the matrix (59). 

Example 5. Consider the positive fractional system 
(53) with the matrices 

1 0 1 1

1 0 0 , 0

0 1 0

A B

a

   
       
      

                        (72) 

for a > 0.  
It is easy to shown that for 0a  , 

2[ , , ] 3rank B AB A B   and the standard (nonpositive) 

system is reachable in q = 3 steps. Now it will be shown 
that the positive fractional system (53) with (72) for a > 
0 is unreachable. Using the Procedure 3 for the matrix 

 3 1 2

2

, ,

, ( ) , ( )
2n n

R B B B

B A I B A I B B


 

   

  
     

  

          (80) 

we obtain only one monomial column B, since 

2

( ) 1 ,

0

( 1)

2
( ) 2

2

n

n

A I B

A I B B

a




 


 

 
    
  

 
 
  

     
   

 
 

          (81) 

Thus, the positive fractional system is unreachable. 

Theorem 13. The positive fractional system (53) is 
reachable if and only if the matrix 

 , ( )nB A I B                                 (82) 

contains n monomial linearly independent columns. 
Proof. From (55) for positive fractional systems we 

have   

0

( ) for 1,2, , 1
k

i
k ki n

i

B a A I B k n


       (83) 

where 0, 1, , 1 ; 0,1, , .kia k n i k      

Note that besides the matrix B only the matrix Φ1B 
may have additional monomial linearly independent 
columns and the matrix (83) for 2,3, 1k n   do not 

introduce additional monomial linearly independent 
columns to the matrix (59). 

From Theorem 11 we have the following remark 
Remark 1. If all m columns of the matrix B are 

monomial linearly independent columns, then the matrix 
(82) has n monomial linearly independent columns only 
if the matrix ( )nA I   has at least n – m monomial 

linearly independent columns. 
Example 6. Consider the positive fractional system 

(53) with the matrix 

  

11 12

21 22

31 32

41 42

1 0

0 1
, 0,

0

0

1, 2,3, 4; 1, 2

0 0 0

0 0 0
) , )

0 1 0

1 0 1

ij

a a

a a
A a

a a

a a

i j

a B b B







 
   
 
 
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 
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   
   
   

  

Taking into account that 

11 12

21 22

31 32

41 42

1 0

0 1

0 0

0 0

n

a a

a a
A I

a a

a a



 
 
  
 
 
 

                      (85) 

in the case a) we obtain the matrix 

 1

0 0 0 1

0 0 1 0
,

0 1 0 0

1 0 0 0

B B

 
 
  
 
 
 

                        (86) 

which has n = 4 monomial linearly independent 
columns. Therefore, in this case the system is reachable 
in q = 2 steps. 

(84)
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In the case b) using (59) and (85) we obtain the matrix 

 

12

22

1 2 23

24

0 0

0 1
, , , 0 0

(1 )
1 0

2

a

a
B B B a

a
 

 
 
 

    
 

 
  




 



    (87)  

with only two monomial linearly independent columns. 
By Theorem 10 in this case the positive fractional 
system is unreachable. 

It is well-known that the observability is a dual 
notion to the reachability. All results presented in this 
section for the reachability of positive fractional systems 
can be applied for checking the observability of the 
positive fractional systems. 

7. Concluding remarks 
The positive fractional linear continuous-time systems 

have been addressed. The cone fractional linear systems have 
been introduced. Sufficient conditions for the reachability of 
positive fractional and cone fractional linear systems have 
been established. The realization problem for positive 
fractional linear continuous-time systems has been 
formulated and solved. The positive fractional discrete-time 
linear systems are also considered. 

Extensions of these considerations for the following 
classes of systems are open problems 

1) 1D and 2D varying positive linear systems 
2) 2D hybrid systems without and with delays 
3) 2D Lyapunov systems 
4) 1D and 2D positive fractional switching systems. 
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ДОДАТНІ ДРОБОВІ ТА КОНІЧНІ ДРОБОВІ 
ЛІНІЙНІ СИСТЕМИ 

Тадеуш Качорек 

У статті розглянуто додатні дробові та  конічні 
дробові неперервні та дискретні лінійні системи. Наведено 
достатні умови для досяжності таких систем. Встановлено 
необхідні та достатні умови для додатності та асимптотич-
ної стабільності  неперервних  у  часі лінійних систем. 

Сформульовано та розв’язано проблему реалізації 
додатних дробових неперервних у часі систем. 
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