
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING
Vol. 2, No. 2, 2012

MODELS AND MECHANISMS OF IPTV VOD TRAFFIC BALANCING

Mykhailo Klymash, Yasser Hayali, Orest Lavriv
Lviv Polytechnic National University, Ukraine

yasser.hayali@live.com

Abstract: Models for traffic balancing that enable to

evaluate the current IPTV traffic balancing mechanisms are
suggested in this paper. Also, an analysis of each of these
mechanisms is performed using the IPTV traffic model.

Keywords: IPTV, traffic balancing, modeling.

1. Introduction
The low cost of broadcasting over the Internet, and

the reachability of the Internet broadcast compared to
conventional broadcasting transmitters and equipment;
have made Internet Protocol television (IPTV) the
promising future of television and radio, and the choice
of many providers nowadays.

Generally, IPTV is a term that is applied to the
delivery of traditional TV channels, movies, and video-
on-demand content over a private or public network.
From the end user’s perspective, IPTV should look and
operate just like a standard pay TV service with the
addition of new features and services.

Typically, IPTV servers stream live channels by
multicasting traffic to the connected clients, to minimize
the load on the servers while streaming to large numbers
of clients simultaneously, thus handing the responsibility
of packet delivery to the network infrastructure. In the
case of Video on Demand (VoD), a unicast connection
has to be established between the client and the server to
stream the requested media. This leads to the conclusion
that the server load is directly proportional to the number
of connected VoD clients. Therefore, a number of VoD
streaming servers that should run simultaneously to
respond client requests should be estimated statistically
from the number of subscribers, and the research of a
mechanism that ensures balancing the distribution of
client requests to the VoD servers and fault tolerance,
crucial and importante to IPTV.

Currently, few mechanisms of balancing traffic
exist. This work is dedicated to find out how these
mechanisms handle IPTV traffic.

In order to determine the response of a system imple-
menting a certain balancing mechanism, firstly, we need a
model of IPTV traffic. This model should easily be
incorporated into simulators and closely resemble an IPTV
source.

Models for the traffic balancing mechanisms are also
required to mathematically analyze the response of these
mechanisms when fed with the IPTV traffic model.

2. IPTV Video Traffic Model
Typically, High Definition (HD) TV content is

encoded using MPEG-4 (H.264), which has a high
compression ratio and results in highly variable data
rates (VBR) for the compressed video.

The main task of video compression is to remove
spatial and temporal redundancy within each frame and
between consecutive frames to maintain a bandwidth. A
continuous video stream is sampled into a sequence of
frames as the input to the encoder. After encoding, frames
are emitted periodically comprising group of pictures
(GoPs). Each GoP contains an I-frame and a number of P-
and B-frames. For example, with MPEG codec, the generic
GoP is I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8. The first
frame in each GoP is an I-frame, which is intra-coded
without reference to any other frames. The following
P-frames are both intra-coded and inter-coded with respect
to the previous P- or I-frame. The remaining B-frames are
also intra-coded and inter-coded, and they use both the
previous and following P- or I-frames as references.

For the purposes of this paper, the two-level
Markovian traffic model that is proposed by Fengdan
Wan, Lin Cai, and T. A. Gulliver is used. The model
considers both spatial and temporal correlation in MPEG
encoded video sequences, so it can mimic the highly
variable data rate (VBR) behavior of IPTV sources. The
model contains the GoP-level Markov chain and the
frame-level Markov chain, so it can capture both the
inter-GoP and intra-GoP correlations.

a. GoP-level Markov chain
Frame size depends on the texture and motion

complexity of the video content, or its spatial and
temporal domain correlations.

In the spatial and temporal domains, we categorize
the video into a number of levels, S and T, respectively.
Thus, we can use S × T states to represent the correlation
in both domains. Since the duration of a GoP is less than
half a second, we assume that the spatial and temporal
correlations of the video source in each GoP remain at
the same level, or in the same state. Therefore, we can
build a GoP-level discrete time Markov chain, with each
state representing the temporal and spatial correlations of
the video within that GoP.

The more states (larger S and T), the more accurate
the model, but at the cost of computational complexity in

Mykhailo Klymash, Yasser Hayali, Orest Lavriv

generating and applying the model. Experimental results
show that choosing S = 3 and T = 3 provides a good
trade-off between model accuracy and complexity. The
three levels are denoted as low (L), medium (M) and
high (H) correlation states.

The boundaries between states should be set
appropriately, so that a limited number of states could be
used to accurately capture the video statistics. According
to experimental results with a few video streams, evenly
dividing the frames into each state gives reasonably good
results. That is, Pr(Si) = 1/N, where Si denotes one of the
states, and N = S × T is the total number of states.

In the spatial domain, since only the I-frames are
independently intra-coded, the I-frame size is used to
determine the texture complexity of the entire GoP. In
the temporal domain, the ratio of size of the first P-frame
to the size of the I-frame in the same GoP is used to
indicate the temporal correlation, as explained below.
The P1 frame is both intra- and inter-coded with sole
reference to the I-frame. The P1 frame size is determined
by P1 = P1t × Δ�, where Δ� denotes the motion
vectors from frame I to frame P1 in the same GoP, and
P1t is the texture information contained in frame P1,
which is approximately the same as the texture
information in the I-frame of the same GoP. Hence, the
ratio between the first P-frame size and the I-frame size
in the same GoP, φ, indicates the correlation in the
temporal domain φ = P1/I = Δ�. The larger Δ�, the
higher the video motion speed, and the lower the
correlation in the temporal domain.

Combining the three states in the spatial domain
with the three states in the temporal domain gives nine
states for each GoP, as shown in Fig. 1. For example,
state LM denotes a GoP with low correlation in the
spatial domain and medium correlation in the temporal
domain. Note that any two states are connected. The
transition probability between two states is jointly
determined by the temporal and spatial transition
probabilities. Since the temporal and spatial processes
are independent, the transition probability from state LM
to state MM, for example, is Pr{LM → MM} = Prs{L →
M} × Prt{M → M}, where Prs{L → M} and Prt{M →
M} denote the spatial transition probabilities from the L
(“Low”) state to the M (“Medium”) state, and the
temporal transition probability from the M (“Medium”)
state to the M (“Medium”) state, respectively. Each Prt
and Prs is obtained by counting the number of transitions
between two assigned states in the trace.

b. Frame-level Markov chain
Since the GoP-level model cannot capture the

burstiness of the traffic arrival rate within the GoP, the
model should be extended to consider different types of
frames inside each GoP.

The time step for the frame-level Markov model
equals the duration of a video frame. For MPEG video,
each state in the GoP-level model corresponds to the 12-step
Markov chain at the frame-level, as shown in Fig. 1.

Fig. 1. The IPTV Traffic Model.

This represents 12 frames in the GoP. The state
transition probabilities within the GoP are deterministic.
Each state corresponds to a different frame type with a
different traffic arrival rate. With a limited number of
states, a large number of frames with a wide range of
frame sizes will belong to the same state. Thus, a critical
issue is how to associate the frame sizes with the states.

The size of an I-frame is determined by the spatial
domain correlation only. Therefore, the I-frame sizes in
states XL, XM, and XH are the same for X = L,M,H in
the spatial domain. A simple method to determine the
frame size of each state is to average the size of all I- fra-
mes belonging to that state:

j

X j
X

I {state XL,XM,XH}

I
I

N
 , (1)

where XN is the total number of I-frames in states XL,

XM, and XH, and jI is the I-frame size in the j-th GoP.

XI in (1) is the average I-frame size in states XL, XM,
and XH, which can be used to represent the I-frame size
in the corresponding states. Similarly, the P1 frame size
can be determined for each state using averages.

For the remaining B- and P-frames, we first examine
the intra-GoP correlation. The correlation coefficient of
the two sequences i and j is

CoV i, j
R i, j

CoV i,i CoV j, j
 ,

where CoV denotes covariance. The R value between
the B/P frames and P1 in the same GoP is examined. The
value of R is less dependent on a video content, a
compression scheme, etc.

42

Models and Mechanisms of IPTV VOD Traffic Balancing

Typically, there is a high correlation between frames
in the same GoP. Therefore, the remaining P/B frame
sizes in each state are generated based on the P1 frame
size, using the linear equations:

K K K
T T 1F P , for 1 2 8 2 3T B ,B , ,B ,P ,P (2)

where K
TF denotes the average size for each frame type

and is calculated similar to (1), and K indicates the three
states in the temporal domain. Different from the
approach in and where the average P- and B-frame sizes
in the GoP are used to represent all P/B frames in the
same GoP, we differentiate between the P- and B-frame
sizes in different locations. This is because HD video has
much larger frame sizes than the video data investigated

previously. Even though the values of K
T for different

types of P/B frames may be close, after multiplication in
(2) with a large variety of I-frame sizes, the discrepancy
will be significant.

3. Load Balancing Model with Round-Robin DNS
One of most common implementations of load

balancing using Domain Name System (DNS) is the
Berkeley Internet Name Domain (BIND). This allows
address records (A records) to be duplicated for a
specific host, with different IP addresses. The name
server then alternatively rotates addresses for any one
name that has multiple A records, and is known as a
DNS round robin.

Typically, when a client computer wants to initiate a
connection to a certain service, it makes a request to
resolve the service provider name. This request will be
processed by the DNS server which – in the case of
Round Robin DNS – will act as the load distribution
controller. Instead of returning a fixed address, the DNS
server returns an address of a pool of available server
addresses. The DNS server goes through all the
addresses in the pool one by one, and distributes the
requests evenly among all the available service
providers.

Figure 2 shows a simplified model of the Round
Robin load ‘distribution’ mechanism.

In order to create a model for this mechanism, we’ll
have to make some assumptions:

1. Routing of packets from source to destination
throughout the network is taking place immediately.

2. The size of DNS requests and the size of DNS
responses are fixed for the whole scenario.

3. All queues have infinite sizes. Practically, DNS
requests and responses are relatively tiny when
compared to the amount of RAM.

4. All traffic has the same priority in queues, no
weighted queuing is applied.

The object is to determine how many requests can be
responded before request-timeouts start occurring.

4. Model Formulation
How long will it take for a DNS query to be complete?

Fig. 2. Round-robin DNS Mechanism.

Assuming that the time required to receive and
process a request is higher than the time required to send
a response, the total time required for a query to finish is
the total time required to receive and process all the
preceding requests in the server queue, plus the time it
takes to send a response back to the client. This formula
should be suitable according to the previous assumption:

1 1 2 2

1
*

Q R
S S

T N P
BW C BW C

where T is the time (in milliseconds) necessary for a
DNS query to finish, N is the number of DNS requests
preceding the request in question in the server queue, P
is the time (in milliseconds) necessary for the server to
process a certain query, QS is the size (in Kilobytes) of

the DNS request, 1BW is the link bandwidth (in Mbps)

from the clients to the DNS server, 2BW is the link

bandwidth (in Mbps) from the DNS server to the clients,

1C is the congestion of the link from the clients to the

DNS server (a value between 0 and 1), 2C is the

congestion of the link from the DNS server to the clients
(a value between 0 and 1).

The previous formula doesn’t consider the
congestion caused by the DNS queries placed. It should
be taken into account as follows:

 TN S
C C

BW

where TN is the total number of requests/responses in

the DNS server queue, S is the size of the

request/response, and BW is the bandwidth of the link.

43

Mykhailo Klymash, Yasser Hayali, Orest Lavriv

Now applying the congestion expression in the
previous formula, we get:

2 2

1 1
1

1
Q R

Q

S S
T N P

N S BW C
BW C

BW

 2 21 1

1 Q R

Q

S S
T N P

BW CN S BW C

(1)

Formula (1) can calculate the time necessary for a DNS
query to be finished, but it doesn’t consider the congestion
that might be caused by the DNS responses made by the
server. In this formula, we assume that the time required to
receive and process a DNS request is longer than the time to
send a response back to the client.

In case the time required to send a DNS response is
longer than the time required to receive and process the
request, then the total time required for a query to finish
will be the time required to send the DNS responses,
plus the time required to receive and process the first
request. Thus, a suitable formula to calculate the total
time for a query to finish would be:

1 1
2 2

2

1 Q R

R

S N S
T P

BW C N S
BW C

BW

 (2)

where T is the time (in milliseconds) necessary for a DNS
query to finish, N is the number of DNS requests preceding
the request in question in the server queue, P is the time (in
milliseconds) necessary for the server to process a certain
query, QS is the size (in Kilobytes) of the DNS request,

1BW is the link bandwidth (in Mbps) from the clients to the

DNS server, 2BW is the link bandwidth (in Mbps) from the

DNS server to the clients, 1C is the congestion of the link

from the clients to the DNS server (a value between 0 and 1),

2C is the congestion of the link from the DNS server to the

clients (a value between 0 and 1).
From formulas (1) and (2), we can determine the

maximum number of DNS queries that can be handled
before queries start timing out.

When the time required to receive and process a
request by the server is higher than the time required for
a response to be sent back to the client, the maximum
number of client requests possible before DNS queries
start timing out would be:

2 1 1

1 1 1 1 1 1

1 1 2 1 1 2

1 1 1 1 1 1

Q R
total

R Q timeout

timeout

R Q timeout

C S BW C S
N

S S BW C BW C P BW C T

BW C C P BW C C T

S S BW C BW C P BW C T

Now back to formula (2), we can draw a graph
displaying the time required to complete a query under

different circumstances. For our purposes, we fix the values

of
512 bytes Q RS S

, 0.04 secP , which are the
average values for a typical DNS query. We assume

1 2BW BW and apply for 100Mbps and 1Gbps. By
substituting these values in the formula above, we obtain:

2 1

512 512 16 1

12500000 512 390625 25

N
T

C N C

(100Mbps)

and,

2 1

512 512 8 1

125000000 512 1953125 25

N
T

C N C

(1Gbps)

In the graphs, we use the same value range (0 ~1)

for both 1C and 2C and we refer to it as C . We use the

value range of (0 ~1 0000) for N .
Comparing graphs 1a and 1b, it is obvious that the

usage of a link with higher bandwidth will decrease the
query time by about 47% at worst case scenario – where
congestion is at a peak and the number of queries in the
server queue is 10000.

a

b

Fig. 3. The relation between the time required to complete
a query, the number of queries in the queue and the congestion

of the link using (a) a 100 Mbps link. (b) a 1 Gbps link.

44

Models and Mechanisms of IPTV VOD Traffic Balancing

These results make a very comforting prediction, as
a downtime of 0.901 seconds is barely noticeable. But
two serious issues that weren’t addressed here are the
DNS caching at the client-end, and the fact that in a case
of a failure, the ‘new’ server that a certain client was
switched to has no means to recognise where to start off.

The first issue could cause a downtime up to
5 minutes, unless the DNS cache was forced to refresh.
The second issue causes disruption and the user has to
navigate back to where the failed server left off. Both
these problems can be solved by implementing a
communication mechanism between the clients and the
servers to update the statuses of servers dynamically.
This feature is not available in the generic Round Robin
DNS load balancing.

5. Conclusions
Calculations done and the results encountered show

that a few steps can be made to improve the
responsiveness of the load balancing mechanism. But
regardless of the changes applied at the server end, there
are still deficiencies that urgently require a new
mechanism to address and solve them.

References
1. G. O’Driscoll, Next Generation IPTV Services

and Technologies. – New York, USA: Wiley-
Interscience. – 2008.

2. F. Wan, Lin Cai, T. Aaron, A Simple, Two-Level
Markovian Traffic Model for IPTV Video Sources // In
Proc. IEEE Global Telecommunications Conference. –
New Orleans, USA. – 2008. – P. 1–5.

3. H. McDevitt, Load Sharing with DNS //
http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group8/DNS.html

4. Round Robin DNS Load Balancing //
http://content.websitegear.com/article/load_balance_dns.htm

МОДЕЛІ ТА МЕХАНІЗМИ БАЛАНСУВАННЯ
IPTV VOD ТРАФІКУ

Михайло Климаш, Яссер Хайалі, Орест Лаврів

Запропоновано моделі балансування трафіку IPTV
VoD для оцінки існуючих механізмів балансування.
Проведено аналіз кожного з цих механізмів за допомогою
моделі IPTV трафіку.

Mykhailo Klymash – Ph.D., D.Sc.,
Professor, the Head of Telecommu-
nications Department of the Institute of
Telecommunications, Radioelectronics
and Electronic Engineering, Lviv Polyt-
echnic National University, Ukraine.

Area of interest: load balancing
mechamisms in video information flows
and their responseveness.

Yasser Hayali – M.Sc., the post-
graduate of the Telecommunications
Department of the Institute of Tele-
communications, Radioelectronics and
Electronic Engineering, Lviv Polytechnic
National University, Ukraine.

Area of interest: load balancing
mechamisms in video information flows
and their responseveness.

Orest Lavriv – Ph.D., Assistant
Professor of the Telecommunications
Department of the Institute of Tele-
communications, Radioelectronics and
Electronic Engineering, Lviv Polytechnic
National University, Ukraine.

Area of interest: load balancing
mechamisms in video information flows
and their responseveness.

45

