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Abstract: Models for traffic balancing that enable to 

evaluate the current IPTV traffic balancing mechanisms are 
suggested in this paper. Also, an analysis of each of these 
mechanisms is performed using the IPTV traffic model. 
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1. Introduction 
The low cost of broadcasting over the Internet, and 

the reachability of the Internet broadcast compared to 
conventional broadcasting transmitters and equipment; 
have made Internet Protocol television (IPTV) the 
promising future of television and radio, and the choice 
of many providers nowadays. 

Generally, IPTV is a term that is applied to the 
delivery of traditional TV channels, movies, and video-
on-demand content over a private or public network. 
From the end user’s perspective, IPTV should look and 
operate just like a standard pay TV service with the 
addition of new features and services. 

Typically, IPTV servers stream live channels by 
multicasting traffic to the connected clients, to minimize 
the load on the servers while streaming to large numbers 
of clients simultaneously, thus handing the responsibility 
of packet delivery to the network infrastructure. In the 
case of Video on Demand (VoD), a unicast connection 
has to be established between the client and the server to 
stream the requested media. This leads to the conclusion 
that the server load is directly proportional to the number 
of connected VoD clients. Therefore, a number of VoD 
streaming servers that should run simultaneously to 
respond client requests should be estimated statistically 
from the number of subscribers, and the research of a 
mechanism that ensures balancing the distribution of 
client requests to the VoD servers and fault tolerance, 
crucial and importante to IPTV. 

Currently, few mechanisms of balancing traffic 
exist. This work is dedicated to find out how these 
mechanisms handle IPTV traffic. 

In order to determine the response of a system imple-
menting a certain balancing mechanism, firstly, we need a 
model of IPTV traffic. This model should easily be 
incorporated into simulators and closely resemble an IPTV 
source. 

Models for the traffic balancing mechanisms are also 
required to mathematically analyze the response of these 
mechanisms when fed with the IPTV traffic model. 

2. IPTV Video Traffic Model 
Typically, High Definition (HD) TV content is 

encoded using MPEG-4 (H.264), which has a high 
compression ratio and results in highly variable data 
rates (VBR) for the compressed video. 

The main task of video compression is to remove 
spatial and temporal redundancy within each frame and 
between consecutive frames to maintain a bandwidth. A 
continuous video stream is sampled into a sequence of 
frames as the input to the encoder. After encoding, frames 
are emitted periodically comprising group of pictures 
(GoPs). Each GoP contains an I-frame and a number of P- 
and B-frames. For example, with MPEG codec, the generic 
GoP is I B1 B2 P1 B3 B4 P2 B5 B6 P3 B7 B8. The first 
frame in each GoP is an I-frame, which is intra-coded 
without reference to any other frames. The following  
P-frames are both intra-coded and inter-coded with respect 
to the previous P- or I-frame. The remaining B-frames are 
also intra-coded and inter-coded, and they use both the 
previous and following P- or I-frames as references. 

For the purposes of this paper, the two-level 
Markovian traffic model that is proposed by Fengdan 
Wan, Lin Cai, and T. A. Gulliver is used. The model 
considers both spatial and temporal correlation in MPEG 
encoded video sequences, so it can mimic the highly 
variable data rate (VBR) behavior of IPTV sources. The 
model contains the GoP-level Markov chain and the 
frame-level Markov chain, so it can capture both the 
inter-GoP and intra-GoP correlations. 

a. GoP-level Markov chain 
Frame size depends on the texture and motion 

complexity of the video content, or its spatial and 
temporal domain correlations. 

In the spatial and temporal domains, we categorize 
the video into a number of levels, S and T, respectively. 
Thus, we can use S × T states to represent the correlation 
in both domains. Since the duration of a GoP is less than 
half a second, we assume that the spatial and temporal 
correlations of the video source in each GoP remain at 
the same level, or in the same state. Therefore, we can 
build a GoP-level discrete time Markov chain, with each 
state representing the temporal and spatial correlations of 
the video within that GoP. 

The more states (larger S and T), the more accurate 
the model, but at the cost of computational complexity in 
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generating and applying the model. Experimental results 
show that choosing S = 3 and T = 3 provides a good 
trade-off between model accuracy and complexity. The 
three levels are denoted as low (L), medium (M) and 
high (H) correlation states. 

The boundaries between states should be set 
appropriately, so that a limited number of states could be 
used to accurately capture the video statistics. According 
to experimental results with a few video streams, evenly 
dividing the frames into each state gives reasonably good 
results. That is, Pr(Si) = 1/N, where Si denotes one of the 
states, and N = S × T is the total number of states. 

In the spatial domain, since only the I-frames are 
independently intra-coded, the I-frame size is used to 
determine the texture complexity of the entire GoP. In 
the temporal domain, the ratio of size of the first P-frame 
to the size of the I-frame in the same GoP is used to 
indicate the temporal correlation, as explained below. 
The P1 frame is both intra- and inter-coded with sole 
reference to the I-frame. The P1 frame size is determined 
by  P1 = P1t × Δ�, where Δ� denotes the motion 
vectors from frame I to frame P1 in the same GoP, and 
P1t is the texture information contained in frame P1, 
which is approximately the same as the texture 
information in the I-frame of the same GoP. Hence, the 
ratio between the first P-frame size and the I-frame size 
in the same GoP, φ, indicates the correlation in the 
temporal domain φ = P1/I = Δ�. The larger Δ�, the 
higher the video motion speed, and the lower the 
correlation in the temporal domain. 

Combining the three states in the spatial domain 
with the three states in the temporal domain gives nine 
states for each GoP, as shown in Fig. 1. For example, 
state LM denotes a GoP with low correlation in the 
spatial domain and medium correlation in the temporal 
domain. Note that any two states are connected. The 
transition probability between two states is jointly 
determined by the temporal and spatial transition 
probabilities. Since the temporal and spatial processes 
are independent, the transition probability from state LM 
to state MM, for example, is Pr{LM → MM} = Prs{L → 
M} × Prt{M → M}, where Prs{L → M} and Prt{M → 
M} denote the spatial transition probabilities from the L 
(“Low”) state to the M (“Medium”) state, and the 
temporal transition probability from the M (“Medium”) 
state to the M (“Medium”) state, respectively. Each Prt 
and Prs is obtained by counting the number of transitions 
between two assigned states in the trace. 

b. Frame-level Markov chain 
Since the GoP-level model cannot capture the 

burstiness of the traffic arrival rate within the GoP, the 
model should be extended to consider different types of 
frames inside each GoP. 

The time step for the frame-level Markov model 
equals the duration of a video frame. For MPEG video, 
each state in the GoP-level model corresponds to the 12-step 
Markov chain at the frame-level, as shown in Fig. 1. 

 
Fig. 1. The IPTV Traffic Model. 

This represents 12 frames in the GoP. The state 
transition probabilities within the GoP are deterministic. 
Each state corresponds to a different frame type with a 
different traffic arrival rate. With a limited number of 
states, a large number of frames with a wide range of 
frame sizes will belong to the same state. Thus, a critical 
issue is how to associate the frame sizes with the states. 

The size of an I-frame is determined by the spatial 
domain correlation only. Therefore, the I-frame sizes in 
states XL, XM, and XH are the same for X = L,M,H in 
the spatial domain. A simple method to determine the 
frame size of each state is to average the size of all I- fra-
mes belonging to that state: 

 
j

X j
X

I {state XL,XM,XH}

I
I

N
  , (1) 

where XN  is the total number of I-frames in states XL, 

XM, and XH, and jI  is the I-frame size in the j-th GoP. 

XI  in (1) is the average I-frame size in states XL, XM, 
and XH, which can be used to represent the I-frame size 
in the corresponding states. Similarly, the P1 frame size 
can be determined for each state using averages. 

For the remaining B- and P-frames, we first examine 
the intra-GoP correlation. The correlation coefficient of 
the two sequences i and j is 

   
   

CoV i, j
R i, j

CoV i,i CoV j, j
 , 

where CoV  denotes covariance. The R value between 
the B/P frames and P1 in the same GoP is examined. The 
value of R is less dependent on a video content, a 
compression scheme, etc. 
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Typically, there is a high correlation between frames 
in the same GoP. Therefore, the remaining P/B frame 
sizes in each state are generated based on the P1 frame 
size, using the linear equations: 

 
K K K
T T 1F P , for  1 2 8 2 3T B ,B , ,B ,P ,P   (2) 

where K
TF  denotes the average size for each frame type 

and is calculated similar to (1), and K indicates the three 
states in the temporal domain. Different from the 
approach in and where the average P- and B-frame sizes 
in the GoP are used to represent all P/B frames in the 
same GoP, we differentiate between the P- and B-frame 
sizes in different locations. This is because HD video has 
much larger frame sizes than the video data investigated 

previously. Even though the values of K
T  for different 

types of P/B frames may be close, after multiplication in 
(2) with a large variety of I-frame sizes, the discrepancy 
will be significant. 

3. Load Balancing Model with Round-Robin DNS 
One of most common implementations of load 

balancing using Domain Name System (DNS) is the 
Berkeley Internet Name Domain (BIND). This allows 
address records (A records) to be duplicated for a 
specific host, with different IP addresses. The name 
server then alternatively rotates addresses for any one 
name that has multiple A records, and is known as a 
DNS round robin. 

Typically, when a client computer wants to initiate a 
connection to a certain service, it makes a request to 
resolve the service provider name. This request will be 
processed by the DNS server which – in the case of 
Round Robin DNS – will act as the load distribution 
controller. Instead of returning a fixed address, the DNS 
server returns an address of a pool of available server 
addresses. The DNS server goes through all the 
addresses in the pool one by one, and distributes the 
requests evenly among all the available service 
providers. 

Figure 2 shows a simplified model of the Round 
Robin load ‘distribution’ mechanism. 

In order to create a model for this mechanism, we’ll 
have to make some assumptions: 

1. Routing of packets from source to destination 
throughout the network is taking place immediately. 

2. The size of DNS requests and the size of DNS 
responses are fixed for the whole scenario. 

3. All queues have infinite sizes. Practically, DNS 
requests and responses are relatively tiny when 
compared to the amount of RAM. 

4. All traffic has the same priority in queues, no 
weighted queuing is applied. 

The object is to determine how many requests can be 
responded before request-timeouts start occurring. 

4. Model Formulation 
How long will it take for a DNS query to be complete? 

 
Fig. 2. Round-robin DNS Mechanism. 

Assuming that the time required to receive and 
process a request is higher than the time required to send 
a response, the total time required for a query to finish is 
the total time required to receive and process all the 
preceding requests in the server queue, plus the time it 
takes to send a response back to the client. This formula 
should be suitable according to the previous assumption: 

  
1 1 2 2

1
*

Q R
S S

T N P
BW C BW C

 
       

  

where T  is the time (in milliseconds) necessary for a 
DNS query to finish, N  is the number of DNS requests 
preceding the request in question in the server queue,  P  
is the time (in milliseconds) necessary for the server to 
process a certain query, QS  is the size (in Kilobytes) of 

the DNS request, 1BW  is the link bandwidth (in Mbps) 

from the clients to the DNS server, 2BW  is the link 

bandwidth (in Mbps) from the DNS server to the clients, 

1C  is the congestion of the link from the clients to the 

DNS server (a value between 0 and 1), 2C  is the 

congestion of the link from the DNS server to the clients 
(a value between 0 and 1). 

The previous formula doesn’t consider the 
congestion caused by the DNS queries placed. It should 
be taken into account as follows: 

 TN S
C C

BW

     

where TN  is the total number of requests/responses in 

the DNS server queue, S  is the size of the 

request/response, and BW  is the bandwidth of the link. 

43



Mykhailo Klymash, Yasser Hayali, Orest Lavriv 

 

Now applying the congestion expression in the 
previous formula, we get: 

 
2 2

1 1
1

1
Q R
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S S
T N P

N S BW C
BW C

BW

 
 
               

 

    2 21 1

1 Q R

Q

S S
T N P

BW CN S BW C

 
     

       
(1) 

Formula (1) can calculate the time necessary for a DNS 
query to be finished, but it doesn’t consider the congestion 
that might be caused by the DNS responses made by the 
server. In this formula, we assume that the time required to 
receive and process a DNS request is longer than the time to 
send a response back to the client. 

In case the time required to send a DNS response is 
longer than the time required to receive and process the 
request, then the total time required for a query to finish 
will be the time required to send the DNS responses, 
plus the time required to receive and process the first 
request. Thus, a suitable formula to calculate the total 
time for a query to finish would be: 

 
 

1 1
2 2

2

1  Q R

R

S N S
T P

BW C N S
BW C

BW


  

  
  
 

 (2) 

where T  is the time (in milliseconds) necessary for a DNS 
query to finish, N  is the number of DNS requests preceding 
the request in question in the server queue,  P  is the time (in 
milliseconds) necessary for the server to process a certain 
query, QS  is the size (in Kilobytes) of the DNS request, 

1BW  is the link bandwidth (in Mbps) from the clients to the 

DNS server, 2BW  is the link bandwidth (in Mbps) from the 

DNS server to the clients, 1C  is the congestion of the link 

from the clients to the DNS server (a value between 0 and 1), 

2C  is the congestion of the link from the DNS server to the 

clients (a value between 0 and 1). 
From formulas (1) and (2), we can determine the 

maximum number of DNS queries that can be handled 
before queries start timing out. 

When the time required to receive and process a 
request by the server is higher than the time required for 
a response to be sent back to the client, the maximum 
number of client requests possible before DNS queries 
start timing out would be: 

 

 

2 1 1

1 1 1 1 1 1

1 1 2 1 1 2

1 1 1 1 1 1
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Now back to formula (2), we can draw a graph 
displaying the time required to complete a query under 

different circumstances. For our purposes, we fix the values 

of 
512 bytes Q RS S

, 0.04 secP , which are the 
average values for a typical DNS query. We assume 

1 2BW BW  and apply for 100Mbps and 1Gbps. By 
substituting these values in the formula above, we obtain: 

2 1

512   512 16 1

12500000  512 390625 25

N
T

C N C

 
  

   
(100Mbps) 

and, 

2 1

512   512 8 1

125000000  512 1953125 25

N
T

C N C

 
  

   
(1Gbps) 

In the graphs, we use the same value range ( 0 ~1 ) 

for both 1C  and 2C  and we refer to it as C . We use the 

value range of ( 0 ~1 0000 ) for N . 
Comparing graphs 1a and 1b, it is obvious that the 

usage of a link with higher bandwidth will decrease the 
query time by about 47% at worst case scenario – where 
congestion is at a peak and the number of queries in the 
server queue is 10000. 

 

 
a 

 

b  

Fig. 3. The relation between the time required to complete  
a query, the number of queries in the queue and the congestion  

of the link using (a) a 100 Mbps link. (b) a 1 Gbps link. 
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These results make a very comforting prediction, as 
a downtime of 0.901 seconds is barely noticeable. But  
two serious issues that weren’t addressed here are the 
DNS caching at the client-end, and the fact that in a case 
of a failure, the ‘new’ server that a certain client was 
switched to has no means to recognise where to start off. 

The first issue could cause a downtime up to  
5 minutes, unless the DNS cache was forced to refresh. 
The second issue causes disruption and the user has to 
navigate back to where the failed server left off. Both 
these problems can be solved by implementing a 
communication mechanism between the clients and the 
servers to update the statuses of servers dynamically. 
This feature is not available in the generic Round Robin 
DNS load balancing. 

5. Conclusions 
Calculations done and the results encountered show 

that a few steps can be made to improve the 
responsiveness of the load balancing mechanism. But 
regardless of the changes applied at the server end, there 
are still deficiencies that urgently require a new 
mechanism to address and solve them. 
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МОДЕЛІ ТА МЕХАНІЗМИ БАЛАНСУВАННЯ 
IPTV VOD ТРАФІКУ 

Михайло Климаш, Яссер Хайалі, Орест Лаврів 

Запропоновано моделі балансування трафіку IPTV 
VoD для оцінки існуючих механізмів балансування. 
Проведено аналіз кожного з цих механізмів за допомогою 
моделі IPTV трафіку. 
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