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Abstract: A complete model of the induction shrink 

fit between a disk and shaft is presented. The model 
consists of a proposal of appropriate interference, 
checking the von Mises stress in the disk and shaft, 
mapping of the process of induction heating and 
determining the release revolutions. The methodology is 
illustrated by a typical example.  
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1. Introduction  
Shrink fit is a firm connection of two metal parts based 

on the principle of elastic stress. Its task is usually to transfer 
mechanical forces or torques. This kind of fit finds wide 
applications in many industrial, transport and other 
technologies. We can mention, for example, crankshafts, 
shrunk-on rings, armature bandages in various rotating 
electric machines or tires of railway wheels [1]. 

The shrink fit between the disk and shaft is realized 
either by hydraulic pressing or by heating of the disk, its 
setting on the shaft and cooling of the whole system. In 
the latter case (which is discussed in this paper) the disk 
can be heated by gas or inductively. The aim of heating 
is to enlarge the diameter of its bore to a value greater 
than the diameter of the shaft. Then the disk is put on the 
shaft and the whole system is cooled. The process is 
schematically shown in Fig. 1. 

 

Fig. 1. Preparation of a shrink fit. 

The shaft of external radius A2r  is manufactured 

with interference ABr  with respect to the internal radius 

B1r  of the disk. After heating, the internal radius of the 

disk must reach a value '
B1 A2r r . Putting it on the shaft 

and cooling, the disk shrinks, which leads to the decrease 

of both radii A2r  and '
B1r  to a common radius  Cr  that 

satisfies inequality B1 C 2Ar r r   (even the shaft is 

considered elastic). Shrinking of both parts produces at 
the place of contact a unit contact force 0rf  (index 0 

means “at rest”) between them (see Fig. 1), which allows 
transferring the mechanical torque. 

The paper presents a complete model of the process 
applied to a disk of a rectangular cross section (but it can 
easily be extended to a disk of any cross section).  

2. Formulation of the technical problem 
Consider a shrink fit consisting of a steel disk of 

dimensions B1r , B2r  and h  and a shaft of the same 

material. The fit must be able to safely transfer a 
prescribed mechanical torque 

0r maxnM  at the given 

revolutions 0n . The task is to propose its parameters and 

check them with respect to the required mechanical 
properties of the system.  

The complete model of the problem consists of four 
submodels described in the following points:  

 Starting from the geometry of the disk and mentioned 
torque 

0r maxnM  it is necessary to find sufficient 

interference ABr . This is, however, a very compli-

cated inverse problem. The easiest way is, therefore, 

to find the dependence   r max r max ABn nM M r   

( r maxnM  being the maximum transferable torque for 

the given interference ABr  within the range of 

revolutions 00,n n ) and then to estimate the 

value ABr  from this curve. 

 Check of the mechanical stress of the disk after its 
pressing on the shaft. This starts from knowledge of 
the unit contact force rnf  for the whole range of 

possible revolutions 00,n n . This value then 

serves for computing the reduced stress red,n  (for 

example, red, Min  by the von Mises hypothesis) and 

its comparison with the yield stress k  of the steel 

used. For growing revolutions, the effect of the 
centrifugal forces (acting mainly in the disk) may 
significantly change the maximum acceptable 
reduced stress. 
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 Due to the centrifugal forces, the unit contact 
force rnf  at the place of the contact of both 

parts decreases with increasing revolutions. A 
check of the shrink fit has to be performed with 
respect to the danger of slipping of the disk. 

 Determination of the release revolutions reln . 

After reaching these revolutions ( rel 0n n ) the 

unit contact force 
relrnf  is no longer able to 

transfer the prescribed torque 
0r maxnM . 

 Mapping of the process of induction heating of 
the disk. Its purpose is to find the parameters of 
the field current in the inductors (amplitude and 
frequency) that would secure that the internal 

radius of the disk reaches a value '
B1r  in a 

reasonable time, still acceptable temperature and 
a good efficiency of the heating process.  

3. Continuous mathematical model 
The mathematical model of the problem consists of two 

independent submodels. The first of them is purely 
mechanical and is intended for finding the unit contact force 

rnf  acting along the contact place on the disk and shaft 

after pressing for the considered range of revolutions 

00,n n , corresponding values of the maximum transfe-

rable torques r maxnM , and also von Mises stresses red, Min . 

Provided that these values are acceptable, we apply 
the second submodel for the description of the process of 
induction heating. This task represents a nonlinear triply 
coupled problem characterized by the interaction of 
magnetic field, temperature field and field of 
thermoelastic displacements. The physical properties of 
material are functions of the temperature. 

The first (mechanical) submodel is given by the 
isothermic Lamé equation in the form [2]  

    Lgrad div ,        0u u f  

    
,

1 1 2 2 1

E E 
  


 

   
.             (1) 

Here, E  denotes the Young modulus of elasticity of the 
material,   is the Poisson coefficient of the contraction, 

symbol  , ,r zu u uu  represents the vector of the 

displacements, and  L L, L,,r zf ff  stands for the vector of 

the volumetric forces. For the considered axisymmetric 
arrangement 0u  , and (neglecting the gravitational 

forces) L,z 0f  . The component L,rf  is given by the 

formula for the specific centrifugal force 
2

L, , 2 / 60rf r n     ,                   (2) 

where   denotes the specific mass of the disk. 

The boundary conditions to (1) are prescribed in 
accordance with Fig. 2 (due to symmetry it is sufficient 
to consider just halves of both parts). 

 

Fig. 2. Determination of the boundary conditions. 
 
 Shaft: edge I-II: 0, 0z ru f  , edge II–III: 

, 0r rn zf f f   , edge III-IV: 0r zf f  , 

edge  IV-I : 0, 0r zu f  . 

 Disk: edge I-II: 0, 0z ru f  , edge II–III: 

0r zf f  , edge III-IV: 0r zf f  , edge   

IV–I: , 0r rn zf f f  . 

Here, rf  and zf  denote the external forces in the r  

and z  directions, while ru  and zu  denote the displace-

ments in the same directions. 
Unfortunately, the unit contact force rnf  (see Fig. 1) 

is not known beforehand. The task must be, therefore, 
solved iteratively in the following way: 

 Choice of unit contact force rnf , 

 Numerical solution of (1): first for the shaft, 
second for the disk. Its solution for the shaft 
provides the displacement A2r , solution for 

the disk provides displacement B1r . 

 Calculation of A2 B1 ABr r r       , 

 If 0  , where 0  is a prescribed tolerance, the 

computations stop, otherwise the value of the unit 
contact force rnf  must be changed appropriately 

and the system must be recalculated. 
After finishing this iterative process, we can easily 

find the maximum transferable torque r maxnM  and also 

the corresponding von Mises stress red, Min . The 

relation for the torque r maxnM  reads 
2

r max C f2n rnM r h f f ,   C B1 B1r r r   ,         (3) 

where h  denotes the width of the disk, Cr  stands for the 

final common radius of the shaft and disk (see Fig. 1) 
and ff  is the coefficient of dry friction steel – steel. The 

von Mises reduced stress red, Min  (in the axisymmetric 

arrangement) is given by the formula 
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 2 2 2
red, Mi

1

2n r z r z          ,           (4) 

where r  and z  denote the radial and axial stresses at 

a point, respectively. 
The last mechanical task is the determination of the 

release revolutions reln . These are given by the condition that 

the original interference ABr  between the disk and shaft 

vanishes due to their deformations ABr  by the centrifugal 

forces at these revolutions. In such a case 
rel

0rnf   and the 

fit is no longer able to transfer any mechanical torque. The 
value of ABr  can be determined from the solution of the 

Lamé equation for the revolutions n . Furthermore, the van 

Mises stress 
relred, Min  has to be checked as well, because the 

growing revolutions result in higher stress in the disk. 
The second submodel describing the process of 

induction heating (see Fig. 3) consists of three second-
order partial differential equations describing the 
distribution of the three above mentioned fields. 

 

 

Fig. 3. Induction heating of the disk. 
 

The magnetic field in the system is described by the 
solution of a well-known parabolic equation for the 
magnetic vector potential A  in the form [3] 

ext
1

curl curl 


  
    

AA J
t

,                   (5) 

where   denotes the magnetic permeability,   stands 

for the electric conductivity and extJ  is the vector of the 

external harmonic current density in the field coils. 
But a solution to (5) is, in this particular case, practically 

unfeasible. The reason consists in the deep disproportion 
between the frequency f  (usually tens or hundreds Hz) of 

the field current extI  and time of heating Ht  (minutes). That 

is why the model was somewhat simplified using the 
assumption that the magnetic field is harmonic. In such a case 
it can be described by the Helmholtz equation for the phasor 
A  of the magnetic vector potential A  [3] 

extcurlcurl j    A A J .                  (6) 

Here,   denotes the angular frequency ( 2 f  ). 

But the magnetic permeability of ferromagnetic parts 

needs not be a constant; it can always be assigned to the 
local value of magnetic flux density. It computation is, in 
such a case, based on an appropriate iterative procedure. 

The conditions along the axes of the system and 
artificial boundary placed at a sufficient distance from it 
are of the Dirichlet type (  0A ).  

The temperature field is described by the heat 
transfer equation [4] 

  pdiv grad
T

T c p
t

  
   


,                (7) 

where   is the thermal conductivity,   denotes the 

mass density and pc  stands for the specific heat (all of 

these parameters are generally temperature-dependent 
functions). Finally, symbol p  denotes the time average 

internal volumetric sources of heat that generally consist 
of the volumetric Joule losses Jp  (due to eddy currents) 

and magnetization losses mp . So we can write 

J mp p p  ,                              (8) 
 

where 
2

eddy
J eddy, jp 


  

J
J A ,               (9) 

while mp  (if they are considered) are determined from 

the known measured loss dependence  m mp p B  for 

the material used (magnetic flux density B  in every 
element is in this model also harmonic). 

The boundary conditions take into account convec-
tion and radiation. 

Finally, the solution of the thermoelastic problem is 
solved by means of the Lamé nonisothermic equation in 
the form  

   
  T

grad div

3 2 grad .T

  

  

    

     0

u u
             (10) 

where T  is the coefficient of the linear thermal 

dilatability of material and T  denotes the temperature. 
Other parameters are identical with those in (1). The 
boundary conditions correspond to the free disk.  

It is important to notice that practically all physical 
parameters of material of the disk ( p T, , , ,c     ) are 

generally temperature-dependent functions. That is why the 
problem of induction heating characterised by the interaction 
of the above three fields cannot be solved in the weak 
formulation. On the other hand, when the temperature of the 
disk does not exceed about 300C, the magnetic 

permeability of steel can be considered (with only a very 
small error) independent of temperature. 

4. Numerical computation 
The numerical solution of the task was realized by 

codes QuickField (mechanical submodel) and COMSOL 
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Multiphysics (induction heating submodel) supplemen-
ted with a number of own scripts and procedures. 
Attention was particularly paid to the convergence of 
results in the dependence on the density of discretization 
mesh and distance of the artificial boundary (in case of 
magnetic field). The results were required to reach 2–3 
valid digits. The full computation of one example takes 
(on a good PC) several hours. 

5. Illustrative example 
The nominal radii of the shaft and internal bore of 

the disk A2 B1 0.1r r  m, B2 0.5r  m, 0.05h  m (see 

Fig. 1). The interference ABr  was tested within the 

range 0 0.3 mm. The physical parameters of the disk 
and shaft manufactured of steel AISI 4130 are known. 
Some of them p T, , , ,c     are temperature-depen-

dent functions and together with the magnetization curve 
are depicted in Fig. 4–8.  
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Fig. 4. Magnetisation characteristic of steel AISI 4130  

at the room temperature. 
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Fig. 5. Temperature dependence of electrical conductivity  

of steel AISI 4130. 
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Fig. 6. Temperature dependence of thermal conductivity  
of steel AISI 4130. 
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Fig. 7. Temperature dependence of specific heat  
of steel AISI 4130. 
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Fig. 8. Temperature dependence of thermal dilatability 
 of steel AISI 4130. 

Other parameters are supposed constant 

( 112.1 10E   N/m2, 0.3  ). The yield stress of steel 

AISI 4130 8
k 4.226 10   Nm–2 and the coefficient of 

friction f 0.55f  . The nominal mechanical revolutions of 

the system are 0 3000n  rev/min and power to be 

transferred 1P  MW, which corresponds to mechanical 
torque 

0r 3184nM  Nm. 

Fig. 9 shows the dependences of the von Mises stresses 
in the shaft and disk (at rest, 0n  ) as functions of the 

interference ABr . Both depicted functions are practically 

linear. The highest allowable interference for the disk (for 
which still red,0Mi k  ) is 0.22  mm. This value also 

provides the maximum allowable torque (at rest) 
5

r0max 4.182 10M   Nm calculated from (2), see Fig. 10.   
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Fig. 9. Von Mises stress red,0Mi  in the system at rest as a 

function of ABr : I – shaft (here red,0Mi r0f  ), II – disk. 
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Fig.  10. Transferable torque r0M  of the shrink fit (at rest)   
as a function of ABr . 

 
In the next text we will suppose (with regard to the 

safety of the shrink parameters) that AB 0.2r  mm.  

Fig. 11 shows the dependence of the von Mises 
stress red, Min  on revolutions n  for AB 0.2r  mm. 

Although this stress in the disk slightly increases with 
the revolutions, yet it does not exceed the yield stress 

8
k 4.226 10   N/m2 even after reaching the 

revolutions 3000n  /min. Analogously, Fig. 12 shows 
the dependence of the maximum transferable torque 

r maxnM  on the revolutions n . The torque drops from the 

value 53.7 10  Nm at rest to the value 52.3 10  Nm at 
revolutions 3000n  rev min–1, which is still enough for 

transferring power on the order of 710 W. 
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Fig. 11. Dependence of the von Mises stress red, Min   

as a function of revolutions n :  

I – shaft, II – disk ( AB 0.2r  mm). 

 
Finally, Fig. 13 shows the dependence of the von 

Mises stress in the disk on its radius both at rest ( 0n  ) 

and 0 3000n   rpm, again for AB 0.2r  mm. This 

stress strongly drops with the radius, so that there is 
nowhere a danger of exceeding the yield stress 

8
k 4.226 10   Nm–2 of the used material. 
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Fig. 12. Dependence of the maximum transferable torque rnM  

on the revolutions n  ( AB 0.2r  mm). 
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Fig. 13. Dependence of the von Mises stress red,Mi  in the disk 

on the radius I – at rest ( 0n  ), II – at nominal revolutions 

0 3000n  rpm ( AB 0.2r  mm). 

The last two figures from the mechanical part of the task 
koncern the release revolutions reln . Fig. 14 shows the de-

pendence of ABr  on the revolutions n , where ABr  

denotes the growth of the difference between the inner radius 
of the disk and radius of the shaft due to deformations 
brought about by the growing centrifugal forces. As soon as 
the value of ABr  reaches the value of the interference 

AB 0.2r  mm, the contact force rnf  vanishes and the fit 

cannot transfer any mechanical torque. The graph shows that 
the situation occurs at rel 5030n  rpm.  

Fig. 15 contains the dependence of the unit contact 

force rnf  acting between the disk and shaft (red line) 

for growing revolutions n  (it decreases to zero for the 

release revolutions rel 5030n  rpm. The blue line 

shows, on the other hand, an analogous dependence of 
the von Mises stress red, Min  in the disk (along its 

internal bore) that grows due to growing influence of the 
centrifugal forces (and in the depicted range it exceeds 
the yield stress k  of the used steel). On the other hand 
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the fit is not supposed to work at higher revolutions than 
the nominal ones 0n . 
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Fig. 14. Dependence of ABr on revolutions n . 

0

1

2

3

4

5

4.5 4.6 4.7 4.8 4.9 5.0
n  (103 rpm)


re

d,
n

M
i  

 f r
n

 (
10

8  N
m

–2
)

I.

II.

8 –2
k 4.226 10 Nm  

 

Fig. 15. Dependence of force rnf  (I) and von Mises stress 

red, Min  in the disk (II) on revolutions n . 

It is clear that from the mechanical viewpoint the 
shrink fit satisfies all requirements. The second part of 
the results concerns the process of induction heating. 
During the process the disk is placed on a ceramic 
“shaft” and heated by two disk-type inductors, which is 
schematically shown in Fig. 16. 

 

Fig. 16. Realisation of the process of induction heating. 

Both inductors made of massive hollow copper 
conductors cooled by flowing water carry harmonic currents 
of the same phase shift, thus producing transversal magnetic 
field in the system. The inductors are placed in a case 
containing good thermal insulation in order to minimise heat 
losses. The thermal insulation is placed also between the 
ceramic shaft and heated disk, as well as slony the external 
surface of the disk. The process of heating is then almost 
adiabatic, exhibiting a very favourable efficiency. 

The field current parameters were selected in accordance 
with the possibilities of common industrial plants. While its 
frequency was set 50f  Hz, its amplitude ranged from 

1– 3 kA (such currents are still commonly available). The 
thermal conductivity of thermal insulation – glass wool – 

0.04  Wm–1K–1 and its specific heat 
6

p,gw 0.04824 10c   Jm–3K–1. The temperature of the 

cooling water in the hollow conductors of the inductor 

w 50T  C. 

The boundary conditions along the area containing 
the disk and inductors placed in thermal insulation are of 
the convection type (coefficient 20  Wm–2K–1). The 

initial temperature of the heated system 0T  is equal to 

the temperature extT  of the ambient air, which is 30 °C. 

Some illustrative results follow. Fig. 17 shows the 
distribution of magnetic field in the system at the 
beginning of the heating process, i.e., at the room 
temperature and Fig. 18 depicts the distribution of the 
volumetric Joule losses along the surface of the disk (in 
the r -direction) in different depths for the same case. 

It is evident that the volumetric Joule losses are 
produced mainly in the surface layers of the disk and 
also in the lower and upper turns of both inductors 
(where the vectors of magnetic field strongly change 
thein directions). Thus, the disk is heated mainly at its 
surface and heat is then conducted to its interior. 

 

Fig. 17. Distribution of magnetic field in the system at the 
beginning of the heating process ( 0 30T   C, 2.5I  kA). 
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Fig. 18. Distribution of volumetric Joule losses Jp  in the disk 

along its surface in different depths at the beginning  
of the heating process ( 0 30T   C, 2.5I  kA). 

For the same current parameters Fig. 19 shows the 
distribution of temperature in the system in time 1320t  s 
(22 min) and Fig. 20 the field of displacements. 
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Fig. 19. Distribution  

of temperature T  in the 
system after 1320t  s  
of the heating process  

for 2.5I  kA. 

Fig. 20. Distribution 
 of displacements u  in the 

disk after 1320t  s of the 
heating process for 

2.5I  kA. 
 
It can be seen that the overall temperature of the disk 

exceeded 200 C and displacement of the internal bore of 

the disk exceeded (along its whole length) the value of 

AB 0.2r  mm, which is enough for manufacturing the 

hrink fit.  
Even more information is contained in Figs. 21 and 

22 showing the time evolution of the average tempe-
rature of the disk and time evolution of the average 
displacement of the disk bore. 

While the time evolution of the average temperature 
is almost linear (due to small heat losses in the system), 
the average displacement of the inner radius of the disk 

grows with very slightly growing gradient. This follows 
from a nonuniform distribution of mass of the disk along 
the growing radius and also from nonlinearities (with 
respect to the temperature) of its physical parameters. 

The time of reaching the minimum dilatation of the 
internal bore of the disk can be reduced using higher 
amplitude of the field current. Preferred is, however, 
slower heating in order to avoid possible undesirable 
changes in the material structure. 
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Fig. 21. Time evolution of average temperature T    
in the disk for various amplitudes I  of the field current. 
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Fig. 22. Time evolution of average displacement u   

of the disk bore for various amplitudes I  of the field current. 

6. Conclusions 
The results obtained are physically real and correspond 

to industrial experience. Nevertheless, we plan (in 
collaboration with some industrial plants because their 
realization is beyond the possibilities of academic 
workshops) their experimental verification. Further 
theoretical research must be aimed particularly at acceleration 
of the computation algorithms because the complete 
processing of one example takes about five hours. More 
attention will also be paid to the accuracy of the input data 
(temperature dependencies of physical parameters of various 
materials) because they often exhibit certain variances 
dependent on thein sources (databases, datasheets etc.). 
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ІНДУКЦІЙНА ТЕПЛОПРЕСОВА  
ПОСАДКА ДИСКА НА ВАЛ 

Вацлав Котлан, Богуш Ульрих, Іво Долежел 

Представлено повну модель індукційної теплопресової 
посадки диска на вал. Модель включає розрахунок різниці 
діаметра вала та внутрішнього діаметра диска, перевірку 
напруження фон Мізеса в диску та валі, поточкове 
зображення процесу індукційного нагрівання й визначення 
критичної швидкості обертання вала. Ілюстрацію методики 
здійснено на типовому прикладі.  
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