Расчет координат точек сейсмических взрывов

							,	
™ TOVEK 1-2	τ1-3	Координаты точ. из геодезическ. полевых измерен.		получен	наты точ., ных экспе- нтально	Δ X	ΔУ	
	1		X	У	X	У	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.019 -0.019 -0.156 -0.045 +0.207 +0.257 -0.025 -0.033 -0.062	+0,014 +0.013 -0,007 -0,131 +0,067 +0,101 -0,134 -0,001. -0,015 -0,038 +0,013	500,0 500,0 517,8 543,5 682,0 444,7 400,5 526,2 516,3 536,2 515,1	500,0 500,0 505,8 373,5 410,4 379,5 533,5 503,3 514,8 499,2	507,6 503,3 502.7 536,3 695,9 443,1 405,7 494,0 506,4 528,1 502,4	493,3 505,3 501,1 351,3 381,9 358,0 547,9 499,7 503,4 530,4 497.8	+ 2,6 + 3,3 - 14.9 - 6,9 - 13,9 - 1,5 + 5,2 - 38,1 - 10,7 - 8,0 - 12,6	- 6,6 + 5,3 - 4,6 -22,1 -28,4 -21,4 +14,4 - 3,5 -12,6 - 1,3

 $|\Delta X_{\text{cp.}}| = 19.5 \text{ M}, |\Delta Y_{\text{cp.}}| = 11.4 \text{ M}, m_x = \pm 15.2 \text{ M}. m_y = \pm 14.2 \text{ M}.$

Среднеквадратическая ошибка определения координат автоматизированным способом $M_{x,y} = \pm 20,1$ м.

Результаты расчета координат точек при введении заранее известных погрешностей

- 11							
Вариан-	Вводимые погрешности $\sigma = \pm 0.01$ сек τ_{1-2} τ_{1-3} τ_{1-4}	ΔX _{cp}	Δy _{cp}	m _{xcp}	^{пі} у _{ср}	M _{X,y}	
1. 2. 3. 4. 5. 6. 7.	Полевые измерения +0.01 -0.01 +0.01 -0.01 -0.01 -0.01 +0.01 -0.01 -0.01 +0.01 +0.01 +0.01 +0.01 +0.01 -0.01 -0.01 +0.01 -0.01 Средние значення	$ \begin{array}{r rrrr} -10 & 0 \\ -7.9 \\ +1.2 \\ -4.2 \\ -7.9 \\ -5.5 \\ -1.0 \\ -5.0 \end{array} $	-8,0 +1,3 -5,6 -5,6 -3,6 -4,5 -6,4 -4,6	±17,2 ±12,7 ±12,5 ±12,9 ±18,1 ±11,6 ±10,5 ±13,6	+14,1 +20,8 +28,5 +17,8 +27,9 +21,7 +17,0 +21,1	±22.3 ±24,3 ±30,8 ±22,0 ±33,3 ±24,6 ±20,0 ±27,6	

видимому, служит неоднородность среды, в которой распространяются сейсмические волны, и связанное с этим непостоянство по направлениям скорости распространения сейсмической волны. Фазовыми задержками в каналах связи при коротких длинах проводных линий можно пренебречь.

Аналитический вывод погрешностей может быть представлен формулами среднеквадратических ошибок определения координат X и У путем дифференцирования по частным производным выражений (19). Однако вычисление этих ошибок с достаточной стенснью точности представляется сложным делом, тем более, когда

анализируемые переменные зависимы друг от друга (например, время и скорость).

В первом приближении мы воспользовались методом введения заранее известных погрешностей в разности фаз τ_{l-i} и заново рассчитали координаты точек по приведенным выше формулам, причем скорость V нами не изменялась намеренно.

Результаты расчета показаны в табл. 3. Из нее видно, что погрешности в τ_{1-i} приводят к максимальным ошибкам в определении координат в экстремальных случаях, когда погрешностями с одинаковым весом отягощены все разности фаз, а изменения расчетной скорости показывают, что коррекция в предлагаемой работой [5] методике и схеме наблюдения моментов первых вступлений сейсмической волны обязательна.

Окончательные выводы о точности получения координат этим способом минимизации фазовых погрешностей и результатах коррекции можно сделать после полевых исследований полного комплекса автоматической системы определения координат и накопления статистического материала несколько большего объема.

Список литературы: 1. Берзон И. С., Епинатьева А. М., Парийская Г. П., Стародубровская С. П. — Динамические характеристики сейсмических волн в реальных средах. — М.: Изд-во Акад. наук СССР, 1962. 2. Видуев Н. Г., Григоренко А. Г. Математическая обработка геодезических измерений. — Киев. Виша школа, 1978. 3. Ленк А. Электромеханические системы. — М.: Мир, 1978. 4. Петкевич Г. И. Факторы, определяющие скорости сейсмических волн. — М.: Недра, 1962. 5. Спицын Ю. И. Способ определения координат точек и параметров их взаимного положения с помощью поверхностного сейсмического эффекта. — Геодезия, картография и аэрофотосъемка, 1982, вып. 35. 6. Чеботарев А. С. Способ наименьших квадратов. — М.: Геодезиздат, 1958.

Статья поступила в редколлегию 13.01.82

УДК 528.061.2

А. Е. ФЕДОРИЩЕВ, Н. И. КРАВЦОВ, В. А. ПЕРВАГО

ОПРЕДЕЛЕНИЕ ВЛАЖНОСТИ ВОЗДУХА В 500-МЕТРОВОМ СЛОЕ АТМОСФЕРЫ ПО РЕЗУЛЬТАТАМ ЕЕ ИЗМЕРЕНИЙ У ЗЕМНОЙ ПОВЕРХНОСТИ

В настоящее время физические явления и эффекты, свойственные распространяющимся потокам электромагнитных колебаний, получили глубокое научное объяснение. Изучена их природа в различных физических средах. Вместе с тем влияние слоистых неоднородностей реальной атмосферы на электромагнитные волны радиодиапазона при их распространении вблизи земной поверхности изучено еще не в полной мере. На характер распространения радиоволн наиболее существенное влияние оказывает влажность воздуха. Содержание водяного пара в атмосфере определяется с помощью различных гигрометрических характеристик.

Исследуем упругость (парциальное пара E. давление) Водянога

С целью выявления особенностей вертикального распределении Е с высотой в 500-метровом слое атмосферы, были обработаны данные аэростатных зондирований, выполненных аэрологическими организациями страны в пограничном слое атмосферы [1, 2].

Результаты аэрологических определений были разделены па пять групп, каждая из которых содержала в среднем до 40 зпа-

	Значения	парциального	давления на	различных	Ta	блица (
Интерналы Е _а , мбар	К-во профил.			сота, м	KISCOPAN	
	профия.	2	50 100	200	300	500
		1	Инверсия	Manna di		71111
0-4 4-8 8-12 12-16 16-20	24 22 27 36 29	2,43 6,58 9,90 13,82 13	3,57 56 50 50 50 9,82 47 13,04 15,53	3,34 6,27 9,26 12,23 14,53	3,42 5,33 9,08 11,79 13,01	3,16 5,22 8,49 11,22 13,25
0-4 4-8 8-12 12-16 16-20	26 28 45 50	11. Hopman 3,02 2,6 6,12 5,8 10,46 9,7 14,01 13,6 17,71 16,6	820 2,83 81 5,73 79 9,55 07 12,76	2,75 5,38 8,93 12,15 14,68	2,68 5,01 8,67 11,61 13,86	2,2 9 4 50 8 02 11,23 12,54

чений парциальных давлений, измеренных на высотах 2, 50, 100, 200, 300, 500 м. Группирование значений Е выполнялось в интервале $0\dots 20$ мбр с шагом 4 мбр по измеренным величинам E_0 на высоте 2 м для инверсионной и нормальной стратификации ат-

 $\hat{\mathbf{y}}$ читывая быстрое убывание E с высотой, зависимость его вертикального распределения представим экспонентой вида

$$E = E_0 \exp ah. \tag{1}$$

Здесь E_0 — парциальное давление в мбр на высоте 2 м; a параметр, определяемый экспериментально; h — высота, м. Логарифмируя (1), получим:

$$\lg E = \lg E_0 + ah \lg e. \tag{2}$$

Для решения поставленной задачи нами приняты в обработку свыше 330 вертикальных профилей, включающих в себя более

Изменение Е с высотой в исследуемом слое показанр в табл. 1.

Графическая интерпретация распределения E с высотой показана на рис. 1, где сплошными линиями представлено распределение E при нормальной стратификации атмосферы, пунктиром —

Кривые рис, 1 и данные табл. 1 свидетельствуют о том, что разница в значениях E на одних и тех же высотах не выходит за пределы $\pm 0.5...0.8$ мбр, что находится в пределах точности измерений. Отсюда можно сделать вывод, что для принятого диапазона изменения E_0 распределение парциального давления мало зависит от стратификации атмосферы, больше — от высоты и абсолютного значения E_0 .

Учитывая это, параметры а аппроксимирующих кривых для всех интервалов изменения E_0 будем вычислять статистически по

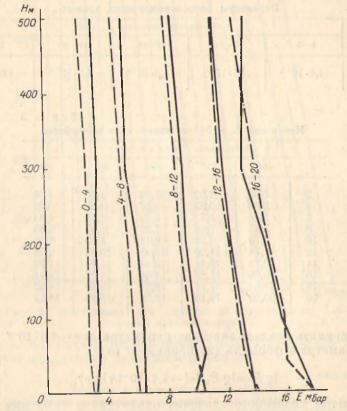


Рис. 1. Парциальное давление водяных паров на различных высотах.

усредненным данным для инверсионного и нормального распределений совместно.

Значения параметров а аппроксимирующих кривых для принятых интервалов изменений $E_{\rm 0}$ получены из решения системы нормальных уравнений вида:

$$\sum_{i=1}^{6} \lg E_i = \sum_{i=1}^{6} \lg E_0 + 0.43 \left(\sum_{i=1}^{6} h_i \right) a;$$

$$0.43 \sum_{i=1}^{6} h_i \lg E_i = 0.43 \left(\sum_{i=1}^{6} h_i \right) \lg E_0 + \left[(0.43)^2 \sum_{i=1}^{6} h_i^2 \right] a, \quad (3)$$

где i — номер группировки E по высоте.

Величины параметров а приведены в табл. 2.

Анализ таблицы свидетельствует, что распределение Е с высотой не зависит от изменений \check{E}_0 и для практических расчетон

Таблица 2

Параметры аппроксимирующих кривых

		т-жегры апп			
Параметр —		Интер	валы изменения	<i>E</i> ₀ , мбар	UNE -
	0-4	4-8	8-12	12-16	16-20
a _	4,4.10-4	-4,1.10-4	-4,3 ⋅10 ⁻⁴	-4,2.10-4	-4,6.10-4

Таблица 3 Изменение E в 500-метровом слое атмосферы

2		изменение д	Е мбар с выс	отой	
2	50	100	200	300	500
2 4 6 8 10 12 14 16 18 20	1,96 3,92 5,86 7,83 9,79 11,74 13,70 15,69 17,62 20,50	1,92 3,83 5,73 7,66 9,58 11,50 13,41 15,32 17,24 19,16	1,83 3,67 5,49 7,34 9,18 11,01 12,84 14,68 16,51 18,35	1,76 3,52 5,26 7,03 8,79 10,55 12,30 14,07 15,82 17,58	1,61 3,23 4,83 6,45 8,06 9,68 11,29 12,91 14,52 16,13

можно принять среднее значение параметра $a=-4,4\cdot 10^{-4}$. С учетом параметра и формула (2) принимает вид:

$$\lg E = \lg E_0 + (-4.4 \cdot 10^{-4} h \lg e). \tag{4}$$

С учетом численного значения параметра а нами для иринятых высот по формуле (2) рассчитаны с шагом 2 мбр величины E во всем диапазоне изменения E_{\circ}

Значения Е приведены в табл. 3. По данным этой таблицы построена номограмма, позволяющая графически получать значения влажности на различных высотах в 500-метровом слое атмосферы но ее значениям, определенным у поверхности Земли

Для оценки точности определения парциального давления по предложенной номограмме (рис. 2) нами были использованы независимые аэрологические определения. Погрешности m_{E_I} вычислялись по отклонениям ΔE_i между парциальными давлениями E_i ,

измеренными на соответствующих высотах в процессе зондирований, и давлениями, определенными из номограммы E_h ,

$$\Delta E_i = E_i - E_{h_i} \tag{5}$$

и по формуле
$$m_{E_i} = \sqrt{\frac{\left[\Delta E_i^2\right]}{n-1}}\,, \tag{6}$$

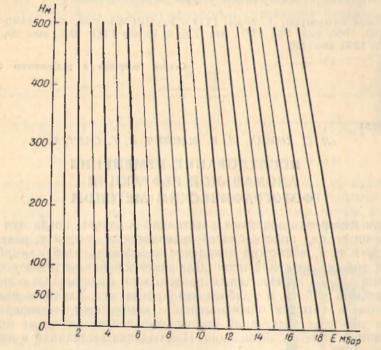


Рис. 2. Номограмма для определения парциального давления водяных паров.

здесь n — количество зондирований, i=50, 100, 200, 400 и 500 м. Полученные данные приведены в табл. 4.

Таблица 4

Средние квадратические погрешности определения парциального давления в слое воздуха 0-500 м

Иитервалы ларциаль-	Средние квалратические погрешности, мбар						
ного дав- ления у поверх- ности, мбар	^m E 50	m _{E 100}	m _{E 200}	m _{E 300}	m _{E 400}	m _E 500	
	B ALL	# 100	WE TO T	- 1			
0-4	0,2	0,2	0,3	0,2	0,2	0,4	
4— 8	0,9	1,2	1,5	1,4	1,2	1,0	
8-12	0,9	0,9	0,9	0,8	0,7	1,2	
12-16	0,2	0,7	0,7	0,2	0,3	0,4	
16-20	0,9	1,1	1,2	1,3	1,3	1,5	
They are		* HOUSE	THE PERSON NAMED IN	THE OTHER		Total State	

Количество зондирований *п* колебалось от 40 до 50 в каждом

из принятых интервалов E_0 .

Таким образом, предложенная эмпирическая формула (4) и номограмма позволяют с указанной выше точностью учитывать парциальное давление в исследуемом слое для вычисления поправок за рефракцию при радиодальномерных измерениях по величине влажности, измеренной у поверхности Земли.

Список литературы: 1. Труды ГГО и УкрНИГМИ, 1963, вып. 144/40; 1961 вып. 150; 1966, вып. 189; 1971, вып. 276. 2. Труды ГГО, 1953, вып. 39; 1955,

Статья поступила в редколлегию 15.04.82

УДК 528.03

Л. С. ХИЖАК, Д. И. МАСЛИЧ, С. Г. САВЧУК

исследование изменении АНОМАЛЬНОЙ РЕФРАКЦИИ ФОТОГРАФИЧЕСКИМ МЕТОДОМ

При измерении зенитных расстояний в случае, когда луч проходит низко над подстилающей поверхностью (асфальт, взлетные полосы и пр.), возможно появление нескольких изображений одной и той же визирной цели. Для исследования условий возникновения такого явления нами проводились специальные экспериментальные работы в прибрежном районе юга Украины над асфальтом, в которых одновременно с измерением метеопараметров и зенитных расстояний фотографировались визирные цели с фиксацией момента экспозиции. Наблюдения выполняли в июне-

Рядом с теодолитом ОТ-02 на одной и той же высоте был установлен фотоаппарат «Зенит» с телсобъективом. Фокусное расстояние телеобъектива равно 1000 мм. Фотоаппарат устанавливался на штативе, который стоял на специально вбитых в землю полуметровых железных костылях. Костыли располагались с таким расчетом, чтобы высота центра объектива фотоаппарата и теодолита были одинаковыми и расстояния от визирной марки до плоскостей изображения ее в теодолите и фотсаппарате были равны. При этом фотоаппарат нахолился на расстоянии примерно 0,5 м от теодолита. Такое расположение теодолита и фотоапларата позволяет получить разность зенитных расстояний между изображениями целей, сравнимую с соответствующими разностями, полученными из измерений теодолитом.

Визирная марка находилась на расстоянии 786 м от теодолита и фотоаппарата. Расположение наблюдательной станции показано на рис. 1, где привелены форма и размеры визирной марки. Участок асфальта, нал которым проводились исследования, был ровным (превышение между станцией и маркой составляло

около 4 см). Были выполнены необходимые геодезические измерения для определения теоретических углов рефракции.

При выбранных условиях исследований многократные изображения появлялись очень часто, даже в пасмурную погоду. Вид визирной марки при многократных изображениях показан на рис. 2.

Наши экспериментальные исследования преследовали такие цели: 1) установить, с какой скоростью происходит изменение уг-

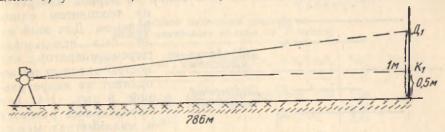


Рис. 1. Схема расположения наблюдательной станции.

лов рефракции в периоды появления многократных изображений и 2) исследовать структуру слоя воздуха, в котором проходят световые лучи. Такого рода исследования необходимы, чтобы, во-первых, можно было установить, когда производить измерения метео-

параметров, которые будут использоваться при вычислении углов рефракции и, во-вторых, где производить эти измерения. Дело в том, что определение зенитных расстояний геодезическим методом проходит в определенный промежуток времени (5...15 мин) и в результате мы получаем некоторое среднее значение зенитных расстояний. За этот промежуток времени величина рефракции может измениться, особенно в периоды многократных изображений. И естественно, что скорость изменения рефракции в эти периоды необходимо учитывать при разработке методики определения

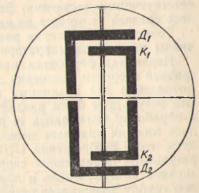


Рис. 2. Вид визирной марки при многократных изображениях.

как метеоэлементов, так и зенитных расстояний. Кроме того, при организации метеорологических измерений, необходимо хотя бы приближенно знать структуру слоя воздуха в периоды многократных изображений визирных целей. Только в этом случае можно правильно расположить приборы для измерения метеоэлементов.

Чтобы получить изменения аномальной рефракции за период измерения зенитных расстояний теодолитом одним приемом в момент наведення средней нити теодолита на верхнее изображение длинной полосы \mathcal{I}_1 (см. рис. 3), в начале и конце приема проводилось фотографирование визирных целей с экспозицией 1/30