
UKRAINIAN JOURNAL OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE 
Vol. 3, No. 2, 2017 

Jerzy Jaroszewicz1, Olesya Maksymovych2, Andrii Dzyubyk3, Ihor Nazar4 
1 Department of Production Management, Faculty of Management, Bialystok University of Technology,  

2, O. Tarasiuka Str., Kleosin, 16-001, Poland, E-mail: j.jaroszewicz@pb.edu.pl  
2 Department of Welding Manufacture, Diagnostics and Restoration of Metal Structures, Lviv Polytechnic 

National University, 12, S. Bandery Str., Lviv, Ukraine, E-mail: olesyamax@meta.ua 
3 Department of Welding Manufacture, Diagnostics and Restoration of Metal Structures, Lviv Polytechnic 

National University, 12, S. Bandery Str., Lviv, Ukraine, E-mail: dar.lviv@gmail.com 
4 Department of Welding Manufacture, Diagnostics and Restoration of Metal Structures, Lviv Polytechnic 

National University, 12, S. Bandery Str., Ukraine, Lviv, E-mail: nazari@ukr.net 

DETERMINATION OF STRESSES AND ULTIMATE LOADS  
FOR COMPOSITE PLATES WITH ELASTIC INCLUSIONS 

Received: October 28, 2017 / Revised: December 20, 2017 / Accepted: December 26, 2017 

© Maksymovych O., Dzyubyk A., Nazar I., Jaroszewicz J., 2017 

Abstract. In the article, the algorithm for determination of stresses in anisotropic plates with 
elastic inclusions of another anisotropic material was developed on the basis of complex singular 
integral equations. The solving of integral equations has been carried out numerically using the 
method of mechanical quadratures. The strength analysis (calculation of strength) of composite 
plates with inclusions has been performed using the Hoffman criterion. 

Keywords: stress concentration factors; anisotropic plate; elastic inclusion; stress-strain state; 
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Introduction and Review of Modern Information Sources 
The method of boundary integral equations is widely used to study the stress-strain state of isotropic 

and anisotropic plates with holes. If the loads on the holes boundaries are prescribed, such problems have 
been sufficiently studied already [1]–[4]. The problems of determination of the stress-strain state of 
anisotropic plates with inclusions have been studied to a lesser extent. For studying isotropic plates with 
inclusions, the singular integral equations are being used. For these equations, the numerical methods allow 
to seek a solution with controllable accuracy [5]. 

In publications [4], [6]–[7], the interdependencies between the potentials of Lehnitskiy and the 
stresses and displacements have been determined. Based on these interdependencies and on the Cauchy 
theorem, the modified singular integral equations for anisotropic plates with holes are written in the 
simplified form. In the paper, the analogous integral equations for plates with sealed-in elastic inclusions 
are obtained. The efficiency and simplicity of use of the developed numerical algorithm are exemplified by 
calculation of stresses at inclusions of various shapes and by determination of the ultimate loads. 

Problem Statement 
In order to assess the strength of composite materials with inclusions, it is necessary to investigate 

the stresses in the neighbourhood of the section boundary, where, as a rule, the fracture nucleates. Since in 
this case all the components of the stress tensor are non-zero, the calculation of strength of the inclusion 
regions adjacent to the section boundary and the matrix should be performed on the basis of general criteria 
for a planar stressed state. In addition, it is necessary to separately assess the strength of the material, 
which is directly adjacent to the boundary, which, as a rule, has the strength properties different from the 
matrix ones. 

Main Material Presentation 
Let us consider the Hoffman strength criterion for composite materials, which is necessary for 

further calculations and takes into account the difference between the ultimate stresses of tension and 
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compression. Let us consider the specimen of the rectangular shape made of the chosen composite material 
and being under the influence of bidirectional tension caused by forces 1σ , 2σ  and of shear caused by 
forces 12τ . According to the Hoffman strength criterion, the fracture takes place if the stresses satisfy the 
following condition [8]: 

2 2 2
1 1 2 2 12

1 2 2
12

1c t c t

c t c t c t c t c t

X X Y Y
X X X X Y Y X X Y Y S
σ σ σ σ τ

σ σ
+ +

− + − + + + = , (1) 

where tX , tY  are the ultimate values of stresses when tensioning the specimen along the orthotropy axes 
being parallel to the coordinate axes Ox  and Oy ; сX , сY  are the analogous values of stresses when 
compressing the specimen; 12S  are the ultimate values of tangential stresses for pure (simple) shear. 

These constants and the mechanical characteristics, which are determined on the basis of 
corresponding experiments [8], for fiberglass are presented in Table 1. 

Table 1 
Mechanical and Strength Characteristics of the fiberglass 

Characteristic Value 

1E , GPa 54 

2E , GPa 18 

12ν  0.25 

12G , GPa 9 

tX , MPa 1035 

tY , MPa 28 
S, MPa 41 

cX , MPa 1035 

cY , MPa 138 

Let us adopt that the stress in the plate is defined by one load parameter p  (for example, by the value of 
forces tensioning the plate). Further, there will be used the algorithm, in which the stresses on the section 
boundary may be presented as follows: n npSσ = , t tpSσ = , nt ntpSτ = , where nσ , θσ , nθτ  are the normal, 
hoop (circumferential) and tangential stresses near the section boundary; nS , Sθ , nS θ  are the known values 
non-dependable on parameter p . Let us determine the stresses in Cartesian coordinate system, which axes are 
parallel to the axes of orthotropy. For this, let us use the relations written in matrix form: 

x n

y t

ntxy

σ σ
σ σ

ττ

      = Λ          

, 

where 

2 2

2 2
cos sin sin(2 )

sin cos sin(2 )
sin(2 ) sin(2 ) cos(2 )

2 2

α α α

α α α
α α

α

 
− 

 
Λ =  

 
− 

 

; 

α  is the angle between the normal to the section boundary and the axis Ox . 
Based on the presented equations, we obtain 1x pFσ = , 2y pFσ = , 12xy pFτ = , where 

( ) ( )1 2 12, , ' , , 'n t ntF F F S S S= Λ . 
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Thus, on the basis of equation (1), we obtain the following equation for determination of the 
parameter p : 

2
1 2 1 0f p f p+ − = , 

where 
2 2 2

1 1 2 2 12
1 2

12c t c t c t

F F F F Ff
X X X X Y Y S

= − + − + ;           2 1 2
c t c t

c t c t

X X Y Yf F F
X X Y Y

+ +
= + . 

Let us adopt the smaller positive value of the equation root as the ultimate load P  for the point. Let us 
denote the smallest value of p  on the section boundary of the inclusions by 1p  and of the matrix by 2p . The 
strength of the material adjacent to the inclusion boundary, as a rule, is determined on the basis of stresses normal 
to the section boundary taking into account the condition n npσ < , where np  is the known value defined on the 
basis of experimental testing and depended on the technology of composites production. Let us define the minimal 
value of the quantity 1 / nS  on the section boundary and denote it by 3p . In this case, the ultimate value of load 
parameter may be determined by the formula: 1 2 3min( , , )допp p p p= . 

Thus, the presented relations allow carrying out the calculations of strength when the distribution of 
the stressed state of piecewise homogeneous plates is known. 

The algorithm of determination of the stress-strain state of anisotropic plates with elastic inclusions. 
The problem of determination of the stress-strain state of an anisotropic plate with elastic inclusion of 
another material is considered. Let us adopt that the plate is under the influence of the loading, which is 
applied at infinity; the plate is in the conditions of a flat stressed state. A similar problem for isotropic 
plates is well studied in literature. For anisotropic materials, such problems were considered in [9] using 
the series method. In this paper, a numerical algorithm for solving this problem is developed. It is based on 
the method of integral equations and allows to consider a system of inclusions of almost arbitrary form. Let 
us assume that there is a perfect mechanical contact on the boundary of materials sections. 

General relations. Let us consider an arbitrary curve Γ  lying in the region D  occupied by the plate. 
The complex potentials of Lehnitskiy, the vectors of stresses ( , )X Y  and the derivatives of displacements 
( , )u v  on this curve are related by the dependence [4]: 

( ) 1 1 1
1

1 1
Ф V s U p X q Yz

z
− + ⋅ + ⋅ + ⋅

=
′∆ ⋅

; 

( ) 2 2 2
2

2 2

V s U p X q Yz
z

− + ⋅ + ⋅ + ⋅
Ψ =

′∆ ⋅
, 

(2) 

where /U du ds= ; /V dv ds= ; j jz x s y= + ; ' /u du ds= ; ' /v dv ds= ; / /j jz dx ds s dy ds′ = + ; 
2

11 12 16j j jp a s sα α= + − ; 12 22 26/j j jq s sα α α= + − ; 1,2j = ; ds  is the differential of the arc on Γ ; 

1 11 1 2 1 1 1 2( )( )( )s s s s s sα∆ = − − − ; 2 11 2 1 2 1 2 2( )( )( )s s s s s sα∆ = − − − ; ijα  are the elastic constants; 1,2s  

are the roots of the equation 4 3 2
11 16 12 66 26 222 (2 ) 2 0s s s sα α α α α α− + + − + = . 

In order to construct the general solution, let us consider separately the internal and infinite regions 
limited by the closed contour Γ . Using the properties of analytical functions for potentials in infinite 
region, let us write the following representation (transform) [4]: 

1

1 1
1 1

1 1

( )1( ) ( )
2 S

t dtz z
i t zπ

Γ

Γ

Φ
Φ = + Φ

−∫ ; 

2

2 2
2 2

2 2

( )1( ) ( )
2 S

t dtz z
i t zπ

Γ

Γ

Ψ
Ψ = + Ψ

−∫ , 

where ΓΦ  and ΓΨ  are the ultimate values of potentials; (1)Γ  and (2)Γ  are the contours in auxiliary 
coordinate systems 1 1( , )x y  and 2 2( , )x y , into which the curve Γ  transits after affine transformation 



Determination of Stresses and Ultimate Loads for Composite Plates with Elastic Inclusions 41 

(mapping) [9]; 1( )S zΦ  and 2( )S zΨ  are the complex potentials for infinite plate, which are corresponding 
to the load applied in infinity (the positive direction of integration is chosen as clockwise one). Using the 
considered representation and the representation (2), we obtain: 

( )1 1 1
1 1

1 1 1

1( ) ( )
2 S

V s U p X q Y ds
z z

i t zπ Γ

− + + +
Φ = + Φ

∆ −∫ ; 

( )2 2 2
2 2

2 2 2

1( ) ( )
2 S

V s U p X q Y ds
z z

i t zπ Γ

− + + +
Ψ = + Ψ

∆ −∫ . 
(3) 

Let us substitute the potentials (3) into the formulas for determination of the vector of stresses and 
the derivatives of displacements on the contour Γ  [4]. Using the Sokhotski formulas, after performing 
transformations on the contour Γ , we obtain: 

° ( ) ° ( ) ° ( ) ° ( )1 1 2 2 1 1 1 2 2 22Re / 2; 2Re / 2z z z z Y s z z s z z X   ′ ′ ′ ′Φ + Ψ = − Φ + Ψ =    ; 

° ( ) ° ( ) ° ( ) ° ( )1 1 1 2 2 2 1 1 1 2 2 22Re / 2, 2Re / 2p z z p z z U q z z q z z V   ′ ′ ′ ′Φ + Ψ = Φ + Ψ =    . 
(4) 

where °
1( )zΦ , ° 2( )zΨ  are the complex potentials (3), in which the Couchy integrals are considered in the 

sense of principal value. 
The analogous relations take place for internal region. The only difference is the necessity to change 

the direction of integration, i.e., to consider the anticlockwise direction. 
Discrete interrelations between the stresses and the displacements on the contour. Using the 

quadrature formulas [4; 10] for integrals included in representation (3) at j jz z ν= , we obtain: 

° 1 2 3 4
1 1

1 11
( ) ( )

N
k k k k

k S
kk

A U A V A X A Yz H s z
t zν ν

ν=

+ + +′Φ = + Φ
−∑ ; 

° 1 2 3 4
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2 21
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+ + +′Ψ = + Ψ
−∑ , 

(5) 

where ( )k kX X T= ; ( )k kY Y T= ; ( )k kU U T= ; ( )k kV V T= ; j jz x s yν ν ν= + ; jk k j kt x s y= + ; 1,2j = ; 

1
1

12
ipA
π

= −
∆

; 1
2

12
iqA
π

= −
∆

; 2
1

22
ipB
π

= −
∆

; 2
2

22
iqB
π

= −
∆

; kT  and Zν  are the point with coordinates 

( , )k kx y  and ( , )x yν ν% % ; N  is the chosen number of nodal points; ( )k kx α θ= ; ( )k ky β θ= ; ( )xν να τ=% ; 

( )yν νβ τ=% ; k Hkθ = ; 2 /H Nπ= ; / 2Hν ντ θ= − ; ( )k ks s θ′ ′= ; 2 2( ) ( ) ( )s θ α θ β θ′ ′ ′= + . 

Using the formulas (5) and taking into account (4), we obtain the interrelations between the vector of 
stresses and the derivatives of displacements on the contour:  

( )(1) (2) (3) (4)

1
/ 2

N
k k k k k Sk k k k

k
U H s U U V U X U Y U Uν νν ν ν ν

=
′= + + + +∑ ; 
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1
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N
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k
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1
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N
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=
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1
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N
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k
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=
′= + + + +∑ , 

(6) 
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where 1,..., Nν = ; ( )( ) ( ),j j
k kU Vν ν  and ( )( ) ( ),j j

k kX Yν ν  are the derivatives of the displacements vector 

,du dv
ds ds

 
 
 

 and the vector of stresses ( , )X Y  on the arc in the point ( ),x yν ν% % , which correspond to the 

potentials: 

1 2
1 1 2 2

( ) ; ( )j j

k k

A B
z z

t z t z
Φ = Ψ =

− −
. (7) 

The coefficients ( ),S SU Vν ν  and ( ),S SX Yν ν  are the derivatives of the displacements vector and the 

vector of stresses on the arc Γ  in the point ( ),x yν ν% % , which correspond to the potentials SΦ , SΨ . 
The relations (4) and (6) are valid for internal region, if we substitute the multiplier H−  instead of 

H everywhere before the sums and instead of 1( )S zΦ  and 2( )S zΨ  we adopt the complex potentials for 
infinite plate, which correspond to the concentrated forces applied to the internal region. 

Piecewise-homogeneous plate. Let us consider an infinite plate containing an elastic inclusion. Let 
us denote by L  the contour lying on the boundary of materials section. Let us denote the constants and 
solutions for inclusion and matrix with a help of indexes 1 and 2, correspondingly. Let us take into account 
the fact that on the section boundary the derivatives of the displacements vector and the vector of stresses 
are equal. Let us denote them as U , V , X , Y . Let us write down the relations (6) for the inclusion and 
the matrix (as the contour Γ , let us take the curve L ) and equalize the expressions, which are in the right 
sides of theses formulas. As a result, the following system of equations will be obtained: 

( )(1) (2) (3) (4)

1

N
k k k k kk k k k

k
s U V X Y aνν ν ν να α α α

=
′ + + + =∑ ; 

( )(1) (2) (3) (4)

1

N
k k k k kk k k k

k
s U V X Y bνν ν ν νβ β β β

=
′ + + + =∑ ; 

( )(1) (2) (3) (4)

1

N
k k k k kk k k k

k
s U V X Y cνν ν ν νγ γ γ γ

=
′ + + + =∑ ; 

( )(1) (2) (3) (4)

1

N
k k k k kk k k k

k
s U V X Y dνν ν ν νδ δ δ δ

=
′ + + + =∑ , 

(8) 

where 1,..., Nν = ; ( ) ,1 ,2j j j
k k kU Uν ν να = + ; ( ) ,1 ,2j j j

k k kV Vν ν νβ = + ; ( ) ,1 ,2j j j
k k kX Xν ν νγ = + ; ( ) ,1 ,2j j j

k k kY Yν ν νδ = + ; 
(1) (2)
S SU U

a
H

ν ν
ν

−
= ; 

(1) (2)
S SV V

b
H

ν ν
ν

−
= ; 

(1) (2)
S SX X

c
H

ν ν
ν

−
= ; 

(1) (2)
S SY Y

d
H

ν ν
ν

−
= . 

The coefficients ,j m
kUν , ,j m

kVν , ,j m
kXν , ,j m

kYν  for 1m =  may be defined as coefficients ( )j
kUν , ( )j

kVν , 
( )j
kXν , ( )j

kYν  presented in (6) for elastic constants with inclusions, and for 2m =  – for matrix. 
The calculation of stresses and assessment of strength of the plates with elastic inclusions. At first, 

let us the case of elliptical inclusion, when the plate is under the influence of constant load applied on the 
infinity xσ ∞ , yσ ∞ , xyτ ∞ ; the semiaxis of ellipse lie on the coordinate axes and are equal to 1r , 2r . The exact 
solution of this problem has been obtained in closed form in [9]. 

The comparison of the stresses calculated with a help of developed algorithm and according to the 
analytical solutions, indicates its high accuracy and efficiency. 

In Fig. 1, there are presented the results of calculation of the relative stresses on the section boundary 
in the isotropic plate for the inclusion with sides ratio of 1/2 when 1 2 0,3ν ν= =  and the elasticity modulus 
ratio of 1 22E E=  (the inclusion is more rigid). In Fig. 1, there are presented the results for the same 
conditions when 1 20,5E E= . 
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Fig. 1. The stresses in the plane with rectangular inclusions for 0,5b a=  during the tensioning  

of the isotropic plate when 1 22E E=  

 
Fig. 2. The stresses in the plane with rectangular inclusions for 0,5b a=  during the tensioning  

of the isotropic plate when 1 20,5E E=  

On the basis of the obtained results (Figs. 1–2), we may conclude that hoop (circumferential) 
stresses on the section boundary have the largest values in the matrix when the inclusion is softer, whereas 
the stresses are the largest in the inclusion when it is more rigid. 

Let us carry out the calculation of strength of the glass-epoxide plate with rectangular isotropic 
inclusion with half-sides a  and b  for the ratio of 0,5b a =  and with rounded corners of quarter-circle 
shape of the radius of 0,5b  during the single-direction tension by the loads p  along the Oy  axis when the 
rigidity (stiffness) of the material is maximal. Fig. 3 presents the results of the stresses calculation on the 
section boundary (continuous lines) and the value 1p  (dashed line) for the constant elastic inclusions when 

0,3ν = , 25 GPaE =  (Fig. 3, a) and 50 GPaE =  (Fig. 3, b). The analogous results for 75 GPaE =   
(Fig. 3, a) and 100 GPaE =  are presented in Fig. 4. 

The ultimate loads for the cases considered above are as follows: 0,17 tY , 0,8 tY , 0,46 tY , 0,28 tY , 
where tY  are the ultimate loads for homogeneous glass-epoxide plate, which are equal 1035 MPa. It is 
necessary to mention that the fracture nucleates near the rounded corners. On the basis of the obtained 
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results, one may see that the maximal ultimate values of loads are in the case when 50 GPaE = . It is 
necessary to mention that such value is similar to the elasticity modulus yE  of the considered material. 
The analogous results have been defined for the circular inclusion. The obtained ultimate values of loads 
are equal 0,2 tY , 0,78 tY , 0,54 tY , 0,35 tY , i.e., are similar to the values for the rectangular inclusions 
calculated above. 

 

 
a 

 
b 

Fig. 3. The stresses in the plane with rectangular isotropic inclusion when 25 GPaE =  (a) and 50 GPaE =  (b) 
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a 

 
b 

Fig. 4. The stresses in the plane with rectangular isotropic inclusion when 75 GPaE =  (a) and 100 GPaE =  (b) 

Conclusions 
The singular integral equations of the elasticity theory for anisotropic plates with elastic inclusions 

are written in complex form. The equations were derived on the basis of established interrelations between 
the potentials of Lekhnitski and the stresses and displacements. The integral equations solving was carried 
out using the method of mechanical quadratures and was reduced to solving of the system of linear 
algebraic equations. On the basis of the developed algorithm, the investigation of stresses near the 
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inclusions in composite plates with different levels of anisotropy was carried out. The calculation of 
ultimate loads for composite plates with inclusions was performed. 
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