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Abstract. In the article, the algorithm for determination of stresses in anisotropic plates with
elastic inclusions of another anisotropic material was developed on the basis of complex singular
integral equations. The solving of integral equations has been carried out humerically using the
method of mechanical quadratures. The strength analysis (calculation of strength) of composite
plates with inclusions has been performed using the Hoff man criterion.
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Introduction and Review of Modern | nfor mation Sour ces

The method of boundary integral equations is widdly used to study the stress-strain state of isotropic
and anisotropic plates with holes. If the loads on the holes boundaries are prescribed, such problems have
been sufficiently studied already [1]-{4]. The problems of determination of the stress-strain state of
anisotropic plates with inclusions have been studied to a lesser extent. For studying isotropic plates with
inclusions, the singular integral equations are being used. For these equations, the numerical methods allow
to seek a solution with controllable accuracy [5].

In publications [4], [6]-{7], the interdependencies between the potentials of Lehnitskiy and the
stresses and displacements have been determined. Based on these interdependencies and on the Cauchy
theorem, the modified singular integral equations for anisotropic plates with holes are written in the
simplified form. In the paper, the analogous integral equations for plates with sealed-in elastic inclusions
are obtained. The efficiency and simplicity of use of the developed numerical algorithm are exemplified by
calculation of stresses at inclusions of various shapes and by determination of the ultimate |oads.

Problem Statement

In order to assess the strength of compaosite materials with inclusions, it is necessary to investigate
the stresses in the neighbourhood of the section boundary, where, as arule, the fracture nucleates. Sincein
this case all the components of the stress tensor are non-zero, the calculation of strength of the inclusion
regions adjacent to the section boundary and the matrix should be performed on the basis of general criteria
for a planar stressed state. In addition, it is necessary to separately assess the strength of the material,
which is directly adjacent to the boundary, which, as a rule, has the strength properties different from the
matrix ones.

Main Material Presentation

Let us consider the Hoffman strength criterion for composite materials, which is necessary for
further calculations and takes into account the difference between the ultimate stresses of tension and
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compression. Let us consider the specimen of the rectangular shape made of the chosen composite material
and being under the influence of bidirectional tension caused by forces s, s, and of shear caused by

forces t 1, . According to the Hoffman strength criterion, the fracture takes place if the stresses satisfy the
following condition [8]:

S12 + 5152 522+Xc+xtsl+Yc+Ytsz+ﬁ: (1)
XCXt XCXt YCYt XCXt YCYt 5122 ,
where X, Y; arethe ultimate values of stresses when tensioning the specimen along the orthotropy axes
being parallel to the coordinate axes Ox and Oy; X., Y. are the analogous values of stresses when
compressing the specimen; S;, arethe ultimate values of tangential stresses for pure (sSimple) shear.

These constants and the mechanical characteristics, which are determined on the bass of
corresponding experiments [8], for fiberglass are presented in Table 1.

Table 1

Mechanical and Strength Char acteristics of the fiberglass

Characteristic Value
E;, GPa 54
E,, GPa 18
Nio 0.25
Gyo, GPa 9
Xt, MPa 1035
Y, MPa 28
S, MPa 41
Xc, MPa 1035
Y., MPa 138

Let us adopt that the stress in the plate is defined by one load parameter p (for example, by the value of
forces tensioning the plate). Further, there will be used the agorithm, in which the stresses on the section
boundary may bepresented asfollows: s, = pS,, st = pS, tt = pSy, Wheres y, s, t g arethenormal,
hoop (circumferential) and tangential stresses neer the section boundary; S, §;, Sy are the known values
non-dependable on parameter p . Let us determine the stresses in Cartesian coordinate system, which axes are
pardld tothe axes of orthotropy. For this, let us use the relations written in matrix form:

g@ X 9 & n 9

¢Sy ==L gst =

Gy Eno
where

& i i 0]
gcosza sin’a -sin(2a)+

L :g sna cos’a sin(2a) :
Csin(2a)  sin(2a)
& 2 2
a isthe angle between the normal to the section boundary and the axis Ox .

Based on the presented equations, we obtan s, =pF, s,=pF,, t, =pF,, where

(FLF2 Fi2) =L (S1,S.Sn)"-

cos(2a) ;
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Thus, on the basis of equation (1), we abtain the following equation for determination of the
parameter p:
fp? + fop-1=0,
where

f=

R, RR F RS X+ Xi o Yot Y
- + - +—== fo = F+ F.
XXy XXy Yo S5 XXt Yot
Let us adopt the smaller positive value of the equation root as the ultimate load P for the point. Let us
denote the smallest value of p on the section boundary of the inclusions by p; and of the matrix by p,. The

strength of the material adjacent to the inclusion boundary, asarule, is determined on the basis of stresses normal
to the section boundary taking into account the condition s |, < p,, , where p,, is the known value defined on the

basis of experimental testing and depended on the technology of composites production. Let us define the minimal
value of the quantity 1/ S;, on the section boundary and denote it by ps. In this case, the ultimate value of 1oad
parameter may be determined by theformula: p,,,,, = min(py, P2, P3) -

Thus, the presented relations allow carrying out the calculations of strength when the distribution of
the stressed state of piecewise homogeneous plates is known.

The algorithm of determination of the stress-strain state of anisotropic plates with elastic inclusions.
The problem of determination of the stress-strain state of an anisotropic plate with elastic inclusion of
another material is considered. Let us adopt that the plate is under the influence of the loading, which is
applied at infinity; the plate is in the conditions of a flat stressed state. A similar problem for isotropic
plates is well studied in literature. For anisotropic materials, such problems were considered in [9] using
the series method. In this paper, a numerical algorithm for solving this problem is developed. It is based on
the method of integral equations and allows to consider a system of inclusions of almost arbitrary form. Let
us assume that there is a perfect mechanical contact on the boundary of materials sections.

General relations. Let us consider an arbitrary curve G lying in theregion D occupied by the plate.
The complex potentials of Lehnitskiy, the vectors of stresses (X, Y) and the derivatives of displacements

(u,v) onthiscurvearerdated by the dependence[4]:

®(Z)=-V+Sl>U+pl><X+q1>€Y_
! D »zf ’ ,
_VASU AP XX +Gp X @

Y (z)= D, 2§ ’

where U =du/ds; V=dv/ds; z;=x+s;y; u'=du/ds; v'=dv/ds; z?:dx/ds+sjdy/ds;

Pj :allsj2+a12- a16Sj; Oj =apSj tax/sj-ag; j=12; ds is the differential of the arc on G;
Di=a11(si- $)(8- (s~ )5 D2=an(s- s)(s2- 9)(s2- $); aj; ae the elastic constants; s,

aretheroots of the equation alls4 - 2a1653 +(2a,5 +a66)s2 - 2a,5S+ay, =0.

In order to construct the general solution, let us consider separately the internal and infinite regions
limited by the closed contour G. Using the properties of analytical functions for potentials in infinite
region, let us write the following representation (transform) [4]:

1 _Fg(t)dt
F(z)=— O&*‘F s(z);

2p|Gl t1-7

1 Yg(ty)dt
Y(z)=- ~ O%*Ys(zz)i
Plg, 2~ 2
where F g and Y g are the ultimate values of potentials; Y and G2 are the contours in auxiliary

coordinate systems (x,y;) and (Xo,Y,), into which the curve G transits after affine transformation
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(mapping) [9]; Fs(z) and Y g(z) arethe complex potentials for infinite plate, which are corresponding
to the load applied in infinity (the positive direction of integration is chosen as clockwise one). Using the
considered representation and the representation (2), we obtain:

1 (-V+sU+pX +q1Y)ds+

F(z)= Fae(z);
(z) 20D, g L2 s(a) 5
1 (-V+sU+pX+0gyY)ds
Y(z)=- .o( U *+ PoX + GpY) +Y 5(2) .
PD,I 5 -2

Let us substitute the potentials (3) into the formulas for determination of the vector of stresses and
the derivatives of displacements on the contour G [4]. Using the Sokhotski formulas, after performing
transformations on the contour G, we obtain:

2Reg|g (z) 28+ Y (z)83=-Y/2 2Regsllg (z)z+s,Y (z)#8H=x12;

2Regpllg (21) zf+ p2\7 (ZZ)ZQHZU 12, 2Regq1|‘g (Zl) zﬂ:+q2$ (22)298:\//2_

where E (7)), Y (zy) arethe complex potentials (3), in which the Couchy integrals are considered in the

(4)

sense of principal value.

The analogous relations take place for internal region. The only difference is the necessity to change
the direction of integration, i.e., to consider the anticlockwise direction.

Discrete interrelations between the stresses and the displacements on the contour. Using the

quadrature formulas [4; 10] for integrals included in representation (3) at z; = z;;, , we obtain:

F(Z:ln) Ha S‘Q:AS.UK+A2VK+A3X|(+A4Y|( +F (Z )
k=1 ik - Zn o)
Y(Zza]) H SQ:B_I.UK+BZVK+B3X|(+B4Y|( +Y (221)
k—l Lk - Zn
where Xy =X(T); Yk =Y(Tk): U =U): ik V()5 Zjn =% +Sjdh s Lk =X +Sj ¥k 15125
. _ IqZ . . . .
Al—-— AQ—-— Bl—-— =-—=; Ty and Z, are the point with coordinates
2pD; 2pD, 2pD, 2pD,

(% Yk) and (%,,%); N isthe chosen number of nodal points; x =a(@y); Yk =b@k); % =at,)
o =b(tn); O =HK; H=20 /N3ty =y - H/2; sf=stqy); s4a) =yaqa)’ +b4a)” .

Using the formulas (5) and taking into account (4), we obtain the interrelations between the vector of
stresses and the derivatives of displacements on the contour:

N
Uy /2=H§ s@(ukurflk) U@+ x u® +qurf‘|?) +Ug ;
k=1

N
V, /2=H& sﬂ:(U BV RAVAVAC I VA AV ) AV
k=1

(6)
N
Xn /2=H é Sﬁ:(uerﬂ'() +VerEi) + Xerfﬁ) +YerEﬁ))+ X31 ,
k=1

N
Yh/2=Ha S@(UkYn(ﬁ) MY + X +YkYn(|f)) +Yq
k=1
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where n =1,...,N; (Un(|j<)’vn(kj)) and (erlj(),\(q(kj)) are the derivatives of the displacements vector

gﬂu ﬂg and the vector of stresses (X,Y) on the arc in the point (%1 A ) which correspond to the
S
potentlals.
F(z) =) Y (z)=—) @)
)= X )= .
k-2 k-2

The coefficients (Ug, , Vg, ) and (Xg, , Y, ) arethe derivatives of the displacements vector and the

vector of stresses onthearc G in the point (%1 A ) , which correspond to the potentials F g, Y 5.

The relations (4) and (6) are valid for internal region, if we substitute the multiplier - H instead of
H everywhere before the sums and instead of F g(z) and Y g(z) we adopt the complex potentials for
infinite plate, which correspond to the concentrated forces applied to the internal region.

Piecewise-homogeneous plate. Let us consider an infinite plate containing an elastic inclusion. Let
us denote by L the contour lying on the boundary of materials section. Let us denote the constants and
solutions for inclusion and matrix with a help of indexes 1 and 2, correspondingly. L et us take into account
the fact that on the section boundary the derivatives of the displacements vector and the vector of stresses
areequal. Let us denotethemas U, V, X, Y. Let us write down the relations (6) for the inclusion and
the matrix (as the contour G, let us take the curve L) and equalize the expressions, which are in the right
sides of theses formulas. As aresult, the following system of equations will be obtained:

a sﬁ:(uka( ) +Vkarfi) + Xkarfi) +Ykarfﬁ)) =,
k=1

N
é Sﬁ:(ukbiﬁ;) +kan(§) + Xkbrfﬁ) +karflk1)) =b-| ;

k=1
¥ ®)

a S@(Uk% ¥ VG Xigie +Yk9nﬁ)) =G

k=1
N

a S@(U i ViR + X +Yk0h(ﬁ)) =t

k_

where n =1..,N; a(J) =U, J 1+U ) 2, brfj) :Vj’1+ank’2; g,fﬂ() = anf(l"‘ anf(z? 41(|J<) =Ynjk’1+Ynjk’2;

) ) (2 1 2 D) (2
. v U@ b1_\,()_\,S(h)_%:)(éh) X . Y& - v
H H H H
The coefficients U L™, v 1™, x M v 1M for m=1 may be defined as coefficients U{J), v(}),

Xélj() , Yn(lj) presented in (6) for dastic constants with inclusions, and for m=2 —for matrix.

The calculation of stresses and assessment of strength of the plates with elastic inclusions. At first,
let us the case of dliptical inclusion, when the plate is under the influence of constant load applied on the
infinity s f , S i,‘ , fy; the semiaxis of ellipse lie on the coordinate axes and are equal to 1y, r, . The exact

solution of this problem has been obtained in closed formin [9].

The comparison of the stresses calculated with a help of developed algorithm and according to the
analytical solutions, indicates its high accuracy and efficiency.

InFig. 1, there are presented the results of calculation of the rative stresses on the section boundary
in the isotropic plate for the inclusion with sides ratio of 1/2 when n; =n, =0,3 and the elasticity modulus

ratio of E; =2E, (the inclusion is more rigid). In Fig. 1, there are presented the results for the same
conditionswhen E; =0,5E,.
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Fig. 1. The stressesin the plane with rectangular inclusionsfor b =0,5a during the tensoning
of theisotropic platewhen E; = 2E,
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Fig. 2. The stressesin the plane with rectangular inclusionsfor b =0,5a during the tensoning
of theisotropic platewhen E; =0,5E,

On the basis of the obtained results (Figs. 1-2), we may conclude that hoop (circumferential)
stresses on the section boundary have the largest values in the matrix when the inclusion is softer, whereas
the stresses are the largest in the inclusion when it is morerigid.

Let us carry out the calculation of strength of the glass-epoxide plate with rectangular isotropic
inclusion with half-sides a and b for the ratio of b/a=0,5 and with rounded corners of quarter-circle

shape of the radius of 0,5b during the single-direction tension by theloads p along the Oy axis when the

rigidity (stiffness) of the material is maximal. Fig. 3 presents the results of the stresses calculation on the
section boundary (continuous lines) and the value p; (dashed line) for the constant elastic inclusions when

n=0,3, E=25GPa (Fig. 3, @) and E=50GPa (Fig. 3, b). The analogous results for E=75GPa
(Fig. 3, @) and E =100 GPa arepresented in Fig. 4.

The ultimate loads for the cases considered above are as follows: 0,17Y;, 0,8Y;, 0,46Y;, 0,28Y;,
where Y; are the ultimate loads for homogeneous glass-epoxide plate, which are equal 1035 MPa. It is
necessary to mention that the fracture nucleates near the rounded corners. On the basis of the obtained
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results, one may see that the maximal ultimate values of loads are in the case when E =50 GPa. It is
necessary to mention that such value is similar to the easticity modulus E, of the considered material.

The analogous results have been defined for the circular inclusion. The obtained ultimate values of loads
are equal 0,2Y;, 0,78Y;, 0,54Y;, 0,35Y;, i.e, are similar to the values for the rectangular inclusions
calculated above.

alp

02 | | |
D

Fig. 3. The stressesin the plane with rectangular isotropic inclusion when E =25 GPa (a) and E =50 GPa (b)
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Fig. 4. The stressesin the plane with rectangular isotropic inclusion when E =75 GPa (a) and E =100 GPa (b)

Conclusions

The singular integral equations of the easticity theory for anisotropic plates with elastic inclusions
are written in complex form. The eguations were derived on the basis of established interrelations between
the potentials of Lekhnitski and the stresses and displacements. The integral equations solving was carried
out using the method of mechanical quadratures and was reduced to solving of the system of linear
algebraic equations. On the basis of the developed algorithm, the investigation of stresses near the
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inclusions in composite plates with different levels of anisotropy was carried out. The calculation of
ultimate loads for composite plates with inclusions was performed.
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