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This paper presents a method and algorithm for finding effective thermal characteristics
of composite materials, with complex internal structure by the method of thermal-eectrical
analogies based on the discr ete model that built for the task of analysis of the temperature field
by finite element method.
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Ilogano Mmerox i aJropuTM 3HaXOMKeHHSl e(PEKTHBHMX TeMJOBUX XAPAKTEPUCTUK
KOMIIO3UTHUX MaTepiajiB 3i CKJIaJHOKW BHYTPIIHBOK CTPYKTYPOI) 3a AO0MOMOIOK) METOXY
TEeMJIOeJeKTPUYHUX AHAJIOTi HA OCHOBI JUCKPETHOI Mojei, mo0y10BaHol Ui 3a1a4 aHAJTi3y
TeMIepaTyPHUX MOJIiB MeTO0M CKiIHYeHHHUX eJIeMEHTIB.
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Jiorii, TepMiYHMI aHAJIi3, TMCKPETHA MOJIEJb.

Introduction

Creating artificial materials with desired physical properties is one of the important aspects of
modern production. Lack of information about the physical properties of materials and components not
allows to do further scientific research or engineering calculations [1].

Creating a method which allows to calculate the properties of existing materials, and such that only
have been created is an actual task, especially if we take into account the large number of substances that
have not been investigated. Research of the mechanism of heat transfer should moves the front of works of
creating materials with predetermined properties from the field of laboratory experiment in to the field of
physical and mathematical research.

Theresults of investigation of effective thermal properties of composite materials can be used in the
design of thermal modes of eectronic equipment, which allows using computer-aided design to create
effective and reliable devices [2].

Finding effective thermal characteristics are time-consuming task, which can be solved like the
inverse praoblem of heat conduction [3], [4]. In certain cases it is possible to define empirical and semi-
empirical formulas [5], and for the simple structure of materials — have resorted to the analysis of heat in
their simplified quasihomogeneous models [1]. Difficulties arise when trying to find effective
thermophysical properties of materials of complex structure, including composite materials, due to the
significant influence of heterogeneity of the environment on the processes of heat conduction. To solve
such problems conveniently use the analogy between the processes of heat conduction and electric
conduction.

Properties of composite materials

Composites or composite material (CM) — a material consisting of two or more components
(individual fibers or other reinforcing components and matrix that binds them), and have specific
properties that differ from the total properties of its components [6].

Interest in CM is conditioned, primarily, by the need to create materials with improved operationa
characteristics. Therefore, the development and research of composites consists on the one hand, in improving
of the structural, physical, chemical and mechanical properties of materials in accordance with the scope of their
using, the other —in increasing the technol ogical, economic and environmental performance.
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Composites on functional grounds can be divided into structural materials, i.e. materials with
improved set of physical and mechanical properties, and materials with special properties: the predeter-
mined level of conductivity, optical properties and electrical properties. The latter include electrical
conductivity, dielectric constant, magnetic properties [5].

CM can be characterized by topology of their reinforcing components. Topology reflects shape of
the particles of dispersed phase, their size, and distribution of dispersed phase by the volume of the
dispersion medium. It also includes the size of the inclusions, the distance between them, the coordinates
of the centers of inclusions, the angle of orientation in space not isodimentional inclusions (i.e. inclusions
with much larger size in one or two directions, such as fibers or plates). Topology of composites is the
starting point of their analysis, so CM based on continuous fibers or fabrics that are oriented in the same
direction, easily can be analyzed, which is not true for compasites with different topology.

Effective thermal characteristics of CM
The effective thermal characteristic of the composite material isits effective thermal conductivity
Aet. Thisratio reflects the ability of a material to conduct heat. Experimentally it can be defined as:
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where d., — material thickness, R, — Thermal resistance (of part of the body), DT — constant temperature
difference between the sides of the body [7].

For the theoretical calculation of thermal conductivity of most composite materials with different
structures was defined series empirical and semi-empirical formulas [5], calculations using these formulas
usually contain significant errors because it takes a large number of simplifications.

Another approach to the synthesis of effective thermal characteristics of CM is to use the results of
the analysis of heat transfer in the material [1], [8], i.e. the solution of the inverse heat conduction problem

(3], [4].

Analysis of heat conduction problem

Any physical phenomenon, including thermal process occurs in space-time. Therefore, analytical
(mathematical) research of thermal conductivity is equivalent to research of changing spatial-temporal
characteristic — temperature, which is typical for this phenomenon, that is, for finding dependence[9]:

T="1(XY,2zt) (3)
where x,y,z —isthespatial coordinate in the Cartesian system, and t —isthetime.

The set of instantaneous values of temperature at all points of the explored space is called the
temperature field, temperature field is a scalar quantity. There are stationary when they remain constant
over time, and non-stationary when they change with time, temperature fields. According to this
distinguish stationary and non-stationary heat conduction problems.

Stationary problem of heat conduction (Fourier's law), in the case of the absence of internal heat
sources can be written as boundary value problem [9]:
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where q — heat flux density (the amount of energy that flows through a unit area per unit time),
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| —thermal conductivity of the medium, NT — gradient of temperature field. Apparently, the problem of
heat conduction is described by the differential equation with partial derivatives.

Except the equation for the correctness of problem conductivity it should to determine the boundary
conditions. There are three main types of boundary conditions:

Boundary conditions of thefirst kind or Dirichlet boundary conditions, in general have the form:
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Ta(t) = (1) (5)
where T,(t) — isthe surface temperature of the body.
Boundary conditions of the second kind or Neumann boundary conditions, in general have the form:
aa(t) = £ (1) (6)
where g,(t) — isthedensity of heat flux on the body surface.
Boundary conditions of the third kind, or Robin boundary conditions, in general have the form:
dat) =a(Ty- Ty) (7)
where g,(t) — isthedensity of heat flux on the surface of the body, a —is the heat transfer coefficient

[W/n?°K], T, —isthe ambient temperature, the boundary condition sets the convection on the boundary of
the body.

Ther mal-electrical analogies

Experimental methods of researching the processes of heat conduction include method of analogies. In
the method of analogies research of thermal phenomenons is replaced by researching smilar phenomenons, as
there is often easier to make experimental research than the direct research of thermal processes. Similarity of
analogous phenomenons is based on the same character of al occurring processes. Mathematically, analogous
phenomenons are described by formally identical differential equations and conditions of uniqueness. However,
the physical meaning and dimension of the input valuesin them are different.

Electrical analogy based on the formal similarity of differential equations of heat conduction with
one hand and equations of electrical conduction with the other hand [8], [9].

Inthefield of dectrostatics is known that under Ohm's law, the current density associated with the
electric field, which in turnis related to the potential :
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where | —istheamperage, A —the surface areathat is perpendicular to the flow of eectrical current, s —
a conductivity coefficient, NV — is gradient of formed electric field [10]. Obviously, equation (4) and (8)
aresimilar.
Through this approach, the problem of heat conduction can be solved on the basis of analysis of the
thermal circlethat constructed using analogies relevant thermal and electrical dements [8], [11].
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Discrete modd of thermal conductivity of composite materials

For the solution of the problem of heat conduction we propose to use the discrete model of
composite materials, which is built by using adaptiveirregular grids [11].

The chosen discrete modd is based on a representation of CM by mesh of simplex finite elements.
Creation of scheme of substitution mesh to heat circuit is based on electrical analogies (4), (8).

For analysis of thermal circleis used nodal analysis — the method of calculation of electric circuits by
writing a system of linear algebraic equations in which unknowns are the potentials at the nodes of the
circle. Asaresult of applying the method is defining potentials at al nodes of the circle and, if necessary,
the current in all contours [12].

In applying the nodal analysis, thermal circle is represented by a system of linear algebraic
equations:

[K{U}={F} (9
where [K] —is the influence coefficients of each node, {F} — are coefficients of loads caused by the

presence of current sources or voltage (presence of boundary conditions of heat conduction problem).

The solution of the equation system displays the temperature at the nodes of finite elements. These
values we use to find the effective thermal characteristics of CM. Seected discrete model allows to
calculate the heat conduction problem of composite materials with complex topology, including the
heterogeneity of environment. The model has first order accuracy.
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Synthesis of effective thermal characteristics of composite materials

For systems with a regular structure A is determined by analyzing heat transfer in the so-called
elementary cell. For getting simple approximate dependencies of A« Spend discretization of modeling
object to cells by isothermal and adiabatic surfaces, resulting object is represented as a set of plots with
paralld and series connection of thermal resistances [1], [8]. This approach is actual if you can predict the
temperature field, such when topology CM is simple, layered with homogeneous layers.

Based on thermal-electrical analogies (4), (8), derive the dependence A« for homogeneous layers of
CM in the form of a paralldepiped [8]. At Fig.1l.a shown model of homogeneous layer of CM, where
surfaces |, and |, areisothermal with temperatures t, and t,, ends of layer are adiabatic. Internal heat

sources are not available, the thermal conductivity of the material isl . Need to find the value of stationary
heat flow that passes through this layer.

Accordingto (2) DT =gR; . According to the Fourier equation (4), the temperature difference can be
written as:

|
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Here can be found the absolute value of thermal resistance:
|
1% q(l)
R =— oidl (12)
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where A(l) — analytical representation of area of isothermal surface at distance | from the origin, q(l) —
heat flow through isothermal surface with an area A(l), q,— heat flow through isothermal surface with an
area A(l,).

If the path of heat flow no sources or sinks of energy, both in body and on its surface, the flow q
does not changeitsvalue, i.e. q=q,. Provided that | =const the expression (11) can be written as:

1" dl
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R I PA()

Element of the length dI of the path of heat flux for surfaces of parallelepiped (Fig.1.a) equal
d =dx, and analytical expression of the isothermal surface A, = LiL,, where L, and L, arethelength
and width of the surface. Then the absolute value of thermal resistancein a particular caseis expressed as:
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Fig. 1. Model of composite material: a—homogeneous layer; b — multilayered CM
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Consider now consistently assembled CM, that consisting of n heterogeneous oriented
perpendicular to the heat flow layers with thickness and thermal conductivity d; and |, . Temperatures of

surfacelayersare t; and t;,, (Fig.1.b).
Each layer of CM can be attributed by absolute thermal resistance R;,. All absolute thermal
resistances are connected in series (Fig.1. b) so thetotal absolute thermal resistance of CM will be:

deKu
R L 1 s

Let us find the expression of absolute thermal resistance for multilayered CM, with heterogeneous
layers that lie parallel to the flow of heat. We must accept the assumption that heterogeneous layers are
separated from each other by infinitely thin, not heat conductive (adiabatic) layer [8]. In this case the
temperature field of each of the layers becomes uniform, and for each of the layers according to (10) we
can determine the absolute value of thermal resistance R, . Because the layers are paralld to the heat flux,

the absolute values of the total thermal resistance of the CM is defined as;

1
Rr _1 | —R= /aIASWH (15)

Value of 1« is defined as (1), i.e it is equal to the ratio of thickness of the CM to its thermal
resistance.

Accepted assumption about the presence of adiabatic layers can significantly simplify the
calculation, although in this case the question arises about the adequacy of the model, because in the case
of use multilayered CM with large difference in coefficient of thermal conductivity of layers, results will
be heavily distorted and do not reflect the actual physical process.

Problems of this kind are present in the calculation A for CM with reinforcing components like a
heterogeneous inclusions or fibers. So the real heat flow replaced by a simplified by model of parallel flow
lines, between which located adiabatic layers [1]. Given that the number of inclusions in the model can be
very large, in case of calculation of A Similar simplification accumulate large error.

For the synthesis of effective thermophysical properties of complex composite structures we propose
to use the results of modeling of the problem of thermal conductivity (3) [13]. Discrete model (9) is based
on adequate partitioning of compaosite by simplex finite eements, which reflect the thermal circle.
According to [7], after analyzing heat conduction problem, with Dirichlet boundary conditions (5), i.e, at
constant temperature on one surface of KM, and Neumann boundary conditions (6), i.e. at a constant heat
flow on the opposite surface, becomes known the values of temperature at the nodes of discrete e ements,
and hence, becomes known surface temperature of CM.

For the synthesis the value of A according to (1) need to find the constant temperature difference
between the surfaces of CM DT . Asaresult of simulation, the temperature on the surface may not be non-
uniform, especially in cases of modeling multilayered CM with very different thermal conductivity
coefficients of layers. Therefore, to find DT should use the model of parallel connection of resistances
(15): heterogeneous surface temperature, formed at a given heat flow, describes a set of nodes of finite
elements, on the opposite surface of the CM temperature is known and uniform, then each surface element
reflects the absolute thermal resistance Ry, , whose valueis expressed as:

45
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where n — number of nodes of surface element; A — surface area of the element; q — known hesat flux,

T(N;) — the temperature at the node of element on the surface of CM; T, — known temperature on the
opposite surface of the CM.
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According to (13) and (15):
1 q o n. p A.

1 5 1 1 &
= a n = 17)
n, %A g%,

where L, and L, —arelength and width of surface of CM.

The temperature difference between the surfaces of the CM is expressed as:
-1
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Then, based on (1) A« of CM defined as:
_d_d _dq_dq & n A
DT DT L
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—1
Based on the results of solution heat conduction problem by discrete model (9), using (19), can be

synthesized values of effective thermal characteristics of CM, General algorithm for synthesis of effective
thermophysical properties of compasite materials are shown in Fig.2.
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Fig.2. Algorithmfor finding the effective thermophysical characteristics of CM

Example of finding the effective ther mal conductivity coefficient

For example, we used the model of CM with size 2.510° m (Fig.3), matrix of composite with
coefficient of thermal conductivity 237 W/m°K (aluminum), filled with reinforcing components of
spherical inclusions with radius 2.510* m +/— 10 m, with a coefficient of thermal conductivity
1500 W/m°K (diamond). Transition layer between the matrix and filler has width 20 % of the radius of the
inclusions, the concentration of not heat conducting material (air) in the transition layer is 10 %.

On one side of the composite defined Neumann boundary conditions — heat flux 200000 W/m”K, on
opposite side defined Dirichlet boundary conditions — constant temperature 20°K.

Composite was discrete by irregular adaptive tetrahedral simplex elements mesh, the minimum angle
for dements larger than 210 m is 20°, number of mesh nodes is 14707, number of mesh elements is
80219. Mesh generation time on an ordinary configured computer is 122 seconds. The total computation
timefor ordinary configured computer is 496 seconds.

64



As a result of simulation was formed temperature fidld with maximum temperature difference
0.9076°K, and middle surface temperature difference 0.8736°K. Synthesized value of the effective thermal
conductivity of composite material under given conditions is 286,163 W/m°’K.

To confirm the results we conducted simulations of heat distribution in a homogeneous body with
synthesized thermal conductivity, the same size and the same boundary conditions. Body discrete by
tetrahedral simplex elements mesh, number of mesh nodes is 64, the number of mesh elements is 135.
Mesh generation time on ordinary configured computer is less than a second. The total computation time
for ordinary configured computer is 5107 seconds. As a result of simulation was formed temperature field
with temperature difference 0.8736°K.

Fig.3. Example of calculating the effective thermal conductivity for composite with spherical inclusions

Conclusions
Through the analysis of heat conduction problem by using a discrete model of composite materials
with using the method of thermal-electrical anal ogies, was devel oped the method and algorithm for finding
effective thermophysical properties of these materials, which solves the inverse problem of heat
conduction and allows conducting the calculations even for bodies with complex internal structure,
avoiding real experiments.
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