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Mathematical models and methods for determination of axisymmetric residual stresses in
a finite cylinder are considered. The model of residual stresses is built using the conception
of incompatible eigenstrain tensor. Within the frame of this model, a direct problem for
residual stresses determination is formulated. A method based on the variational method
of homogeneous solutions is developed for solving the direct problem. Using the obtained
solution, features of residual stresses, caused by continuous and piece-wise homogeneous
distributions of eigenstrain components are studied. A variational formulation of the
inverse problem for residual stresses determination on the base of empirical data obtained
by a photoelasticity method is suggested. The inverse problem is solved numerically with
the use of iterative calculations of values of the criterion functional. The results presented
in the paper can be used for the development of methods and means for nondestructive
testing and engineering characterization of materials and structural elements.
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1. Introduction

Residual stresses exist in solid bodies, regardless of the presence of external force or thermal loadings [1].
These stresses arise in various solid materials, such as metals, glasses, ceramics, semiconductors, some
plastics, fabricated upon high-temperature heating and quick cooling down. Residual stresses aroused
in structure elements, being superimposed on external stresses, can influence the properties of these
elements, such as strength, thermal-shock resistance, durability etc. Hence, development of effec-
tive methods for residual stresses determination in solids is a problem of great scientific and applied
importance.

There are various methods for determination of residual stresses in solids. Depending on their
impact on the object, one can consider destructive (for example, block removal, splitting and layering,
the contour method), semi-destructive (centre-hole and deep-hole drilling, and the ring core method
etc.) techniques, as well nondestructive ones. The last group of techniques includes those based on
empirical information obtaining upon probing the object by external fields. These are X-ray and
neutron diffraction, magnetic, optical and ultrasonic methods etc. [1, 2].

The nondestructive theoretical-experimental methods, based on models of interaction of external
physical fields with stress fields in strained solids, often can be brought to inverse problems, the input
data for which can be obtained from physical measuring [3,4]. In photoelasticity methods, for instance,
polarized light is used as external probing field. Models of integrated photoelasticity [5, 6] establish
relationships between polarization parameters of probing light ray and distributions of strain or/and
stress tensor components along the path of its propagation within the object. Measuring the states
of light polarization at the input and output of the object and applying corresponding photoelasticity
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mathematical model, one can obtain some integral a posteriori information about the strain-stressed
state along the probing ray. Scanning the object by the ray in different directions, one can obtain
the data, amount of which is sufficient for complete restoration of objective strain-stressed state, and
formulate on this basis a corresponding inverse problem. Implementation of such approach can vary,
depending on applied mathematical models for residual stresses and interaction of probing rays with
stress field, as well as on the empirical data, used as input ones.

A mathematical models and methods for axisymmetric residual stresses determination in a finite
cylinder are considered in the paper. The residual stresses are modeled with the use of known eigen-
strain conception [7]. A direct problem for residual stresses determination is formulated in the frame of
this model. The components of eigenstrain tensor are considered as given functions in this problem. It
is solved with the use of the variational method of homogeneous solutions [8,9]. On this basis features
of residual stresses are studied for some distributions of eigenstrain tensor components prescribed in
the body volume.

An inverse problem is formulated in the frames of the model of residual stresses and the model
of integrated photoelasticity. The components of both residual stress tensor and eigenstrain tensor
are considered here as unknown functions. To make the problem closed, it is supplemented with
empirical data, which can be obtained with the use of probing the cylinder by polarized light. Three
constituents — a mathematical model for residual stresses, a mathematical model for polarized light
interaction with stress field, and empirical data are united through variational formulation of the
inverse problem. For that a functional, which determines the mean square deviation of an arbitrary
solution of the direct problem from the given empirical data, was constructed. A method for inverse
problem solving was developed with the use of the variational method of homogeneous solutions.
The convergence of the method and precision of the obtained solutions were studied with the use of
numerical experiments.

2. A mathematical model for axisymmetric residual stresses in the cylinder

Consider the elastic body B in the form of the finite cylinder V = (0 6 ρ 6 1, 0 6 ϕ 6 2π, −b 6 z 6 b),
which rests in axisymmetric stressed state. Here ρ, ϕ, z stand for cylindrical coordinates (ρ and
z are correspondingly the dimensionless radial and axial coordinates normalized to radius R of the
cylinder). The surface ∂V = S1 ∪ S ∪ S2 of the cylinder, where S = (ρ = 1, 0 6 ϕ 6 2π, −b 6 z 6 b),
S1 = (0 6 ρ 6 1, 0 6 ϕ 6 2π, z = −b), S2 = (0 6 ρ 6 1, 0 6 ϕ 6 2π, z = b), is traction-free:

σρρ|ρ=1 = 0, σρz|ρ=1 = 0, σzz|z=±b = 0, σρz|z=±b
= 0, (1)

where σρρ, σzz, σϕϕ, σρz stand for the components of the axisymmetric stress tensor in cylindrical
coordinates.

The axisymmetric stressed state of the body is caused by structural inhomogeneity of the material.
One can take it into account through representation of the total strain tensor eij as the sum of elastic
strain eeij and eigenstrain êij [9]:

eij = eeij + êij , ij ∈ {ρρ, zz, ϕϕ, ρz} . (2)

The components eij of the total strain tensor e are compatible. They can be determined in the
terms of the radial uρ and axial uz components of dimensionless displacement vector1 u ← u/R by
Cauchy’s relations [10]:

eρρ =
∂uρ
∂ρ

, ezz =
∂uz
∂z

, eϕϕ =
uρ
ρ
, eρz =

1

2

(

∂uρ
∂z

+
∂uz
∂ρ

)

. (3)

1Here and further for simplicity of notation, we use the same letter for normalized quantity as for the initial one.
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The components eeij of elastic strain and eigenstrain êij tensors are incompatible. Hence, we cannot
associate them with some displacements. But we can link the elastic strain components eeij to stress
tensor components σij . Corresponding elasticity relations for the case of axisymmetry have the form

σρρ =
E

(1 + ν) (1− 2ν)

(

(1− ν) eeρρ + ν
(

eezz + eeϕϕ
))

,

σzz =
E

(1 + ν) (1− 2ν)

(

(1− ν) eezz + ν
(

eeρρ + eeϕϕ
))

,

σϕϕ =
E

(1 + ν) (1− 2ν)

(

(1− ν) eeϕϕ + ν
(

eezz + eeρρ
))

, (4)

σρz =
E

1 + ν
eeρz .

Here ν and E stand for the Poisson ratio and Young’s module of the material.
The components σρρ, σzz, σϕϕ, σρz of the stress tensor satisfy the equilibrium equation [10]:

1

ρ

∂

∂ρ
(ρσρρ) +

∂

∂z
σρz −

1

ρ
σϕϕ = 0,

1

ρ

∂

∂ρ
(ρσρz) +

∂

∂z
σzz = 0.

(5)

Further we restrict our consideration by the case, when all three non-zero eigenstrain components
êρρ, êϕϕ = êρρ and êzz depend only on the radial coordinate ρ and present them in the form:

êρρ(ρ) = ê01 ê1(ρ), êϕϕ(ρ) = ê01 ê1(ρ), êzz(ρ) = ê02 ê2(ρ), (6)

where ê01, ê
0
2 are some real constants, ê1 (ρ) and ê2 (ρ) are differentiable functions ranged in segment

[0, 1]: ê1 (ρ) , ê2 (ρ) ∈ [0, 1] ∀ρ ∈ [0, 1].
With the use of relationship (2), one can express stress components σij in term of total strain eij

and eigenstrain components:

σρρ =
1

(1 + ν) (1− 2ν)
((1− ν) eρρ + ν (ezz + eϕϕ))−

1

1− 2ν
ê0ê1 (ρ) ,

σzz =
1

(1 + ν) (1− 2ν)
((1− ν) ezz + ν (eρρ + eϕϕ))−

1

1− 2ν
ê2 (ρ) , (7)

σϕϕ =
1

(1 + ν) (1− 2ν)
((1− ν) eϕϕ + ν (ezz + eρρ))−

1

1− 2ν
ê0ê1 (ρ) ,

σρz =
1

1 + ν
eρz .

Here σij and eij are already normalized components: σij ← σij/Eê02 and eij ← eij/ê
0
2; ê0 = ê01/ê

0
2.

Expressing eij in (7) via uρ and uz in correspondence with (3), and substituting the obtained
relations into the equilibrium equations (5), we come to the equations in term of displacements:

∇2uρ +
1

1− 2ν

∂e

∂ρ
− uρ

ρ2
= ê0

2(1 + ν)

1− 2ν

dê1(ρ)

dρ
,

∇2uz +
1

1− 2ν

∂e

∂z
= 0,

(8)

where e = eρρ + ezz + eϕϕ, ∇2 = ∂2/∂ρ2 + ρ−1∂/∂ρ+ ∂2/∂z2 is axisymmetric Laplace operator.
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Expressing the boundary conditions (1) in term of displacement components with the use or rela-
tionships (7), we obtain

∂uρ
∂ρ

∣

∣

∣

∣

ρ=1

+
ν

1− ν

(

∂uz
∂z

∣

∣

∣

∣

ρ=1

+ uρ|ρ=1

)

=
1 + ν

1− ν
ê0 ê1|ρ=1,

∂uρ
∂z

∣

∣

∣

∣

ρ=1

+
∂uz
∂ρ

∣

∣

∣

∣

ρ=1

= 0,

∂uz
∂z

∣

∣

∣

∣

z=±b

+
ν

1− ν

(

∂uρ
∂ρ

∣

∣

∣

∣

z=±b

+
uρ|z=±b

ρ

)

=
1 + ν

1− ν
ê0 ê1 (ρ) ,

∂uρ
∂z

∣

∣

∣

∣

z=±b

+
∂uz
∂ρ

∣

∣

∣

∣

z=±b

= 0.

(9)

The equations (8) and the boundary conditions (9) form a mathematical model for axisymmetric
residual stresses in the cylinder in the case, when eigenstrain components are depending only on a
radial coordinate.

3. The direct problem for residual stresses determination and a method for its solving

3.1. A solution presentation

In the direct problem, we assume the eigenstrain components êρρ(ρ) = êϕϕ(ρ), êzz(ρ) to be known
functions. Solving the boundary value problem (8), (9), one can determine the components uρ and uz
of the displacement vector, and then, using the relations (3) and (7), calculate the stress components
σρρ, σzz, σϕϕ, σρz.

We present the solution of the inhomogeneous problem (8), (9) as the sum [9]:

uρ(ρ, z) = u0ρ(ρ) + ũρ(ρ, z), uz(ρ, z) = u0z(ρ) + ũz(ρ, z). (10)

Here
{

u0ρ(ρ), u
0
z(ρ)

}

is the solution of the inhomogeneous system (8) for an infinite unloaded cylinder
resting in the state of plane strain. We call it the solution of the initial state. In this case, the second
equation (5) is satisfied identically and the first one brings to an ordinary differential equation:

d

dρ

[

1

ρ

d
(

ρu0ρ(ρ)
)

dρ

]

+
ν

1− ν

de0zz(ρ)

dρ
= ê0

1 + ν

1− ν

dê1(ρ)

dρ
. (11)

It should be subordinated to the conditions of external loading lack:

σ0
ρρ

∣

∣

ρ=1
= 0,

∫ 1

0
ρ σ0

zzdρ = 0. (12)

The pair {ũr(ρ, z), ũz(ρ, z)} represents the solution of the boundary-value problem for homogeneous
system corresponding to the system (8):

∇2ũρ +
1

1− 2ν

∂ẽ

∂ρ
− ũρ

ρ2
= 0,

∇2ũz +
1

1− 2ν

∂ẽ

∂z
= 0,

(13)

where ẽ = ẽρρ + ẽzz + ẽϕϕ, with the boundary conditions

σ̃ρρ|ρ=1 = 0, σ̃ρz|ρ=1 = 0, σ̃zz|z=±b = −σ0
zz, σ̃ρz|z=±b = 0, (14)

where σ0
zz is the axial stress component, which corresponds to the solution

{

u0ρ(ρ), u
0
z(ρ)

}

.
We call {ũr(ρ, z), ũz(ρ, z)} the solution for the disturbed state.
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3.2. Solving the initial problem

Integrating the equation (11) and taking into account the condition of stress finiteness, we obtain

u0ρ = ê0
1 + ν

1− ν

1

ρ

∫ ρ

0
ρ ê1(ρ)dρ−

ν

1− ν

1

ρ

∫ ρ

0
ρ e0zz(ρ)dρ+

ρ

2
C1, (15)

where C1 is an integration constant.
Then, using the relations (3)1...3 and (7)2, one can calculate the stress component σ0

zz. Subordinat-
ing it to the conditions (12), we obtain

C1 =
2

(ν − 1)

∫ 1

0

(

ê0(ν − 1)ê1(ρ) + ν ê2(ρ)
)

ρ dρ, (16)

e0zz(ρ) =
2ê0 ν ê1(ρ)− ê2(ρ)

2ν − 1
. (17)

Finally, we come to the next formulas for the components σ0
ρρ, σ

0
zz, σ

0
ϕϕ of residual stresses in the

initial state:

σ0
ρρ =

1

(1− ν2) (2ν − 1)

(
∫ 1

0
F (ρ)ρ dρ − 1

ρ2

∫ ρ

0
F (ρ)ρ dρ

)

,

σ0
zz =

ν

(1− ν2) (2ν − 1)

(

2

∫ 1

0
F (ρ)ρ dρ− F (ρ)

)

, (18)

σ0
ϕϕ =

1

(1− ν2) (2ν − 1)

(
∫ 1

0
F (ρ)ρ dρ+

1

ρ2

∫ ρ

0
F (ρ)ρ dρ − F (ρ)

)

.

Here F (ρ) = ê0(ν − 1)ê1(ρ) + ν ê2(ρ).

3.3. Solving the disturbed problem by variational method of homogeneous solutions

With the use of the Love function [10], the system (13) is reduced to the biharmonic equation:

∇2∇2χ = 0. (19)

Components of the displacement vector ũρ, ũz and the stress tensor σ̃ij, ij ∈ (ρρ, zz, ϕϕ, ρz) can
be expressed in term of the Love function χ as follows [10]:

ũρ = − ∂2χ

∂ρ∂z
, ũz =

∂2χ

∂z2
+ 2(1− ν)∇2χ, (20)

1

2µ
σ̃ρρ =

∂

∂z

(

ν∇2χ− ∂2χ

∂ρ2

)

,
1

2µ
σ̃zz =

∂

∂z

(

(2− ν)∇2χ− ∂2χ

∂z2

)

,

1

2µ
σ̃ϕϕ =

∂

∂z

[

ν∇2χ− 1

ρ

∂χ

∂ρ

]

,
1

2µ
σ̃ρz =

∂

∂ρ

(

(1− ν)∇2χ− ∂2χ

∂z2

)

.

(21)

Here µ = E/2(1 + ν) is the shear modulus.
The solution of the problem (19), (14), obtained with the use of variational method of homogeneous

solutions, is presented in the paper [8]. For the considered here case of symmetry, with respect to the
plan z = 0, strain-stressed state, the solution of equation (19) can be presented in the form:

χ =
1

2

∞
∑

k=1

(

Bk sinh (−γkz) fk(ρ) + B̄k sinh (−γ̄kz) f̄k(ρ)
)

, (22)
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where Bk, B̄k, k = 1, 2, . . . are undetermined complex constants (the overlined symbols denote here
and further the corresponding complex conjugate parameters), fk(ρ) are the radial functions, expressed
through Bessel functions J0 and J1 as:

fk(ρ) =

(

ρJ1 (γkρ)κk −
2

πγk
J0 (γkρ)

)

,

γk are complex roots of the transcendental equation

γ2k
(

J2
0 (γk) + J2

1 (γk)
)

+ 2(ν − 1)J2
1 (γk) = 0,

κk are complex constants

κk =
2J1 (γk)

π ((2ν − 2)J1 (γk)− γkJ0 (γk))
.

Substituting the Love function (22) into the relationships (21), one can obtain the presentation for
the stress components of the disturbed state:

σ̃ρρ (ρ, z) =
1

2

∞
∑

k=1

(

Bk cosh (γkz)σkρρ(ρ) + B̄k cosh (γ̄kz) σ̄kρρ(ρ)
)

,

σ̃ϕϕ (ρ, z) =
1

2

∞
∑

k=1

(

Bk cosh (γkz)σkϕϕ(ρ) + B̄k cosh (γ̄kz) σ̄kϕϕ(ρ)
)

, (23)

σ̃zz(ρ, z) =
1

2

∞
∑

k=1

(

Bk cosh (γkz)σkzz(ρ) + B̄k cosh (γ̄kz) σ̄kzz(ρ)
)

,

σ̃ρz(ρ, z) =
1

2

∞
∑

k=1

(

Bk sinh (γkz) σkρz(ρ) + B̄k sinh (γ̄kz) σ̄kρz(ρ)
)

.

Here σkρρ, σkϕϕ, σkzz and σkρz, k = 1, 2, . . . are systems of homogeneous solutions:

σkρρ(ρ) = 2µγk

(

(ν − 1)f ′′
k (ρ) +

ν

ρ
f ′
k(ρ) + ν γ2kfk(ρ)

)

,

σkϕϕ(ρ) = 2µ γk

(

νf ′′
k (ρ) +

ν − 1

ρ
f ′
k(ρ) + ν γ2kfk(ρ)

)

, (24)

σkzz(ρ) = 2µ γk

(

(2− ν)

(

f ′′
k (ρ) +

1

ρ
f ′
k(ρ)

)

+ (1− ν)γ2kfk(ρ)

)

,

σkρz(ρ) = 2µ

(

(1 − ν)

(

f ′′′
k (ρ) +

1

ρ
f ′′
k (ρ)

)

+

(

(1− ν)

(

γ2k −
1

ρ

)

− γ2k

)

f ′
k(ρ)

)

,

which satisfy the homogeneous conditions on the cylindrical surface of the body:

σkρρ|ρ=1 = 0, σkρz|ρ=1 = 0, ∀k = 1, 2, . . . (25)

Therefore the solution in the form (23) satisfies the first two boundary conditions (14), imposed on
the lateral surface of the cylinder, automatically for any values of the coefficients Bk.

To subordinate the solution to another two boundary conditions, one can choose appropriately the
infinite sequence of the constants Bk. As Bk are complex constants, it makes possible to satisfy both
conditions (14), prescribed on the bases of the cylinder. We use for that the variational approach [8,11].
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Let us consider the functional:

F =

∫ 1

0

[

(

σ̃zz|z=b + σ0
zz(ρ)

)2
+
(

σ̃ρz|z=b

)2
]

ρ dρ. (26)

It determines in L2 norm the deviation of the solution (23) from boundary data, prescribed on
the bases of the cylinder by conditions (14)3 and (14)4. The necessary conditions of minimum of the
functional:

∂F

∂Bm

= 0,
∂F

∂B̄m

= 0, m = 1, 2, . . .

brings the infinite system of linear algebraic equations:

∞
∑

k=1

2
∑

p=1

M lp
mkB

p
k = K l

m, m = 1, 2, . . . (27)

where B1
k ≡ Bk, B

2
k ≡ B̄k and the coefficients M lp

mk, K
l
m, (l = 1, 2; m = 1, 2, . . .) of the system (27) are

defined by the formulas:

M lp
mk =

1

2

∫ 1

0

(

σp
kzz(ρ)σ

l
mzz(ρ) + σp

kρz(ρ)σ
l
mρz(ρ)

)

ρ dρ, (28)

K l
m = −

∫ 1

0

(

σ0
zz(ρ)σ

l
mzz(ρ)

)

ρ dρ. (29)

We used the notations in the formulas (28), (29):

σ1
kzz(ρ) ≡ cosh (γkb)σkzz(ρ), σ2

kzz(ρ) ≡ cosh (γ̄kb) σ̄kzz(ρ),

σ1
kρz(ρ) ≡ sinh (γkb) σkρz(ρ), σ2

kρz(ρ) ≡ sinh (γ̄kb) σ̄kρz(ρ).

Solving the linear system (27), one can find the coefficients Bk, B̄k and calculate by the formulas
(23) the components of the stress tensor in the disturbed state.

Finally, one can determine the residual stresses in the cylinder as

σij(ρ, z) = σ0
ij(ρ) + σ̃ij(ρ, z), ij ∈ {ρρ, zz, ϕϕ, ρz} . (30)

4. Numerical study of the direct problem

The obtained solution (30) has practical value, when functions of eigenstrain components are given.
In this case, the problem is well defined. We can determine the stress components of the initial state,
performing integration in the formulas (18), and stress components of the disturbed state by solving
the infinite system, using one of the appropriate methods, for instance — the method of reduction [12].

If the reduction method is used, one should solve the finite system

N
∑

k=1

2
∑

p=1

M lp
mkB

p
k = K l

m (31)

instead of the system (27).
One can come to the system (31) by taking in the expansion (22) only the N first terms. Inaccuracy

of the obtained solution can be evaluated numerically by the value of the functional (26) calculated for
it. The convergence of the solution, obtaining with the use of reduction method, can be evaluated by
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investigation of how the value of the functional is changing with increasing of the number N . Results
of such studies, conducted earlier, are presented in the paper [8, 11].

The functions ê1(ρ) and ê2(ρ), which define the eigenstrain components, can be chosen from the
class of square-integrable functions. We have studied the solutions for two representatives of this
class — a continuous function and a piece-wise continuous one. We restricted ourselves by the case of
isotropic eigenstrain tensor, when

ê2(ρ) = ê1(ρ) ≡ ê(ρ) (32)

and considered two types functions ê(ρ):

ê(ρ) = exp

(

ρ− 1

a

)

and ê(ρ) =

{

ε, ρ 6 ρ1,
1, ρ > ρ1.

(33)

The graphs of the dimensionless stress components σ0
ρρ, σ

0
ϕϕ, σ0

zz (curves 1 to 3 correspondingly)
in the initial state as the functions of radial coordinate are shown in Fig. 1 for the cases of continuous
(a) and piece-wise homogeneous (b) eigenstrain functions (33).

0.0 0.2 0.4 0.6 0.8

-3

-2

-1

0

1

3

1

2

ρ

σ0
ρρ, σ

0
ϕϕ, σ

0
zz

a

0.0 0.2 0.4 0.6 0.8

-1.5

-1.0

-0.5

0.0

0.5

3

2

1

ρ

σ0
ρρ, σ

0
ϕϕ, σ

0
zz

b

Fig. 1. Radial dependencies of stress component σ0

ρρ
, σ0

ϕϕ
, σ0

zz
(curves 1 to 3 correspondingly) for the cases of

continuous (a) and piece-wise homogeneous (b) eigenstrain functions ê(ρ).

The presented curves were calculated for ν = 0.3, a = 0.1, ε = 0.5, ρ1 = 0.8.
The disturbed problem was solved by the reduction method with N = 15 for different values of cylin-

der height 2b and for both eigenstrain functions (32). Some results, obtained for b = 0.25, 0.5, 0.75, 1, 2
(curves 1 to 5 correspondingly), are shown in Figs. from 2 to 5. The cases a) and b) correspond to
the continuous and piecewise homogeneous eigenstrain radial distributions (33). The graphs in Figs. 2
show the distributions upon axial coordinate z of dimensionless total residual stress σρρ = σ0

ρρ + σ̂ρρ
at ρ = 0. The graphs in Figs. 3 and 4 show the distributions of dimensionless total residual stress
components σϕϕ = σ0

ϕϕ + σ̂ϕϕ and σzz = σ0
zz + σ̂zz on the lateral surface ρ = 1 of the cylinder. Fig. 5

presents the distributions of residual stress component σρz = σ̂ρz along the direction ρ = 0.5.
The conducted numerical analysis of residual stresses in a finite cylinder has shown that the height

of the cylinder can considerably affect their distributions in the body bulk. Under increasing of the
height 2b, one can observe the edge effect in stress distributions, in particular, when b > 1, the residual
stresses are quickly vary nearby the cylinder’s bases and tend to the homogeneous values, specific for
the initial state, in the domain remote from the bases.
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Fig. 2. Axial dependencies of stress component σρρ at ρ = 0 for the cases of continuous (a) and piece-wise
homogeneous (b) eigenstrain functions ê(ρ).
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Fig. 3. Axial dependencies of stress component σϕϕ at ρ = 1 for the cases of continuous (a) and piece-wise
homogeneous (b) eigenstrain functions ê(ρ).

5. The model for probing of the body by polarized light

Photoelasticity is one of the most effective nondestructive techniques for obtaining empirical infor-
mation about strain-stressed state of solids [1, 2]. It is based on interaction of polarized light with
anisotropic medium, optical anisotropy of which is induced by its stress-strained state. The method is
implemented by transillumination of the object with polarized light. The domain of application of this
high-precision technique is potentially wider of class of bodies transparent in visible spectrum. Many
materials, such as some dielectrics, semiconductors, plastics are transparent in infrared region.

Consider the application of the photoelasticity method for gathering of empirical information about
axisymmetric strain-stressed state of the cylinder.

In Fig. 6, the transillumination of the object 1 with polarized light ray 2, emitted by the source 3,
is shown. To prevent scattering of the ray by the surface, the object 1 is immersed into the liquid 4,
the refractive index of which is very close to refractive index of the object (the dashed curve shows the
fluid level in a vessel).
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Fig. 4. Axial dependencies of stress component σzz at ρ = 1 for the cases of continuous (a) and piece-wise
homogeneous (b) eigenstrain functions ê(ρ).
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Fig. 5. Axial dependencies of stress component σρz at ρ = 0.5 for the cases of continuous (a) and piece-wise
homogeneous (b) eigenstrain functions ê(ρ).
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Fig. 6. Object probing schema.

All probing rays lay in the plane z = 0, hence they cross the cylinder perpendicularly to the axis
z. A polarizer 5 forms the necessary input polarization of the ray. Any sounding direction is defined
by its distance h from the origin of the coordinate system (see Fig. 6). Traveling through the object 1
in optically anisotropic medium, the ray changes its polarizations in conformity with distributions of
strain tensor components along its path. An analyzer 6 determines the output polarization of the ray.
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Comparing the input and output polarizations of the ray, one can obtain some integral information
about parameters of strain-stressed state along the ray.
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Fig. 7. The phase difference δ depending on the
direction h.

Propagation of polarized light within the body is
described by the models of integrated photoelastic-
ity [5, 6]. It establishes a linear system of ordinary
differential equations, describing variation of polar-
ization state along the path of light ray propagation
in strained medium. Coefficients of this system are
dependent on parameters of strain-stressed state on
this path. Since the probing ray lays in the plane of
symmetry of strain-stressed state (z = 0), the stress
component σρz vanishes on it (σρz |z=0 = 0), there-
fore, in the considered case (32) of isotropic eigen-
strain tensor, the coefficients become dependent only
on the components σyy and σzz. Here σyy and σzz
are Cartesian components of the residual stress ten-
sor in the coordinate system x, y, z, axis x of which
is oriented along the probing ray, y axis is normal to
both the ray and axis z of global coordinate system
ρ, ϕ, z. In this case the system can be integrated
in quadratures and one can obtain the integral rela-
tion [5]:

δ = C

∫ xout

xin

(

σzz|z=0 − σyy|z=0

)

dx, (34)

which expresses the phase difference δ, acquired by polarized light ray on its way in strained medium,
via the integral of residual stress components. Here C is a photoelasticity constant, xin, xout are
coordinates of the input and output points of the ray:

xin = −
√

1− h2, xout =
√

1− h2. (35)

By expressing in the formula (34) the Cartesian stress component via cylindrical ones, one can
rewrite it in the form

δ(h) = C

∫ xout

xin

(

σzz(ρ(x), 0)− (σϕϕ(ρ(x), 0)− σρρ(ρ(x), 0)) cos
2(ϕ(x))

)

dx, (36)

where
ρ(x) =

√

h2 + x2, ϕ(x) = arccos
x√

h2 + x2
.

Using the solution of the direct problem, one can calculate by the formula (34) the phase difference δ,
acquired by the probing ray, depending on the direction (defined by the distance h) of its propagation in
the object. Such dependences, calculated on the solutions of the direct problem, obtained for eigenstrain
representation in form (33)1 and various b = 0.25, 0.5, 0.75, 1 and 2 (curves 1 to 5 correspondingly)
are shown in Fig. 7.

6. The inverse problem for residual stress determination and a method for its solving

6.1. Variational formulation of the inverse problem

The inverse problem consists in determination of the residual stresses in the cylinder in the case, when
the function ê(ρ) of eigenstrain is unknown. The direct problem in this case becomes underdetermined.
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To compensate the deficient information, we will use empirical data, obtained through scanning the
object by polarized light rays at its cross-section z = 0 as it is shown in Fig. 6. Having made this, we
obtain the empirical dependence δe(h) similar to the curves shown in Fig. 7.

One can juxtapose the empirical function δe(h) with its mathematical model, given by the for-
mula (34), with the use of the functional of unknown function ê(ρ):

Φ (ê(ρ) =)

∫ 1

0

(

δe(h)− C

∫ xout

xin

(

σzz|z=0 −
(

σϕϕ|z=0 − σρρ|z=0

)

cos2ϕ
)

dx

)2

dh, (37)

in which σzz, σρρ and σϕϕ are residual stress components determined from the solution of the direct
problem, corresponding to the arbitrary function ê(ρ).

As we can see, under some restrictions on the class of permissible functions ê(ρ), closer the function
ê(ρ) to real eigenstrain distribution in the object is, the less should be the value of the integral calculated
on the solution of direct problem for chosen ê(ρ). Hence, we can search the function ê(ρ) as

ê(ρ) = argmin
ê(ρ)

Φ, (38)

what leads to the variational problem:
δΦ

δê(ρ)
= 0. (39)

Taking into account additional posteriori information about the conditions under which the residual
stresses were formed in the body one can substantially narrow the class of seeking function ê(ρ). For
instance, when the residual stress state of the body arose as result of hardening process, the eigenstrain
distribution can be approximated by the formula

êρρ(ρ) = êϕϕ(ρ) = êzz(ρ) = ê0 exp

(

ρ− 1

a

)

, (40)

where ê0 and a are unknown parameters, liable to the determination.
Such assumption appreciably simplifies the problem (39), since the functional (37) becomes a

function of two variables Φ = Φ (ê0, a) and we can find the parameters ê0 and a by solving system of
two equations, which follow from necessary conditions of the function Φ (ê0, a) minimum:

∂Φ

∂ê0
= 0,

∂Φ

∂a
= 0. (41)

6.2. Numerical study of the solution of the inverse problem

To study computational feasibility of the developed method, we used a numeric experiment. For that
we put in the formula (40) ê0 = 2 and a = 0.1. Than we solve the direct problem (the initial and
disturbed ones), determine by the formula (30) the components of total stress tensor and calculate by
the formula (36) the phase difference δ(h), which polarized light ray acquires during probing of cross-
section z = 0 of the object in dependence on distance h (see Fig. 7). Further we use such obtained
function δ(h) as empirical data δe(h) for solving the inverse problem. Comparing both values ê0 and
a, obtained by solving of the inverse problem, with those ones have been used in the direct problem
when the “empirical data” have been obtained, one can evaluate the precision of the obtained solution
of the inverse problem.

The dependence of the functional Φ on ê0 and a are shown in Fig. 8 (curves a) and b) correspond-
ingly). Curves 1 to 3 in the figure 8 a) calculated for the fixed values a = 0.09976, 0.09998, 0.1002,
in Fig. 8 b) — for the fixed values ê0 = 1.9976, 1.9998, 2.002. “Empirical data”, used in the functional
(37), were obtained for ê0 = 2 and a = 0.1.

Mathematical Modeling and Computing, Vol. 5, No. 2, pp. 119–133 (2018)



Residual stresses in a finite cylinder. Direct and inverse problems and their solving . . . 131

1.995 2.000 2.005

0.0

5.0x10
-6

1.0x10
-5

3

2
1

ê0
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Fig. 8. Functional Φ dependence on the ê0 (a) and a (b).

6.3. Solving the inverse problem

Let E
(0)
1 , E

(0)
2 and A

(0)
1 , A

(0)
2 be real numbers, which determine closed intervals E(0) = (E

(0)
1 , E

(0)
2 )

and A(0) = (A
(0)
1 , A

(0)
2 ) within which the sought for parameters ê0 and a take their values: ê0 ∈ E(0),

a ∈ A(0).
We solve the inverse problem by iterative calculation of the value of the criterion functional (37).

For that, we partition the domain D(0) = E(0)×A(0) into n×n equal subdomains D
(1)
tq = E

(1)
t ×A

(1)
q ,

t = 1, 2, . . . , n, q = 1, 2, . . . , n and calculate values Φ
(1)
tq of the functional in the center of each sub-

domain. Then we find the value Φ(1) = min
tq

Φ
(1)
tq and subdomain D(1) = argmin

tq
Φ
(1)
tq in which the

functional (37) is minimal. The found subdomain D(1), in turn, is partitioned into n× n equal subdo-

mains D
(2)
tq and so on. The iterative process is interrupted when the condition

∣

∣Φ(λ+1) − Φ(λ)
∣

∣ 6 εΦ is

satisfied, where εΦ is a given positive number, λ stands for the iteration number, Φ(0) is the value of
the functional at the center of the domain D(0).

To study the feasibility of the presented algorithm, we acted as in previous subsection and, using
the same values of the parameters ê0 = 2 and a = 0.1, determined the “empirical data”. The obtained
on this basis functional (37) was minimized on the grid 9 × 9. After the second iteration errors of

the inverse problem solution, determined as ε
(2)
ê0

=
∣

∣ê
(2)
0 − ê0

∣

∣, ε
(2)
a =

∣

∣a(2) − a
∣

∣ was ε
(2)
ê0

= 0.002,

ε
(2)
a = 0.0002.

As we can see, iterative process of direct minimization of the function Φ(ê0, a), rather quickly
converges. Of course, one can use more sophisticated methods for solving the variational problem, in
particular, those based on the Newton method [13].

7. Conclusions

The direct and inverse problems for nondestructive determination of axisymmetric residual stresses in
a finite circular cylinder have been considered. The residual stresses are modeled with the use of the
conception of eigenstrain. The consideration is restricted by the case of diagonal eigenstrain tensor,
components of which are dependent only on a radial coordinate.

The direct problem is reduced to sequential solving of two problems. The first one is an axisym-
metric problem for infinite cylinder, in which components of the eigenstrain tensor are prescribed as
functions of radial coordinate. Its solution determines the initial stress state. The second problem
determines the disturbance of the initial stress state, caused by the free surface of the finite cylinder’s
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bases. It consists in determination of elastic stresses in the finite cylinder, caused by tractions applied
to its bases, when the lateral surface is free of load. This problem is solved with the use of variational
method of homogeneous solutions.

In the inverse problem, the eigenstrain components are unknown and supposed to be functions of
a radial coordinate. The information lack is compensated by data obtained by probing the body with
polarized light ray. Variational formulation of the inverse problem have been made with the use of
model of integrated photoelasticity. A method of its solving with the use of variational method of
homogeneous solutions is developed. Eligibility of the developed methods for both direct and inverse
problem has been studied quantitatively for two types of eigenstrains distributions in the cross-section
of the body: continuous and piecewise homogeneous ones. The results show good convergence for the
both types of distribution.

This approach can be expanded for case of eigenstrain tensor dependent on two coordinates — the
radial and axial ones. The developed mathematical models and methods can be used, in particular, for
nondestructive determination of residual stresses, originating in cylindrical bodies during their thermal
treating.
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Залишковi напруження в скiнченному цилiндрi. Пряма й обернена
задачi та їх розв’язування з використанням варiацiйного методу

однорiдних розв’язкiв

ЧекурiнВ., ПостолакiЛ.

Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН України,

вул. Наукова, 3-б, Львiв, 79060, Україна

Розглянуто математичнi моделi та методи визначення осесиметричних залишкових
напружень у скiнченному цилiндрi. З використанням концепцiї вiльних несумiсних
деформацiй побудовано модель залишкових напружень, в межах якої сформульова-
но пряму задачу для визначення залишкових напружень. У цiй задачi компоненти
вiльних несумiсних деформацiй розглядаються як заданi функцiї радiальної коор-
динати. Для розв’язування прямої задачi розроблено варiацiйний метод однорiдних
розв’язкiв. З використанням розробленого методу вивчено особливостi залишкових
напружень, зумовленi кусково-постiйним та неперервним розподiлами вiльних несу-
мiсних деформацiй у цилiндрi. Розглянуто також обернену задачу, в якiй компоненти
вiльних несумiсних деформацiй є невiдомими функцiями. Запропоновано варiацiйне
формулювання цiєї задачi в межах моделей залишкових напружень та iнтегрованої
фотопружностi та розроблено методику її розв’язування. Результати, поданi в ро-
ботi, можуть бути використанi для розроблення методiв i засобiв для неруйнiвного
тестування й iнженерної характеристики матерiалiв та елементiв конструкцiї.

Ключовi слова: залишковi напруження, скiнченний цилiндр, фотопружнiсть,

пряма й обернена задачi, варiацiйний метод однорiдних розв’язкiв.
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