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1. Introduction

The development of modern technology poses the task of obtaining materials with prediction of their
properties, the construction of devices whose essential features are strong spatial heterogeneity and
macroscopic manifestation of quantum effects. Despite the significant progress in the condensed mat-
ter physics, in fact, a microscopic theory of inhomogeneous systems remains at the initial stage of its
development. The scale of heterogeneity can range from atomic to macroscopic. The atomic structure
of a substance causes a quantum-mechanic and statistical description of inhomogeneous condensed sys-
tems as the most detailed and exhaustive. For condensed systems, we can obtain information on the
nature of interatomic interactions and the motion of atoms, using the conclusions of the many-electron
theory. Such a state of the theory of inhomogeneous metal systems is due to a set of requirements
that must satisfy the theory of inhomogeneous many-electron systems. The main requirements for
the microscopic theory are the need to simultaneously take into account the self-consistent effects for
electron and ion subsystems, dielectric screening, effects of exchange and correlation in an inhomoge-
neous electron gas, effects of discreteness of ion subsystem, effects of pair and higher interactions and
correlations in an inhomogeneous ion subsystem.

In Refs. [1, 2], an attempt is made to construct a self-consistent many-particle microscopic theory
of non-uniform metal systems that would take into account equally the electron and ion subsystems.
In the framework of this theory, general expressions for a thermodynamic potential and many-particle
distribution functions of electrons in semibounded metal are obtained. This expressions are expan-
sions in degrees of a “difference potential” (the difference between a nonlocal pseudopotential and
the Coulomb potential of interaction between electron and a positive charge of a semi-infinite jellium
model) taking into account dielectric screening, effects of exchange and correlation in a inhomogeneous
electronic subsystem. In the case of a local pseudopotential, this theory is in agreement with Ref. [3].
In the presented paper, the effective potential of the electron-ion interaction in the semibounded metal
(potassium) is calculated, the effect of the local field correction and the metal/vacuum interface are
investigated.
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2. Model

We consider a semibounded metal, ions of which have charges Ze and Cartesian coordinates
Rj = (Xj , Yj , Zj), where −∞ < Xj, Yj < +∞, −∞ < Zj 6 0, z = 0 is the plane equation of
the metal/vacuum interface, j = 1, . . . , Nion. Electrons of a semibounded metal have coordinates ri,
i = 1, . . . , N . A Hamiltonian of this model can be written as

H = − ~
2

2m

N
∑

i=1

∆i +
1

2

N
∑

i 6=j=1

e2

|ri − rj|
+

Nion
∑

j=1

P
2
j

2M
+

1

2

Nion
∑

i 6=j=1

(Ze)2

|Ri −Rj |
+

N
∑

i=1

Nion
∑

j=1

w(ri,Rj), (1)

where the first term is the kinetic energy of electrons, the second term is the potential energy of the
Coulomb interaction between electrons, the third term is the kinetic energy of ions (P is the operator
of ion impulse), the fourth term is the potential energy of the ion–ion interaction and the last term is
the energy of electron–ion interaction. We assume that the system is electroneutral, i.e.

ZNion = N.

We present the potential of electron–ion interaction as:

w(ri,Rj) = w(|ri −Rj |) + ∆w(ri,Rj),

where w(|ri − Rj |) is a potential of the electron–ion interaction in the case of unbounded metal
(pseudopotential, ∆w(ri,Rj) is the deviation of the potential of the electron–ion interaction in the
semibounded metal from the one w(|ri −Rj |).

We extract from the Hamiltonian (1) a Hamiltonian of the semi-infinite jellium model Hjell [4–
6], which is used as a basic system for the study of thermodynamic and structural properties of
semibounded metal. As a result, we get that

H = Hjell + δHii +
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∑
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Nion
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where
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is a surface potential acting on electrons,

δw(|ri −Rj |) = w(|ri −Rj |) +
1
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is a “difference potential”,
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is the Hamiltonian of the homogeneous jellium, V = SL is the volume of the system, S is the surface
area of semibounded metal, L determines the domain of the change of the electron coordinate, which
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is normal to the interface: z ∈ (−L/2,+L/2), S → ∞, L → ∞.

Vjell(ri) = e

∫

dR
eN/V − ̺+(R)

|ri −R|

is the part of the surface potential, which is formed semi-infinite jellium.

Vion(ri) =

Nion
∑

j=1

∆w(ri,Rj)

is the part of the surface potential created by the deviation ∆w(ri,Rj) of the true potential of the
electron–ion interaction in the semibounded metal w(ri,Rj) from the periodic potential w(|ri −Rj |).

ρ+(R) ≡ ̺+(Z) = ̺0 θ(−Z), ̺0 =
eN

V/2

is a distribution of the ion density within the semi-infinite jellium model.
In the following, we assume that the potential of the electron–ion interaction w(|ri −Rj |) can be

modeled by a nonlocal model pseudopotential [7–10]

w(|ri −Rj |) = − Ze2

|ri −Rj |
+

l
∑

l′=0

fl′(|ri −Rj |)Pl′ , (3)

where

Pl =

l
∑

m=−l

|Yl,m〉〈Yl,m| ≡
l

∑

m=−l

|l,m〉〈l,m|

is projection operator, Yl,m is the spherical function [11], and

∑

l

Pl = 1,

integers l and m are orbital and magnetic quantum numbers of electron, respectively The concrete
expressions of the functions fl(|ri −Rj |) depend on the choice of the pseudopotential model.

3. Effective potential of electron-ion interaction

The electron–ion interaction in the metal due to the screening by the electron subsystem differs from
one, which is described by a nonlocal model pseudopotential (3). According to Ref. [1], the effective
potential of electron-ion interaction has the form

weff (r||, z1, Z2) =
1

2π

∫ ∞

0
dq q J0(qr||)w

eff (q, z1, Z2),

where r|| is the distance between an electron and an ion in the interface metal/vacuum, J0(qr||) is

the cylindrical Bessel function of zero order, weff (q, z1, Z2) is a two-dimensional Fourier-image of the
effective potential of electron-ion interaction,

weff(q, z1, Z2) = w(q, Z1 − z2) +
β

SL2

∫ +∞

−∞
dz

∫ +∞

−∞
dz′ ν(q, z1 − z)M(q, z, z′)w(q, z′ − Z2). (4)
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Here β is the inverse thermodynamic temperature, ν(q, z) = 2πe2

q e−q|z| is the two-dimensional Fourier-
image of the Coulomb potential, w(q, Z1−z2) is a two-dimensional Fourier-image of a pseudopotential,
M(q, z, z′) is two-particle correlation function of electrons, which is the solution of such an integral
equation [12]:

M(q, z1, z2) = M
0(q, z1, z2)+

β

SL2

∫ +∞

−∞
dz

∫ +∞

−∞
dz′ M0(q, z1, z)

[

ν(q, z − z′)− ν(q, z − z′)
]

M(q, z′, z2),

(5)

where M
0(q, z1, z2) is two-particle correlation function of electrons without taking into account

the Coulomb interaction between them, ν(q, z − z′) = 1
L

∑

k ei k(z−z′) νk(q), νk(q) = Gk(q)νk(q),

νk(q) =
4πe2

q2+k2 is the three-dimensional Fourier-image of the Coulomb potential, Gk(q) is the three-
dimensional Fourier-image of a local field correction.

4. Results of numerical calculations and discussion

Further numerical calculations of the effective potential of the electron-ion interaction are made for
potassium (rs = 4.86aB) at the low temperatures, using the local pseudopotential of Krasko-Gursky [9,
10],

w(r) = −Ze2

r
+

Ze2

r

(

1 +
r a

rc

)

e−
r

rc , (6)

with the following parameters for potassium [9,10]:

Z = 1, a = 2.671, rc = 0.689aB.

Two-dimensional Fourier-image of the pseudopotential of Krasko-Gursky has the form

w(q, z) = −2πZe2

q
e−q|z|+2πZe2

[

a|z|
1 + (qrc)2

+ rc
1 + a+ (qrc)

2

(1 + (qrc)2)3/2

]

e−
√

1+(qrc)2
|z|
rc .

The surface potential Vsurf is modeled by the infinite potential barrier

Vsurf(z) =

{

∞, z > d,
0, z < d,

(7)

and the local field correction is taken in the Hubbard form for the homogeneous electron gas [13, 14]

Gk(q) =
1

2

q2 + k2

q2 + k2 + ξK2
F

, (8)

a two-dimensional Fourier-image of which has the form

ν(q, z − z′) =
πe2

√

q2 + ξK2
F

e−
√

q2+ξK2

F
|z−z′|,

where KF =
√
2mµ/~, µ is a chemical potential.

Numerical calculations are performed for the following cases:

1) without taking into account the local field correction (ν̄ = 0) in the integral equation (5);
2) taking into account the local field correction in the integral equation (5) in the Hubbard form (8)

with the following values of ξ:
• ξ = 1 (the Hubbard approximation);
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• ξ = 2 (the Geldard and Vosko approximation);
• ξ = 1 + 2/(πKFaB) (the Animalu approximation);
• ξ = 1 + 4/(πKFaB) (the Sham approximation).

In Fig. 1, the dependence of the effective potential of the electron-ion interaction on the distance
between electron and ion in the metal/vacuum interface is presented, the electron and ion coordinates,
which are normal to the metal/vacuum interface, are fixed and coincident. In the depth of the semi-
bounded metal (see Fig. 1a), there is observed a potential well, the depth of which depends on the
chosen approximation for the local field correction. If electron and ion approach the metal/vacuum
interface, the depth of the potential well decreases (see Fig. 1a–1f ).

The Hubbard approximation, as in the theory of homogeneous metal, causes the deepest potential
well, and the Sham approximation — the smallest, the rest of the considered approximations provide the
intermediate values of the depth of the potential well. Taking into account the local field correction leads
to a significant deepening of the potential well, than is in the case of the random phase approximation.

In Fig. 2, the dependence of the effective potential of the electron-ion interaction from the electron
coordinate, which is the normal to the metal/vacuum interface, the ion coordinate is fixed, the distance
between electron and ion in the metal/vacuum interface is zero. In the depth of the metal (see Fig. 2a),
the potential wells on the left and right are symmetric; there is no influence of the metal/vacuum
interface at such distances. If ion approaches the metal/vacuum interface, the potential well on the
right decreases (see Fig. 2c–2f ).

Figs. 1, 2 show that the effective potential of the electron-ion interaction is less sensitive to the
choice of approximation for the local field correction than the effective potentials of the electron–
electron interaction [15] and the ion–ion interaction [12]. This is due to the fact that the induced
interaction between electron and ion is insignificant compared to direct electron–ion interaction.

In Fig. 3 the dependence of the effective potential of the electron-ion interaction on the distance
between electron and ion in the metal/vacuum interface and the electron coordinate, which is the
normal to this interface is given, while position of ion is fixed. Numerical calculations are performed for
ξ = 1 (the Hubbard approximation). In Fig. 3a, the effective potential of the electron–ion interaction
is shown when ion is deeply in the semibounded metal, i.e. in the absence of the influence of the
metal/vacuum interface. From this figure it is clear that the effective potential of the electron–ion
interaction is axially symmetric. The same is clearly seen from Figs. 1a, 2a. The breaking of axial
symmetry with the approach of ion to the metal/vacuum interface is clearly seen from Fig. 3c–3f .
If ion approaches the metal/vacuum interface, the potential well on the right decreases, the induced
electron–ion interaction decreases as a result of a decrease of the electron concentration near the
metal/vacuum interface.

From Figs. 1–3 it is evident that if electron and ion approach from the depth of the semibounded
metal to the metal/vacuum interface, the screening effects decrease as a result of a decrease in the
electron concentration. If electron and ion move from the metal/vacuum interface to the vacuum, the
effective potential of the electron-ion interaction tends to the potential of electron-ion interaction

lim
z1,Z2→∞

weff(r||, z1, Z2) = w(r||, z1 − Z2),

i.e. the integral term in Eq. (4) disappears because the two-particle correlation function of the electrons
M(q, z, z′) tends to zero with moving of the electrons to the vacuum.

[1] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Bazisnij pidhid v teoriї bagatoelektronnih sistem. Rastr-
7, Lviv (2017), (in Ukrainian).

[2] Kostrobij P. P., Markovych B. M. Semi-infinite metal: perturbative treatment based on semi-infinite jellium.
Condensed Matter Physics. 11 (4), 641–651 (2008).
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Fig. 1. The effective potential of the electron-ion interaction as a function of the distance between electron and
ion in the parallel plane to the metal/vacuum interface.
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Fig. 2. The effective potential of the electron-ion interaction as a function of the electron coordinate, which is
normal to the metal/vacuum interface.
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Fig. 3. The effective potential of the electron-ion interaction as a function of the electron coordinate, which is
normal to the metal/vacuum interface, and the distance between electron and ion in the parallel plane to the

metal/vacuum interface.
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Дослiдження ефективного потенцiалу електрон-iонної взаємодiї в
напiвобмеженому металi

МарковичБ.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна

Подано чисельнi розрахунки ефективного потенцiалу електрон–iоної взаємодiї в на-
пiвобмеженому металi (калiї) з урахуванням поправки на локальне поле у формi Хаб-
барда з використанням локального псевдопотенцiалу Красько–Гурського. Дослiдже-
но вплив поверхнi подiлу “метал–вакуум” та апроксимацiї для поправки на локальне
поле на поведiнку ефективного потенцiалу електрон–iонної взаємодiї.

Ключовi слова: ефективна електрон–iонна взаємодiя, напiвобмежений метал, по-

правка на локальне поле.
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