odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.5, No. 2, pp.242-252 (2018) M @puting

athematical

Calculation of transverse piezoelectric characteristics of
quasi-one-dimensional glycine phosphite ferroelectric

Vdovych A.!, ZachekI.2, Levitskii R.!

! Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str., Lviv, 79011, Ukraine
2 Lviv Polytechnic National University, 12 S. Bandera Str., Lviv, 79013, Ukraine

(Received 3 December 2018)

The model of the glycine phosphite crystal, modified by taking into account of piezoelectric
coupling of ordering structure elements with the lattice strains, is used for investigation of
piezoelectric characteristics of the crystal. In the frames of two-particle cluster approxima-
tion the transverse piezoelectric coeflicients are calculated. The influences of hydrostatic,
uniaxial pressures, shear stresses and transverse electric fields on the transverse piezoelec-
tric coefficients of the crystal are studied.
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1. Introduction

Investigations of the effects appearing under mechanical stress or external electric field is one of actual
problems of physics of ferroelectric materials, especially for glycine phosphite crystal (GPI), that
belongs to the ferroelectric compounds with hydrogen bonds [1].

On the basis of the proton model [2], in [3] there was created the model of deformed GPI crystal,
which takes into account the piezoelectric coupling between proton and lattice subsystems. In [3] the
components of polarization vector, dielectric permittivity tensor, longitudinal piezoelectric coefficients,
elastic constants and molar heat capacity were calculated; a satisfactory description of the experimental
data is obtained. The model of deformed GPI crystal made it possible to describe correctly the influence
of transverse fields E, E, 6], hydrostatic pressure [4] and uniaxial pressures |5] on these characteristics.

However, the symmetry of strains e4, € was not taken into account correctly in [3] and the transverse
piezoelectric coefficients ey, es;, h1; and hg; were not calculated. In |7] the GPI model [3] is modified
for the case of decreasing of symmetry under shear stresses o,. and o.,. It was ascertained that the
components of polarization vector P, and P, appear under the shear stresses o,, and o4y, and the
transverse permittivities €., and ¢,, diverge at T, point.

In the present paper using the developed in [7] model of deformed GPI crystal the effects of hydro-
static and uniaxial pressures, shear stresses and transverse electric fields on the transverse piezoelectric
characteristics of this crystal are studied.

2. Hamiltonian of the model

The model [7] consider the system of protons in GPI, localised on O-H...O bonds between phosphite
groups HPOj3, which form zigzag chains along crystallographic c-axis of the crystal (see Fig.1). For
better understanding of the model only phosphite groups are shown in the figure. Dipole moments
dys(f = 1,...,4) are ascribed to the protons on the bonds. In the ferroelectric phase the dipole
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Fig. 1. Orientations of vectors d,y in the primitive cell in the ferroelectric phase [3,7].

moments compensate each other (dy; with dg3, dg2 with dg4) in directions Z and X (X L (b,¢), Y || b,
Z || ¢), and simultaneously supplement each other in direction Y, creating spontaneous polarization.

Pseudospin variables %, ey Uq4 describe reorientation of the dipole moments of the base units:
dgs = ppZgt. Mean values (§) = %(na ny) are connected with differences in occupancy of the two

possible molecular positions, n, and np.

Below for the components of the vectors and tensors we use the notations 1, 2 and 3 instead of x,
y and z for convenience. Hamiltonian of proton subsystem of GPI, which takes into account the short-
range and long-range interactions and the applied electric fields Fq, Eo, E3 along positive directions
of the Cartesian axes X, Y and Z can be written in such a way |7]:

I:I = NUseed + I:Ishort + I:Arlong + I:IE'a (1)

where N is the total number of primitive cells. The term Ugeeq in (1) is the “seed” energy, which relates
to the heavy ion sublattice and do not depends explicitly on configuration of the proton subsystem. It
includes the elastic, piezoelectric and dielectric parts, expressed in terms of electric fields E; (i = 1,2, 3)
and strains €; (j =1,...,6).

6

Useed = % Z JEJO( €5€5 — Z Z eugj Z Xzz’

J,3'=1 i=1 j=1 i,1'=1

Parameters cﬁO(T), i x50 are so called “seed” elastic constants, “seed” coefficients of piezoelectric

stresses and “seed” dielectric susceptibilities, respectively; v is volume of a primitive cell. Matrices cf](,),

0 €0
€;j5 X5 are given by:

BV ) )0 BY 0 0 0 0 € 0 €%
ngg C%g C%g 0 C%(O] 0 égj = egl eg2 €93 (O) €95 (O) ,
eBO _ | G130 23 12 go €35 go ’ 0 0 500 €34 500 €36
7 0 0 0 cy 0 ¢ xit 0 Xi3
B0 B0 B0 0 BV 0 O = 0 x5 0
00 0 o 0 o 0

In the paraelectric phase all coefficients e?j =0.
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Another terms in (1) describe the pseudospin part of hamiltonian. In particular, the second term
in (1) is hamiltonian of short-range interactions:

~ Oqgl1 O¢g2 0q3 Og4
Hghort = _22 (U)qu% + w?Tq%) (5RqRq/ + 5RQ+RC7R(1/)'

In (2) 045 is the z-component of pseudospin operator, that describes the state of the f-th bond
(f=1,2,3,4), in the g-th cell. The first Kronecker delta corresponds to the interaction between
protons in the chains near the tetrahedra HPOgs of type “I” (see Fig. 1), where the second one near the
tetrahedra HPOg of type “II”, R, is the lattice vector along OZ-axis. Contributions into the energy
of interactions between protons near tetrahedra of different type, as well as the mean values of the
pseudospins 1y = (o4¢), which are related to tetrahedra of different type, are identical.

Parameters wi, we, which describe the short-range interactions within chains, are expanded linearly
into series over strains ¢;:

w) = w? + Z 0161 + 04e4 + g6, (l =1,2,3, 5) (2)
l

Wy = w? + Z 0161 — 0484 — OgEs-
l

The third term in (1) describes the long-range dipole-dipole interactions and indirect (through the
lattice vibrations) interactions between protons, which are taken into account in mean field approxi-

mation: >
N 0’ 0’ ! g,
Hlong Z qf q f Z Jff’ qq ;f (3)

ff’ ff’

Fourier transforms of interaction constants Jgp = Y Jrp(qq’) at k = 0 are linearly expanded over the
q/
strains €;:

Ju = Th 4 Y e £ Yiacs £ Yiess, Jis =3+ Y rsier + Pisaca + Yisecs,

! !
12 = Iy + ;1#12161 £ 12484 £ P126€6, J% = Jiy + ; V1€ £ YP1aaes £ Y1466,

o=

J

Wl

Jﬁ = J9 + Z%zl&?l + thonsca + Pooges, Jaa = Joy + Z Vo411 + Y2144 + Yo46€6.
] ]

In result, (3) can be written as:

Hiong = NH® = Z L UQf , (4)

q f=1
where 4y 4
= D Sl M=) Sy (5)
fLr=1 fr=1
The fourth term in (1) describes interactions of pseudospins with external electric field:
o %qf
q

Here py = (ufy, i3, 133), s = (—pigs 13, —1i3), Bo = (=B34, =34 H34)s g = (US4, —H5q, —154) are
the effective dipole moments per one pseudospin.
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3. Piezoelectric characteristics of GPI

Two-particle cluster approximation is used for calculation of thermodynamic characteristics of GPI. In
this approximation thermodynamic potential per one primitive cell is given by |[7]:
a 6
N = Useed + HO — 2(w0 + Zl:élsl) 4+ 2kgT' In2 — NUZIU]E]'
j:

g =
1 4
- §]<;BTfZ:11n(1 —n}) — 2kgTIn D. (7)

where 3 = kBLT, kp is the Boltzmann constant. Here, such notations are used:

D = coshny + cosh ny + a? cosh ns + a® coshny

a a
+ aayg coshns + — coshng + a agg coshny + — cosh ng,

a46 Q46
1 1 1
nlzi(y1+y2+y3+y4), ngzg(y1+y2—y3—y4), n3:§(y1—y2+y3—y4),
1 1 1
n4:§(y1—y2—y3—|—y4), n5:§(y1—y2+y3+y4), n6:§(y1+y2+y3—y4),
1 1
nr =Sy +y2+ys+ua), ns =5+ —ys+ya).
4 0
1, 14+7n B 1 B “ATEY G ~B(Baca+docs)
yr = =1In + = sJdepmp + spupE, a=e ! o Gge = e TRl
L D grengy + Shy

F=1

Minimizing the thermodynamic potential the system of equations for the strains €; and the order
parameters 1)y, are obtained. Differentiating the thermodynamic potential over the fields Eq and Ej3
we obtain the expressions for polarizations P; and Ps [7]:

1
Py = e)yeq + g6 + XV EL + o7 s = ) = 154 (112 — )], (8)

1
Py = euea + eoce + X538 + o [nia(m — ms) + pda(n2 = ma))

Differentiating expressions (8) over strains e1; the expressions for isothermic coefficients of piezo-
electric stress ey, egj of GPI are obtained:

€15 = <8—61)E1 = €9j + %[H:fg(nlsj - 773:—:]') - H§4(772€j - 7745-:]')]’ (J = 4’6)’ (9)
OPs3 1 : ) . . ,
es; = (g) = eg]‘ + %[Mfg(nlaj - 7735‘7-) + M§4(?725j - 7745‘7')7 (.7 =4, 6)' (10)
J/ Es3

where 1., 72¢,, 713¢,» T4e, are the solutions of the following system of equations:

2D — 11 —o2 — 13 — 14 e, !
— 91 2D =399 —se03 — 94 « e | | 4
— 31 —sx39 2D —s33 —se3y nse, || 5
— 4 — 42 —sy3 2Dy Tde, sy
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Here the notations are used:

wp1 = 211 (@] + B0 ) + #p12(Brg + B0) + sp13(07 + ﬁVl )+ sp14B(vy + By ),
sy = spi2(py + B0 ) + s (Bry + By ) + sp1a(py + Bog) + sep13(Bry + By ),
sps = spilpy — By ) + xpa(Bry — B0y ) — #p13(p5 — ﬁ ) = sep14(Bry — By),
s = %p1a(py — BU3) + 2011 (Bry — By ) — sepualpy — Bg) — »p13(Bry — ),
1 1
+ + +
P13 =—=3 *+B, %,427“‘@/37
: 1— nig 1—n3 A
vt =u)* (Z e + ¢l5€5> 7™ = Yjgea+ Yigee,
i=1
1 1
e = (£ ), vyt = (& ), 3 = (= I8,
1 1 1
Vi = Z(%u + 9134), V3 = Z(¢12i + 145), V3 = 1(1/)22@' + 1)o4;),
i = (145 + l546) — U%(lﬁ:«z +1516); Hi1g = (l{_3 Fl7_g) — N1 (If_g+1748),
i3 = +(15 44T l7+8) - (l§+4 —l7_8), Xl = (£l5_4 —156) — 77%(5574 —15_6),
H2y = (l5-3 Fl5-6) —Ug(lir:«z + 1546, 2y = (43 +1748) — 77%(513 +1748);
H2yy = (£l5_4 —l7_g) — n2 (34a — 17-8), 21y = (£l544 £l516) — 77%(574 —15-6);
Hiyp = = (Fl5_q4 +15_6) — n%(—l§_4 +15_6), 25 = F(lg4a +1546) + 77%(—55—4 +15_¢),
1§43 = coshny + a? cosh ng; 15,, = coshng & a? coshng;
1513 = sinhny & a? sinh ng; 15,4 = sinhny & a? sinh ny;
516 = aagscoshng + @ cosh ng; 515 = aagscoshny + @ cosh ng;
Q46 Q46
[516 = aagesinhng + @ sinh ng; [5.8 = aagesinhny + @ sinh ng,
Q46 Q46

7§ = B + dgrepi2) (e +m3) + By + Vg 212) (M2 + 1a)
+ B(y 7213 + Vg ep1a) (1 — m3) + B(Yg 213 + Ygy52514) (M2 — na) + 268 (pp1 + py2),

Ply = —l5 6T l7 g+ 1 (546 T 1748); P2y = 2(514 + U%l§+4),
P2y = Fl5 6 —lzis M1 (1546 + 1748, prj=lspe T lg+m (1546 — l748);

P2 =Fls o +lrps + 0254 —lrys)s  laaa = a’shng + a’shny, 15,4 = a’chng + a’chny.

Constants of piezoelectric stress are obtained by differentiation of electric field over strains at constant
polarization, and they can be reduced to such form:

4y hsj = 35 (11)

hi; =
J e £
X11 X33

where the expressions for transverse dielectric permittivities xj; and x§; is given by [7]:

1 x a X x €T X
Xin = x0T+ g (AN — AY) — g, (A - AY)) (12)

1 z z C z z
X33 = X5 + 2 A[Nl;«;(AX AF7) + p5, (A5 — AY7)]. (13)

Mathematical Modeling and Computing, Vol. 5, No. 2, pp.242-252 (2018)



Calculation of transverse piezoelectric characteristics of quasi-one-dimensional ... 247

Here such notation are used:

2D—311 —s12 —13 —1y
Ao| T 2D =530 —293 — 04
— 31 —s39 2D —333 —se
— 4 — 42 —sy3 2D —y
X X
¥ — 12 —13 — 14 2D =511 —12 — 14
X xXo
Axe _ | 2 2D —3099  —103 — 94 AXe _ | T 2D — 3099 1 — 94
1 - X 2D Y 3 - X 9
3 — 32 — 33 — 34 — 31 — 32 3 — Xy
X X
) — 42 —sy3 2D — ey —xy —xyo xy 2D —syy
X X
2D =511 1 —13 — 14 2D =511 —se12 —x13
— X — — 2D — ¢ — 72X
AXY _ 21 My 23 24 AN 21 22 03 5
2 = X2 9D ) 4 2D X |
—x31 g —33 —3 — 31 — 32 — 33 My
- xe o _ 2D— - — - i
41 ) 743 X4 741 742 743 ny

where

syt = sepiaBls + g5 Bugs, = spuBuds + sp12Buny, T = sp13Buis + sp1aBudy.

4. The results of numerical calculations

For numerical calculation of dielectric and piezoelectric characteristics of GPI we use the parameters
determined in 7] from the condition of agreement of calculated characteristics with experimental data,
which are enumerated below.

— The parameter of the short-range interactions wgy/kp = 800 K;
— The parameters of the long-range interactions
Ot =0T =0t =3.065K, )" =" =)~ = 0.05K, where 5% = y}?i /kg.
— The optlmal values of the straln potentials:
51 = 500K, 0y = 600K, 03 = 500K, 04 = 150K, 55 = 100K, 56 =150K; §; = §; i/kB; -,
1,Z)f1 = 93.6K, 1,Z)f2 = 252.5K, 1/)f3 = 110.7K, ¢f4 = 1/)f6 = ¢f4 = 1/)f6 = T79.5K, 1/)f5 = 22.7TK,
wfl "ﬂfz wfg wfg, = 0K, where wfl wfl/kB '
— The components of effective dipole moments in paraelectric phase are equal to
1 = 0.4 - 10" Besu-cm; pfy = 4.05 - 10~ Besu-cm; pfy = 4.2 - 10 Besu-cm;
ps, = 2.3 - 10" Besu-cm; pf, = 3.0 - 10 Beswem; p3, = 2.2 - 10~ Besu-cm.
In the ferroelectric phase the y-component of the first dipole moment is M?fiiferr 0= 3.82-10" Besu-cm,
and other components are such as in the paraelectric phase.
— The volume of primitive cell of GPI: v = 0.601 - 10~2! cm?.
— The “seed” coeflicients of piezoelectric stress e%, “seed” dielectric susceptibilities ijo and “seed”

elastlc constants CZJ are obtained as follow:

- O O oSy Xll - 0 1 X22 - 0 403 X33 — 05, XE — 0 0 Cll — 2691 kbal", 612 — 145 kbar

Cm27
013 = 116.4kbar, 615 = 39.1kbar, ¢y = (649.9 — 0. 4(T T.)) kbar,
023 = 203.8 kbar, c£Y = 56.4kbar, 633 = 244.1kbar, c = —28.4 kbar,
cEY = 85.4kbar, ¢l = 153.1kbar, ¢} = —11kbar, c£? = 118.8 kbar.

Now let us dwell on the obtained results. The temperature dependences of the coefficients of
piezoelectric stress e, e3; and constants of piezoelectric stress hi;, hzj are presented in Fig.2.
These coefficients are equal to zero in the paraelectric phase, because there exists an inversion
center. In the ferroelectric phase the coefficients ej; and es;, unlike ey, do not go to infinity at
T — T.; they together with the coefficients hy;, h3; slightly change and go to zero at the T, point.

Mathematical Modeling and Computing, Vol. 5, No. 2, pp.242-252 (2018)
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x10* ey, es;, esu/cm? x10%  hyj, hs;, dyn/esu At the low temperatures they also
3, go to zero, because the order pa-
rameters ny — 1 and weakly re-
act on the lattice strains. As one
can see from (9) and (10), the
contributions to the coefficients
e1; from the pseudospins 1 and 2
partially compensate each other,
whereas in the case of e3; they
supplement each other. Conse-
quently, the coefficients e3; have
larger values than ej;. Besides,

—4
140 160 180 200 220 7T,K 140 160 180 200 220 T, K

Fig. 2. The temperature dependences of the piezoelectric coefficients . .
e1j (curves 1;, 1%), es; (3, 3%), hij (15, 1) and hg; (35, 3) of GPI the coefficients €1 are.negatlve,
crystal. The curves 1;, 3; are calculated at 1;;{4 = 1;;{6 = 140K and because the effective dipole mo-

the curves 17, 3 — at 0F, = 150K, 41 = 130K. ment of the second pseudospin
7 14 e w5, is larger than pfs. However,

the coefficients h3; have smaller values than hy;, because the transverse dielectric permittiv-
ity x353, which is contained in (11), is of one order of magnitude larger than xj; (see [7]).
The values of the coefficients of piezoelectric stress e1; and constants of piezoelectric stress hq; depend
on the parameters 1;;4, and the values of e3; and h3; depend on the parameters 1;;[6. If these parameters

are equal, than ej4 = e, €34 = eszg, h1a = hig, h3a = h3g. In the case of different values of 1;;{4 and
1;;[6, the values of respective piezoelectric coefficients are different (dashed lines in Fig.2). The final

set of parameters 1;?4 and 1;?6 will be possible after carrying out of experimental measurements of the
temperature dependences of ey, e3; and hyj, hg;.

T., K Now let us consider the influence of mechanical stresses on
the piezoelectric coefficients. The hydrostatic pressure p;, uni-
axial pressures p1, p2, p3 and shear stress o5 do not change the
symmetry of GPI crystal. As was determined in [7|, applica-
tion of these pressures leads to weakening of the interactions
between pseudospins, in consequence of this the phase transi-

245
240
235
230
225
220
215
210

205
-2 —1 0 1pj, oj, kbar

tion temperature T, linearly decreases with pressure (see Fig. 3,
curves h, 1, 2, 3). The shear stress o5, on the contrary, strength-
ens interactions and increases the temperature T, (see Fig. 3,
curve 5), This leads to shift of the curves eq;(T), es;(T), h1;(T)
and h3;j(T) to the lower temperatures under pressures and to
Fig. 3. Dependences of the phase tran-  the higher temperatures under stress o; (see Fig. 4, curves h,
sition temperature T; of GPI crystalon 1, 2 3, 5). Besides, at the constant deviation of tempera-
hydrostatic pressure (curve h), uniax-  tyre from the phase transition point AT =T —T) = —3K the
ial pressures py (1), p2 (2), ps (3) and piezoelectric coefficients eq;(T), e3;(T"), h1;(T), h3;(T) linearly
shear stresses o4 (4), o5 (5), o6 (6) [7]. . . . .
Symbols ‘e’ are experimental data [8]. m.(:rease with pressures and hnealtly decrease with stress o5 (§ee
Fig.5, curves h, 1, 2, 3, 5). It is caused by faster weakening
of long-range interactions in comparison with short-range interactions under pressures and by faster
strengthening of long-range interactions in comparison with short-range interactions under shear stress
0s5. It should be noted that among the considered above pressures and stress the strongest effect is the
effect of hydrostatic pressure py, and the weakest one is the effect of shear stress os.

In [7] it was determined that the shear stresses 04, g decrease the symmetry of crystal. As a result,
the components of spontaneous polarization P, and Ps appears in the plane XZ (see Fig.6); and the
dependence T,(046) is nearly hyperbolic cosine (see Fig.3, curves 4, 6). Under nonzero stresses oy,
og¢ small changes in strains dey, deg are accompanied by change in temperature d1, and by shift of

Mathematical Modeling and Computing, Vol. 5, No. 2, pp.242-252 (2018)



Calculation of transverse piezoelectric characteristics of quasi-one-dimensional ... 249

x10° e1;, €35, esu/cm? ) x10% hij, haj, dyn/esu
h
1.5 3
2
1 1
Lo
0.51 esj H 4
\ 5
0 L0l
e
—05f Y
-1 -4
140 160 180 200 220 T, K 120 140 160 180 200 220 7T, K

Fig. 4. The temperature dependences of the piezoelectric coefficients ey, esj, hi;

and hs; of GPI crystal at the absence of any pressures and stresses (curve 0), under

hydrostatic pressure (curve h), uniaxial pressures p; (1), p2 (2), ps (3) and shear
stresses a4 (4), 05 (5), o6 (6). The value of the pressures is equal to 2 kbar.

o x10% e1j, esu/cm? " x10% €e1j, esu/cm? L4 x10% hij, dyn/esu S150 h3j, dyn/esu
______ é o _?_ 6 /
25 S s 13 105 56N S ST D _ L3 5100 1’
, \\\\\\:\::f~. 7 SRS ==d1L _ /
-2.6 N \\ NI - ) 6 -158 ~ S 9 5050 /
a7 SO Y4 10 s NSRS “ht
. h SIN Y NN 5000 / jf/
N \\\ A , ’4 -1.6 SOa 4 ;L
-2.8 D <Y 95 A, ~ 4| 4950 AP
NN S S Y \\@\\ A
-2.9 A \ O COSN ] 4900 P A
\‘ \ 9 s 2 13 N ~ P A /1 5
\ e - I’ A - e -
-3 AN o2 zd= 164 N 6| 4850 -T2z 1L =
v| espE==EET T s it 222%--=-="7""%
-3.1 i - -1.66 R 4800 === _ _ _ _ _ _ _ I_
-3.2 8 -1.68 4750
0 02 04 pj, 05, kbar "0 02 04 pj,0j, kbar 0 02 04 pj, 0, kbar 0 02 04 06DPj,0j, kbar

Fig. 5. Dependences of the piezoelectric coeflicients ey, es;, h1; and hs; of GPI crystal on hydrostatic pressure
(curve h), uniaxial pressures p; (1), p2 (2), ps (3) and shear stresses o4 (4), o5 (5), 06 (6) at the deviation of
temperature AT = —3 K.

P, 1076 C/cm? P3, 1076 C/cm?

0.3 1
08}
02} 06l
01} 041
02}

0 0
02}
01y 04}
oal 06}
08}

-1

160 180 200 220 T, K 160 180 200 220 T, K

Fig. 6. The temperature dependences of polarizations P, and Ps of GPI crystal at different stresses 046 [7].
Numbers of lines 4 and 6 mean the direction of applied stress o4 and og respectively, the inferior index shows
value of the stresses (kbar).

the curves P;(T") and P3(T") to higher temperatures. Since dP;/dT" — oo near the phase transition
temperature, then dP;/des — oo, dP;/deg — oo. As a result, the temperature dependences eq;(7T),
e3;(T) diverge in the T, point (see Fig.4, curves 4, 6), and the dependences ey;(T), e3;(T) on the
stresses 04, 0¢ at constant AT = —3K are nonlinearly increasing in magnitude (see Fig.5, curves
4, 6). The piezoelectric coeflicients hij, hs; are finite, because as was shown in [7|, the transverse
components of susceptibility xj; and x§3, which appear in (11), also diverge in the 7T, point.
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Now let us consider the influence of transverse electric fields Fq and F3 on the piezoelectric coef-
ficients. As was shown in [6], these fields decrease the temperature T, proportionally to E? and E3,
respectively. In Fig. 7 there are presented the temperature dependences of the piezoelectric coefficients

x10*  ey;, esu/cm? x105  e3;, esu/cm? x10% hij, dyn/esu x10% h3j, dyn/esu
15 2 6 ‘ 15
4
10 0 - 3 3] 05
1
3 -1 \L 2 2 0 0
5 2 1 1 1
2 -2 N 0 -0.5 5
0 1 3 3 1 0 1
3
0 -2 L5
4 4 3 -1 4
-9 -5 4

- -2
200 210 220 T, K 200 210 220 T, K 140 160 180 200 2207, K 140 160 180 200 2207, K

Fig. 7. The temperature dependences of the piezoelectric coefficients eyj, esj, h1; and hs; of GPI crystal at
different values of the electric field E5 (MV/m): 0.0 — 0; 1.0 — 1; 2.0 — 2; 3.0 — 3; 4.0 — 4.

e1j, esj, hij and hg; of GPI crystal at different values of the transverse electric field E3. Under the
influence of field F3 in paraelectric phase the centre of inversion disappears, but reflection plane ac
remains. Therefore the polarizations of both sublattices (the chains “A” and “B” in Fig.1) are equal
in direction and modulus. At small shear strain €4 or ¢ the interactions between pseudospins in the
chain “A” become stronger, but in the chain “B” they become weaker. The nascent changes in both
sublattice polarizations mutually compensate each other, and the total polarization in the plane ac
does not change. That is why the coefficients ey}, e3;, hq; and hs3; are equal to zero.

In the ferroelectric phase the chains “’A” and “B” are ordered in the opposite directions. Therefore
the weakening of interactions in the chain “B” in the presence of the stress €4 or €¢ leads to the same
sign of the changes in polarizations of sublattices. As a result, the piezoelectric coefficients are nonzero.

As was shown in [6], in the presence of elec-
tric field E3 the order parameters 73, n4 decrease
stronger than the order parameters 1, 72 increase
(see Fig.8). In result, the chain “B” becomes more
sensitive to the strains and external fields in compar-
ison with the chain “A” and in comparison with the
case of zero field. At the low temperatures, when the
order parameters are close to saturation, the strains
g4 or €¢ additionally weakening interactions in the
chain “B”. Then the expressions 73, , 74¢,, which ap-
pear in (10), are negative and larger in magnitude
Fig. 8. The temperature dependences of the order ~ than at zero field. That is why the piezoelectric co-
parameters 75 of the GPI crystal at different values  gfficients e1j, esj, h1; and hs; increase in magnitude
of the electric field E3(MV/m): 0.0 N 110 7/25 at the temperatures far from T, (T < 210K for ey,

207330 = 440 =5 =20 =35 ~40 =5 and T < 180K for hyj, hs;, in Fig.7) with in-

n1,2(E3) n3,4(E3)
1

0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2

0

0

-0.2 -0.2

200 210 220 230 7, K 200 210 220 230 7, K

creasing of electric field strength Fs.

At the temperatures close to T, in the presence of field F3 the protons in the chain “B” are almost
fully disordered. In the presence of shear stresses the ordering in the chain “A” increases. Interchain
interactions leads to increasing of antiparallel ordering in the chain “B”. Consequently, the increment
of polarization of the chain “B” appears, which is opposite in sign to the increment of polarization of
the chain “A”, and larger in magnitude. In result, the piezoelectric coefficients ey, e3j, h1; and hs;
decrease with strengthening of field, and there appears the negative peak near T, (T' < T¢ in Fig.7),
which is finite in magnitude.
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In the presence of positive field Fq and positive shear strains the equilibrium values of the order
parameters reverse their signs. Consequently, the coefficients ei;, e3;, h1; and h3z; in the presence of
this field also reverse their signs (see Fig.9). The effect of field E; is similar to the effect of field E3,
but of one order of magnitude larger.

x10% e1;, esu/cm? x10%  es;, esu/cm? x10% hij, dyn/esu s x10% h3j, dyn/esu
1.5 4 .
1 1 3 1 1
2 \— 2
4| 05 0 . 4 05 o
0 0 0 0
4 -1
-0.5 o  -05
4
-2 0 1 -9 1
- -1
1 -3
-4 -1.5 -4 -1.5

200 210 220 T, K 200 210 220 T,K 140 160 180 200 2207, K 140 160 180 200 220 T, K
Fig.9. The temperature dependences of the piezoelectric coefficients eyj, esj, h1; and hs; of GPI crystal at

different values of the electric field £y (MV/m): 0.0 — 0; 1.0 — 1; 4.0 — 4.

Character of changes of the piezoelectric coefficients ey, e3;, h1; and h3; with increasing of electric
fields F5 and Fj at the deviations of temperature AT = —3K and —10K is presented in Fig. 10.

X105 €1j5, €35, esu/cm2 ><104 hlj, h3j, dyn/esu
1.5 37 3 3
3 3 o A
A - - /
1 2 o1
- - == - _ - 1 3 i /— -
05 -~ W
T __//—7_ _____ - -
0___/_ ______ - 07%37337 _______ Pl
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B 17373 _______ /_1 e L _ - - 3" 3
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L3 3 _---—7
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0 1 2 3 E;, MV/m 0 1 2 3 E;, MV/m

Fig.10. Dependences of the piezoelectric coefficients ey;, es;, hi; i hs; of GPI

crystal on electric fields F; and E3 at different temperatures. Number of line 1

or 3 means the coefficients ey, hi; or esj, hsj, respectively; inferior index 1 or 3

means the external field E; or Ej3, respectively; prime or double prime means the
temperature AT = —3 K or —10 K, respectively.

5. Conclusions

The transverse piezoelectric coefficients e1; and e3j, in contrast to the longitudinal coefficients eg;, are
finite in the absence of external fields and mechanical stresses. The coefficients e3;, h3; are positive
but ey, hy; are negative. The hydrostatic p;, and uniaxial pressures p1, p2, p3, and also shear stress o5
change the temperature T, proportionally to the applied pressures, but qualitatively do not change their
behaviour. The shear stresses o4, 06 leads to divergence of the coefficients eq;, e3; at the temperature
T¢, but qualitatively do not change the coefficients hy;, hzj. The transverse electric fields £y and E3
at the low temperatures, far from 7, increase the piezoelectric coeflicients in magnitude, but at the
temperatures, close to 1. the finite negative peak appears. In the paraelectric phase they remain equal
to zero even in the presence of mechanical stresses or transverse electric fields. Since there are not
carried out any experimental measurements of the coefficients ey, e3;, h1; and hg;, then obtained in this
work their temperature, field and pressure dependences for GPI crystal have character of predictions.
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Jitst moctimKenHst 1'€30€IEKTPUIHIX XaPAKTEPUCTUK KprucTasa GpocdiTy riinuny BUKOpHU-
craHo Mo(iKoBaHy MOJEb POChITy IVIIUHY 3 YpaXyBaHHsI II'€30€JIeEKTPUIHOTO 3B’ SI3KY
CTPYKTYPHUX €JIEMEHTIB, siKi BIIOPSIIIKOBYIOTHCsI, 3 JepOpMAIisiMy I'DATKH. B HAOIMKeHH]
JIBOYACTUHKOBOI'O KJIACTEPa PO3PAXOBAHO IOIEPedHi I1'€30ejieKTpudHi Koedinientu. [lo-
CJIIPKEHO BIJIUB TiIPOCTATHUIHOTO, OJIHOBICHMX THUCKIB, 3CYBHHX HANPYT 1 MOIEPETHUX
€JIEKTPUIHUX TIOJIIB HA MTOIEPEYH] II'€30eJIeKTPUIHI XapaKTEePUCTUKU KPUCTAJIA.
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