odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.4, No. 2, pp.126-138 (2017) M @puting

athematical

Mathematical modeling of a small pressure disturbance in gas flow of
a long pipeline

Chekurin V.!, Khymko O.?2

L Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
National Academy of Sciences of Ukraine
3-b Naukova str., 79060, Lviv, Ukraine
2 Lviv Polytechnic National University
12 S. Bandera str., 79013, Lviv, Ukraine

(Received 10 December 2017)

A mathematical model for propagation of a small disturbance in the moving gas of a long
pipeline has been built in the paper. The model contains two coupled equations, the
coeflicients of which are expressed via the parameters of the initial process — mass density
and mass flow rate. In the frame of the model, the influence of parameters of the initial
stationary gas flow on propagation of the pulses initiated by a local fluctuation, originated
in the stream, was studied numerically. The developed model can be used for quantitative
analysis of oscillations of operational regimes of the long-distance pipeline, which are
caused by random stream fluctuations and/or operational pulsation of the compressors.
The model can be also useful to study negative pressure waves emerging in the pipeline
during its local depressurization.
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1. Introduction

Gas main pipelines are giant engineering structures, containing of buried and ground-surface pipelines
of a big diameter (up to 1.4m). The length of a pipeline section between two compressor stations
can reach 100—150km. The main pipelines are effectively used for long distance transportation of
natural gas. Their high productivity can be achieved by creating of high pressures by compressor
stations at the sections inlets. The pressure decays downstream the section because of the friction
between the moving gas and pipe wall, and varies depending on the pipeline’s path profile. Therefore
the metal of pipe body is in inhomogeneous strain-stressed state produced by the friction and intrinsic
pressure. Modes of operation, which is determined by the flow rate and inlet pressure of a pipeline,
can change cyclically on day, week, month and season bases. Cyclic stress of the metal in combination
with other destructive processes (corrosion etc.) can provoke its cracking with consequent pipeline
depressurization.

Pressure and flow rate values are usually monitored at the inlets and outlets of each section and
often at several points along its route. These data are used for operational control of the pipeline.
They can be used also for detection of unpredictable pipeline depressurization, leakage location and
its identification [1,2]. In this connection, we can mention two known methods of leak detection in gas
pipelines.

The first one is so called method of negative pressure waves [1-3|. The idea of the method is that the
sharp pressure jump, emergent at the depressurization point, produces two waves of negative pressure
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drop, one of which propagates downstream, another one — upstream. Measuring time moments ¢; and
to of the wave arrival at the points 1 and x2, one of which is situated downstream, and another one —
upstream of the point of depressurization, one can calculate the coordinate x( of the depressurization
point if flow rate is known.

Another method, called Real Time Transient Modeling (RTTM) [1,2,4] is based on numerical
solving of non-stationary boundary value problems of gas dynamics, which model mass, momentum
and energy transfer in the pipeline. The functions of boundary conditions for these problems are being
obtained on the base of measurements of pressure and flow rate values at the section input and output.
Measuring additionally pressure and flow rate values at several points along the path of the section
and juxtapose the obtained data to numerical solutions of the boundary value problems, one can judge
about leak presence, its location and intensity. There are several modifications of RTTM method,
differing in ways of acquisition and initial processing of the empirical data, and by algorithms of their
utilization [4].

As we can see, both methods are based on precise measuring of the pressure and flow rate values
and their variations, caused by the depressurization. But waves of pressure and flow arise in the
pipeline gas stream not only because of the depressurization. Operational pulsation of the compressors,
turbulent instability of the flow caused by local hydraulic resistances, random fluctuations of pressure,
temperature, density and composition of transported gas, etc. can also be reason of emerging of wave
disturbances of pressure and flow rate of moving gas in the pipeline. Experimental data presented in
paper [5] show that the amplitude of pressure pulsation measured in a pipeline equals about 1% of
operational pressure value. These local disturbances create an acoustic noise for registration of the
negative pressure drop waves and variations of pressure and flow rate caused by local depressurization,
what can reduce sensitivity and precision of the above mentioned methods for leaks detection and
location. Therefore, studying the behavior of small disturbances in the gas flow of main pipelines is a
problem of great scientific and practical importance.

The paper is devoted to mathematical modeling and numerical study of small acoustic disturbances
in the moving gas of long-distance pipelines.

2. Governing equations

We consider a section of a main gas-pipeline as a long cylindrical pipe of the length L and the constant
diameter D. Let a natural gas of known composition is transported via the section. Motion of the gas
in the pipe is governed by the equations of mass, momentum and energy transfer. In the present paper,
we restrict our consideration to an isothermal approach, in which the model includes two conservation
equations of mass and momentum |[6]:

L) (1

ot * ox
apV 0

W+%(P+pVV)+%pV|V|+g%,OZO. (2)
Here p, P and V stand for the mass density of the gas, its pressure and velocity being functions of the
coordinate x and time ¢, h = h(x) is the pipeline’s axis elevation, depending on the coordinate x along
the pipeline trace, A stands for friction coefficients, ¢ is gravitational acceleration.

As the equations (1) and (2) contain three unknown functions, we will consider them simultaneously
with a thermal equation of state, which connects dependent variable P(z,t) and p(z,t), and can be
written in two equivalent forms (6, 7|:

P

P = z2R,pT or p= RT

(3)
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We used here the denotations: R, = R/M,, where R is universal gas constant, M, is the gas molar
mass; z stands for gas compressibility factor, it defines deviations of thermodynamic properties of real
gas from the model of ideal gas, for which z = 1.

There are various analytical approximations, obtained with the use of empirical data, which consider
z as a function of pressure P and temperature 7' (at a fixed gas composition). In such presentation
formula (3); gives an implicit representation of pressure P as a function of density p and temperature
T. Of course one can solve the equation (3); with respect to P and thus determine the compressibility
factor z as a function of density p and temperature T'. Further we will consider equations (3) in explicit
form, supposing parameter z in the first equation (3) is known as the function z = z(p, T), but in the
second one — as z = z(P,T).

Equations (1)—(3) form a system for determination variables p, P and V as function of coordinate
z and time ¢t. Knowing them one can determine mass flow density J = pV and volumetric flow rate
Q = JnD?/(4ps), where pg stands for the value of gas density at the standard conditions.

A regime of section operation is determined by dependences of pressure P and mass flow density
J = pV on coordinate x and time t. It established by the pressures Pj,, P,, and/or by mass flows
Jin, Jout values creating by the compressor stations at the inlet and outlet of the section. According
to this we can consider, four pair of boundary conditions:

Pl = Pin(1), Ply—p, = Pout(t). (4)
Pl = Pin(1), Ioer = Jout(t). (5)
Iyo = Jin(), Plo—p = Pout(t) (6)
Iy = Jin(), Joer = Jour(t) (7)

Here Py, (t), Pout(t), Jin(t), Jout(t) are given function, which can be determined, in particular, empiri-
cally by measuring pressure P and mass flow density J at the section inlet and outlet.
To formulate a problem for system the pair of initial conditions

Pli—g = Pinit(t), Jli—g = Jinit (), (8)

should be also taken into consideration.
We assume the boundary conditions (4)—(7) are consistent to the initial conditions (8), i.e.:

f)i (0) — Pz'nit (0) 5 Pout (0) - Pz'nit (L) 5 Jz (0) — Jim’t (0) 5 l]out (0) - Jinit (L) . (9)

Eliminating pressure P from equation (2) with the use of relation (3), we obtain the system of
partial differential equations for determination of density p and mass flow J = pV in the form
dp  0J
—+—=0. 10
ot " o (10)
0J 5 J2\ Op JoJ X J|J| Oh
= L SN L L 11
ot <a ) ox pox 2D p +gax’) 0 (11)

2
where a = a(p) is acoustic speed:
a®> = 0P/0p = (2 + p0z/0p) R,T. (12)

Taking p(x,t) and J(x,t) as the key functions, we obtained the system of governing equations (10),
(11), the first of which is linear one. We reduce the system to a dimensionless form. For that we
use typical values for pressure P; and mass flow density J;. Calculating the typical value of the mass
density by formula (3)s: pr = P,/(2(P;,T)), and time period ¢; = L/a;, where L is the length of the

pipeline, a; stands for acoustic speed at p = pi: ay = \/(z(pt,T) + p10z/0p|,,, ) RgT', we introduce
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dimensionless mass density p = p/p;, mass flow density j = J/J;, dimensionless time 7 = ¢/t; and
coordinate £ = z/L. Finally, we obtain governing equations in the dimensionless form |[§]

L4 Ma=L = 1
8T+ aa5 0, (13)
aj 1 [, 25°\ 9p j 9j 73] oh
- 4+ — —Ma“= )| — +2Ma=== Ma==— + Ma—w = 14
67+ <a aﬁ2 8§+ aﬁa§+ﬁ aﬁ + aagw 0, (14)
where v AL
7:2:7 :_t = 7:i
a=o=an), Ma=_' =5 h=ihh (15)

ﬁ’g:o = pm('r)a ﬁ’g:l = p_out(T)- (16)
ﬁ’g:o = p_in(T)a j‘g:l = jaut(t) (17)
j|§ 0o — jln(t)’ /3|§:1 = pout(T)- (18)
J|§ 0 = Jin(t) j|§:1 = Jout(t)- (19)
p‘r 0 — szt(f) j’TZO - ]znzt(f) (20)
Here
) — PZTZ(T ) tt) _ Pout(T : tt)
pln(T) - z(Pm(T . tt),T) RgT’ pout(T) - > (Pout(T . tt),T) RgT’
jin(r) = 2221 o) = 2 0)
e Pinit (€ - L) oy Jmit(§- L)
szt(f) - P (]Dznzt (5 . L) ,T) RgTv ]znzt(f) - 71],5 .

In a stationary regime dp/0t = 0j /0T = 0. It follows from (12) in this case that 0j/0¢ = 0, and
we can reduce equation (13) to the form

dp , Bi*+ 345 (21)
— =—Ma .
73 (@25 — Ma2j?)
In this case we can subordinate the function () to one of the next boundary conditions
p_‘ngl = ﬁinv /3’5:1 = ﬁouta (22)

where p;, and py, are given constants.

3. Mathematical model for small disturbances

Let consider a gas pipeline in an operational state, determined by the pair of functions py(&,7) and
jo(&,7). Let a small disturbance p(&,7) and j(&, 7) has emerged in the gas stream. Then the disturbed
state is defined by functions

/3(5’7—) = /30(5’7_) +ﬁ(€a7—)’ ](&7—) :jO(gaT) +§(£’T) (23)

The pairs po(&,7), jo(&,7) and p(§, 7), j(&,7) both satisfy the equations (13), (14). Started from
this and taking into account the smallness of the disturbance p(§, 1), j(§, ), we will establish governing
equations for functions p(&, 1), 7(&, 7).
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As (13) is a linear equation, the disturbance p(¢,7), j(€,7) satisfies its exactly:

P, a1a%

= 56 =" (24)

Substituting (23) into (14) and neglecting by terms, which are nonlinear with respect to the func-
tions p, j and their derivatives, we obtain

dj 1, op dj OMag ~
-+ — — Ma 2Ma 2 M
87_—1- (ao )8§+ 08§+ < 3¢ + B ao>]
1 8&(2) OM ap? dﬁ .
+—<6—f— € — BMa 0—|—Ma df)p =0, (25)

where Mag = Ma - vy = %% = ZS = May(&, ).

The coefficients of the linearized equation (25) are defined in terms of parameter of non-disturbed
gas flow po(§,7) and vo(§,7) = jo(&,7)/po(€, 7). In common case they are functions of spatial coordi-
nate £ and time 7 and can be calculated on the base of the solution of system (13), (14), subordinated
to one of boundary conditions (16)—(20).

In the case of stationary initial state the coefficients of (25) do not depend on time variable 7 and
are determined through density pp(§), which, in turn, can be defined by solving ordinary differential
equation (21):

dpo , Boods + Gem
Fra —Ma 72—22, (26)
'3 agps — Ma?j
at given jo = const and one of the boundary conditions (22).

Since the coefficients of equation (25) in this case do not depend on time variable 7, we can reduce

the system (24), (25) to one governing equation:

2%, 9%j 9%j dMay dj
g2~ (@ — Maj) 53 +2Mao 5 +2 ( dé +ﬁM“O) or
da3  dMag? 0j 2dh 8]
_ BMa ~ Ma @
(@ e 7 >% zoe - @0

Consider this equation in some particular cases.
In the case of horizontal (0h/0z = 0) blanked-off pipeline (J = 0 and P = P;), we have ap = 1,
Mag = 0. In this case equation (27) transforms to the form of conventional wave equation:

?j 0%
] (28)
or o0&
which admits solutions in forms of the plane waves, one of which propagates in the positive direction
and another — in the negative direction of axis:

j(z,t) = Fi(§+7) + Fa(z — 1) (29)

Here Fi(...) and Fy(...) are functions, which should be determined from the initial conditions.
The disturbance p as the function of coordinate £ and time 7 can be found from equation (24) with
the use of (29):
plz,t) = —Ma(Fi(§+7) — Fo(z —t)). (30)

As the dimensionless friction coefficient § is proportional to the pipeline’s length L, it decreases
when L diminishes. Hence, a case of rather short pipeline the friction coefficient 8 be small enough,
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and we can put it equal to zero. In this case, in a horizontal pipeline, as it follows from equation (26),
the gradient 0pp/0¢ of dimensionless density in the initial state is also small: 9py/9¢ = o(5). So,
we can ignore the spatial inhomogeneity of mass density and suppose ag = const, Mag = const. This
reduces equation (27) to the form

%
or?

) 02j
=2 2

0. (31)

The general solution of this equation can be presented as the superposition of two plane waves
propagating in opposite directions of the axis £ with different phase velocities ag + May:

j(x,t) = Fy ((ag — Mag) 7 + &) + Fa ((ag + Mag) 7 — ). (32)

The disturbance p as the function of coordinate & and time 7 can be found by integration of the
equation (24) with the use of the solution (32).

4. Coefficients of the governing equation

To study numerically how stationary initial state influences the coefficients of governing equation (27),
we considered a horizontal pipeline with friction coefficient A = 0.0092, diameter 1.338 m and length
120km and chose typical values for pressure P; = 6.65 MPa and flow rate J; = 483.95kg/m?s. On this
basis, supposing gas temperature T' = 300 K, we calculated the typical mass density p; = 50.52kg/m?,
flow velocity V; = J;/p = 9.5798 m /s, sound velocity a; = 337.62m/s, time period t; = 355.43s. Mach
number Ma = V;/a; = 0.0284, and friction coefficient 8 = 413.46.

We determine the initial stationary regime by values of the pressure P, at the inlet of the pipeline
and mass flow rate Jy. Corresponding dimensionless variables are p;, and jy. To calculate the coef-
ficients of the governing equation as functions of coordinate &, we solve the initial Cauchy problem
for the nonlinear differential equation (26) with the initial condition (22)1: polc—_; = pin. Using the
solution pg = po(€), we calculate the parameters a? = a2(¢) and Mag? = Mag?(€)

a’ = (Z (ptpo, T') + prpo 0z /Op ’p:ptﬁ0> RyT/a;*,  Mag* = Ma®jo*/pg. (33)

In Fig. 1, we can see how dimensionless density py and normalized sound speed ag are dependent
on coordinate £ along the pipeline (plots a and b correspondingly). The calculations, results of which
are presented in Fig. 1, were made at value p;, = 1 for various values of the dimensionless mass flow
density jo = 0.6, 0.8, and 0.9 (curves 1, 2, and 3 correspondingly).

We call a stationary regime, determining by the pair (pin,jo), as critical if the solution pg(&)
of initial-value problem for the equation (26) with the initial condition p| =1 = Pin satisfies the
condition ;30|§:1 = 0, i.e. if the value of mass density (and pressure) at the outlet becomes zero. At
pin = 1, the critical value of dimensionless mass flow density jy lays between 0.9068 and 0.9069. Hence
the regime determined by the pair (pin, jo) = (1.0,0.9) is very close to critical.

As we see, the variability of the functions py(§) and ag(§) increases with increasing jo. The acoustic
speed is less variable — it varies in the range about 15% at the greatest studied value of the flow density
jo = 0.9. At jo = 0.6, the mass density varies in the range about 15%, whereas the sound velocity
changes its values in the range about several percents. At jo = 0.9, the mass density (and pressure)
value at the outlet is several times less against it value at the inlets.

The parameters a3 and Ma? are constituents of the second coefficient of the equation (28). The
figure 2 illustrates how they change along the pipeline. The curves 1, 2, and 3 in this figure were
calculated for different values of dimensionless mass flow jo = 0.6, 0.8, and 0.9. The left vertical axis
in Fig. 2b refers to the curves 1 and 2, the right one — to the curve 3.
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Fig.1. Coordinate dependences of mass density (a) and acoustic speed (b) of initial stationary regime at
different values of mass flow.
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Fig. 2. Coordinate dependences of the constituents of the second coefficient of Eq. (27).

As we see, the term Mag? is small against d% — it affects the values of the second coefficient only
in its third or second decimal digit (depending on the value of mass flow).

The curves in Fig. 2b give an idea of the variability of the third coefficient of the equation (28).

The forth coefficient of the equation (27) is dependent on the parameters dMagy/d§ = Ma - dvg/d§
and 8- Mag = - Ma-vg. To calculate the first of them, we determine the derivative dug/9¢ in term
of solution py = po(&) of the equation (17). Using the equation (16), we obtain

d?)() . Ma2,8j03

— = ooz . (34)
¢ agpy — Ma*jgpo

Analyzing (35), we can conclude that OMag/0¢ is a quantity of order Ma> - 3, whereas 3 - Mag =
B Ma - v is a quantity of order - Ma. Since [ is much greater than the unity and Ma = o(1), the
parameter OMag/0¢ is much less than the parameter 5 - May.

The figure 3 shows how the constituents of the fourth coefficient vary along the pipeline. Here the
left vertical axis refers to the curves 1 and 2, the left one — to the curves 3.

Examining the plots, we can verify the validity of the above conclusion about the ratio of the values
OMag/0¢ and B - May.
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Fig. 3. Coordinate dependences of the constituents of the fourth coefficient of Eq. (27).

We determine the derivative dag/d¢ = da?/0p| 5,dPo/d€ with the use of the relation (12) and the

equation (26):
da? 1 0z 2 Ma?Bpgjd
=0 _ e S (35)
P=pt PO

e 0°z
PtPO ——
P=ptP0O 9

& w a3pg — Ma?j3
To find the derivative OMag? /¢, we express Ovg? /06 = 2090vy/O¢ in terms of mass density po.
Using the equation (35), we obtain
dv02 2Ma2ﬁj04

= . 36
¢ agpy — Ma?j3pg 0

dag/d¢ : : : dMa3/d¢ dMag/d¢
4x107
0.010 | , 0.02
3x107F
2x107°f
0.005 | 0.01
1x107°F
: 0 0
-1 205 0 0.5 ¢ -1 ¢
a b
“BMa%
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08"
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C

Fig. 4. Coordinate dependences of the constituents of the fifth coefficient of Eq. (27).
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On this basis, using the solution of the initial-value problem, determining the initial stationary
regime, we can calculate the constituents of the fifth coefficient of the equation (27) as functions of the
coordinate £. The results are presented in Fig. 4. They were obtained at p;, = 1 and different values
of mass flow rate jo = 0.6, 0.8, 0.9 (curves 1, 2, 3 correspondingly). The curves 2 and 3 in Figs. 4b
and 4c refer to the left vertical axis, the curves 3 — to the right one.

It is follows from the graphs that the variability of the constituents of the fifth coefficient depends
on the value of mass flow density: at constant p;, — it rises with increasing of mass flow rate. The
constituents d&% /d¢ and OMagy?/O¢ are small parameters as compared with 3 - Mag?.

5. Damping of fluctuations in the moving gas

Let us consider the problem of attenuation of the local density fluctuation p = p(§, 7), which arose in
the moving gas during the initial stationary regime. The regime is determined by the inlet density p;y:
ool ¢—1 = Pin and the mass flow rate density jo. We model the fluctuation by initial conditions, taking
them in the form

Plmo=¢©),  il,_o=0, (37)

where () is a given function.
We suppose the disturbance does not affect the mode of pipeline operation imposing the homoge-
neous boundary conditions:

Plesr = 0. (39)

The fluctuation disturbs the initial stationary flow, but we suppose the deviations of the density
p(&,7) and flow rate j(£, 7) are small as compared to initial stationary parameters g and jg. It enables
us to use the above developed model to study disturbance propagation in the moving gas. To do this
we solved the problem (24), (25), (37), (38) numerically with the use finite difference method. We
considered a local disturbance, which has arose in a small vicinity of a point £ = &y € (—1,1). For this
we putted in (37)1 (&) = f (€ — &), where f(&) is a single pulse taken in the form

_ cos’r—é7 €] < d,
ﬂ@_{o,m d< ¢ <1 (39)

Here d > 0 defines the width of the pulse.

As the problem is linear, we normalize the function p = p(&,7) on its maximal value at the initial
time moment 7 = 0.

Some results of conducted numerical studies are presented in Figs. 5 and 6. The plots in the figures
illustrate how mass (Fig.5) and flow rate (Fig.6) densities of the fluctuation decay in the pipeline
depending on the point of its originating and the value of initial mass flow rate jy. Positions (a),
(c) and (e) of the figures refer to jo = 0.6, position (b), (d) and (f) refer to jo = 0.9. Plots on the
positions (a) and (b), (c) and (d), (e) and (f) on the both figures were calculated for different points of
the fluctuation origination correspondingly. Curves numbers 1 to 6 correspond the dimensionless time
moments 0.08, 0.13, 0.20, 0.33.

Analyzing the plots, we can see that behavior of the density fluctuation depends on the place of its
origination and on the initial (undisturbed) flow rate.

It can be explained by peculiarities of coordinate dependences of the coefficients of the equation (27),
particularly — the terms 3 - Mag and 3 - Mag? in fourth and fifth coefficients correspondingly. These
terms are dominant in their coefficients, which determine the dissipativity of the system. As show the
plots in Figs. 4 and 5 the dissipativity of system rapidly increases with increasing of the initial flow rate
jo and with approaching to the pipeline outlet £ = 1. Inhomogeneity of the coefficients also increases
at that.
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Fig. 5. Coordinate dependences of mass density of local fluctuations originating in vicinities of various points
&o for two different values of the initial mass flow rate jy and fixed value of initial inlet density j;, = 1.

At low initial flow rate (jo = 0.6) the disturbance originated close to the inlet (§, = —0.8) pos-
sesses typical features of a wave process with attenuation (see Figs.5a, 6a). In this domain of the
pipeline, the flow velocity, dissipativity and inhomogeneity are rather small. That is why dying down
pulses, propagating upstream and downstream of the flow from the point of fluctuation originating,
are practically identical.

Looking at the curves of Fig. 5¢, we can observe some asymmetry of the field pattern — the pulses
propagating downstream attenuate faster than those propagating upstream.
velocity and inhomogeneity of the coefficients near-by the midpoint of the pipeline are greater than
near the inlet. A stronger asymmetry of the field pattern is observed in vicinity of the point £, = 0.8
(Figs. 5e and 6Ge).

It is because the flow
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Fig. 6. Coordinate dependences of mass flow rate density of local fluctuations originating in vicinities of various
points &y at two different values of the initial mass flow rate jo and fixed value of initial inlet density j;, = 1.

The asymmetry of wave pattern goes up with increasing of initial flow rate from jo = 0.6 to jo = 0.9.
We can observe this in Figs. 5b, 6b and 5d, 6d where the pulses, initiated by fluctuations, originated
near-by the inlet and at the middle point of the pipeline, are shown. As we can observe, the pulses,
propagating down- and upstream from the origination points, demonstrate similar behavior typical for
wave process with attenuation. But the asymmetry in these cases is stronger than at jo = 0.6. As the
initial stationary regime (p;, = 1, jo = 0.9) is very close to critical, the coefficients and their gradients
increase drastically near-by the outlet of the pipeline. This radically changes the field pattern (see
fig. 5f) — it losses the features typical for wave process and obtain the features typical for diffusive
process.
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6. Conclusions

Vibrations of pressure and flow rate in operational regimes of main pipelines emerge because of pulsa-
tion of the compressors operation, variation of gas flow parameters, caused by the turbulence occurring
near-by local hydraulic resistances, random fluctuations of temperature, etc. The effect of these fluc-
tuations on the efficiency of gas transportation is not so important, but they reduce the sensitivity
of known leak detection methods based on recording pressure pulses that occur when the pipeline is
depressurized.

A linearized mathematical model for propagation of a small disturbance of pressure and flow rate in
the moving gas of a long pipeline has been developed. It describes small deviations of field parameters
from a given initial unsteady operational regime. The model is based on the nonlinear one-dimensional
model of gas dynamics in the isothermal approximation. It includes two coupled equations, the co-
efficients of which are dependent on the field parameters of the initial (undisturbed) regime. As the
parameters of initial regime are known, one can calculate the coefficients as functions of the coordinate
and time. Using the developed model, one can formulate boundary-value problems for study of origina-
tion, propagation and decaying of small disturbances in the moving gas depending on the parameters
of initial regime.

In the case of stationary initial processes, the coefficients are dependent only on the coordinate.
For this case the developed model was reduced to one governing equation of hyperbolic type. Under
certain assumptions about the initial stationary process, the equation can be reduced to forms that
allow solutions in the form of a traveling wave.

The coeflicients of obtained hyperbolic equation were studied numerically depending on the pa-
rameters of initial stationary process. It was established that the values of the coefficients and their
gradients increase with approaching to the outlet of the pipeline and with rising of the flow rate of the
initial stationary regime.

In the frame of the model the problem of propagation and decaying of the disturbance initiated by
a local fluctuation of pressure was formulated. The numerical solution obtained with the use of finite-
element method, enabled to study features of the wave fields, initiated by local fluctuations emerging
in various zones of the pipeline — near-by its inlet, at the midpoint of the pipeline and near-by its
outlet. The influence of the value of the mass flow rate of initial stationary regime on the wave field
was also studied. It was established, in particular, that the pattern of the wave field can radically
change when the initial regime is close to the critical.

The developed model and obtained results of numerical study can be used to quantitative analysis
of oscillations of operational regimes of the long-distance pipeline, which are caused by random stream
fluctuations and /or operational pulsation of the compressors. The model can be also useful to numerical
study negative pressure waves, emerging in the pipeline during its local depressurization. It can be
used under development of mathematical tools and algorithms for methods of leak detection.
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MaTtemaTniHe mMofenntoBaHHS MOLUIUPEHHSI MaJioro 30ypeHHs1 TUCKY B
ra3oBomMy noToui AOBroro Tpyoonposopy

Yexypin B.', Xumko O.2

L Inemumym npukaadnus npobaem mevanixy i mamemamusy im. . C. ITidempuzava HAH Yrpainu
eys. Hayxosa, 3-6, 79060, Jlveis, Yrpaina
2 Haugonarvnuti ynieepcumem «JIveiscoka noaimernixkas
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

3anponoHOBAHO MATEMATHIHY MOJIE/Ib TONTUPEHHS MAJIOTO 30YPEHHST TUCKY, 1110 BUHUKJIO
B IIOTOIIi Ta3y JA0Broro tpyoomnposomy. Momenb MicTUTh /1Ba PiBHAHHS 3 YACTUHHUMHU I10-
XigHIMHI, KoeDIIEHTH IKUX BUPAXKAIOTHCS Y€PEe3 MapaMeTp NOIaTKOBOrO (He30yPEHOro)
IIOTOKY — T'YCTUHY Macu i MacoBuil moTiK. ¥ pa3i cTarioHapHOr0o HEe30yPEHOTO MOTOKY
KoedilieHTH 3aJiexKaTh JIMIIE BiJ KOOPAUHATH. Y MeXKaX Po3pobJIeHOl MOJE/ YhCeJIHLHO
JOCJIITI?KEHO BILJIUB ITapaMeTPiB MOYATKOBOI'O CTAIIIOHAPHOTO IIPOIeCy Ha MOMAPEHHS 1M-
IIyJIbCIB 30ypEHHs TUCKY 1 OTOKY, 30yI2KeHnX (DIIYKTYAII€I0 TUCKY, 0 BUHUKJIA B TOTOII
Pozpobiieny mosiesb MOXKHA 3aCTOCYBATH JJIs KiJBKICHOTO aHAJII3y MaJuX KOJUBAHb pe-
JKAMIB MaricTpajbHUX Ia30IPOBO/IIB, CIPUYMHEHNX BUIIAIKOBUME (DJIYKTYAIlisIMU IOTOKY
Ta,/9u MyJbcalisiMi KoMIpecopis. Mojiesib Moxke OyTH KOPHUCHOIO Jjisi JOCJIJIPKEHHST 110~
MIUPEHHS XBUJIb BiJl €MHOTO IIepera/ly TUCKY, SKi BUHAKAIOTh y TPyOOIPOBO/I i 9ac fioro
JIOKQJTbHOI PO3TrepMeTH3allil.
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36ypeHs.
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