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1. Application of multi-parameter spectral problems

Consider an operator equation
T (λ)x = f (1)

where T (λ) : Rn → L(H) is an operator function, L(H) is a set of linear operators, that act in a Hilbert
space H. The function T (λ) depends on two or more spectral parameters λ = (λ1, λ2, . . . , λn), n > 2,
in a linear or a nonlinear way.

The analysis of solvability of the equation (1) involves a problem of finding such values of the
parameters λi, i = 1, 2, . . . , n, that there exists a non-trivial solution of the following homogeneous
equation:

T (λ)x = 0 (2)

Such problems are known as two- or multi-parameter spectral problems, and they arise in different
areas of scientific and engineering applications, in some boundary-value problems, and in the problems
of applied mathematics and functional analysis.

In general, the applied problems which lead to the multi-parameter spectral problems, can be
divided into three main categories [1]. The first one, the widest from the point of view of practical
application, consists of the oscillation analysis problems. Usually, these are the symmetric generalized
eigenvalue problems that derive from this category. The second category is the class of stability
analysis problems. Such problems generate the spectral problem for non-symmetric matrices. The
third category includes different problems of physics, related to the quantum mechanical oscillations.

A wide range of matrix spectral problems occurs in numerical modeling of chemical reactions.
An interesting class of such reactions is one, where the periodic reactions arise spontaneously. A
known example of such type of reaction is the Belousov-Zhabotinski reaction, described by so-called
Brusselator model [1].

As an example of two-parameters spectral problem, let us consider the following case [2]:

A1x1 = λB1x1 + µC1x1,

A2x2 = λB2x2 + µC2x2,
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198 Yaroshko S., YaroshkoO.

where the given real- or complex-valued matrices A1, B1, C1 are of dimension n1×n1, and the similar
matrices A2, B2, C2 are of the size n2 × n2.

The problem consists in finding the eigen pairs ((λ, µ), x1 ⊗ x2) such that the eigenvectors x1 and
x2 have a unit norm.

Obviously, this two-parameters eigenvalue problem can be easily extended to a multi-parameter
case. The multi-parameter problems of this type arise in a wide range of applications, for example in
the problems of mathematical physics, when applying a method of splitting the variables to solve some
boundary problems.

One of the first applications of a multi-parameter eigenvalues problem can be found in the Sturm-
Liouville theory [3]. The multi-parameter analogue of the classic Sturm-Liouville problem can be
formulated as follows. There are given k differential equations:

y′′r (xr) +

(

k
∑

s=1

λsprs(xr) + qr(xr)

)

yr(xr) = 0. (3)

It is required to find k functions yr(xr), ar 6 xr 6 br such that they satisfy the differential
equations (3).

For the boundary problem let us define the parameters λ1, . . . , λk such that each equation (3) has
a non-trivial solution satisfying the boundary conditions:

yr(ar) = yr(br) = 0, r = 1, . . . , k. (4)

In order to ensure that all the eigenvalues are real, an extra requirement is added: the parameters
prs, qr must be real, and the following conditions are fulfilled:

det {prs (xr)}
k
r,s=1 > 0, ar 6 xr 6 br, r = 1, . . . , k.

An interesting example of boundary spectral problem for a differential equation is one for the
following linear differential equation [4]:















k
∑

j=0

aj(µ, x)y
(j)(x) = λ

k−1
∑

j=0

bj(µ, x)y
(j)(x), x ∈ [a, b]

(

Ljy
)

(a) · | ·
(

M jy
)

(b) = 0, j = 1, . . . , k

(5)

where aj(µ, x), bj(µ, x) are the real-valued functions of µ ∈ (µa, µb) ⊂ R, and Lj ,M j are the linear
differential operators. The most known example of the problem (5) is the differential equation of
Mathieu.

The multi-parameter eigenvalue problem is widely used in solving the engineering problems, for
example, the induction machine initial conditions problem and the power flow equation [5]. Based on
the fact that the eigenvalue problem incorporates a lot of non-linearities into the linear equations, the
engineering models can be reformulated as a spectral problem. Indeed, the classic eigenvalue problem
Ax = λx includes only one non-linearity –– the multiplication of the eigenvector x to the eigenvalue λ.
The multi-parameter spectral problem with n parameters includes n multiplicative non-linearities.
Thus, the formulation of the engineering problems in terms of an eigenvalue problem is interesting
from the theoretical point of view. Moreover, it has an important impact for the practical usage,
because this allows one to apply the numerical method for spectral problems to find the solution of
the original engineering problem.

Certainly, the presented list of applications of the spectral problems is not complete. Moreover, the
number of practical applications of the eigenvalue problems constantly grows.
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2. Numerical methods for multi-parameter spectral problem

A lot of numerical methods for multi-parameter spectral problem are known. Some of them provide
just one approximate eigenvalue, while other methods calculate all the eigenvalues of the given matrix.
The first type of methods are the direct methods, and they can be found in the works of Bloom, Bohte,
Browne, Sleeman. The specificity of these methods is that they are effective only for the matrices of
small dimensions. The second type of methods are the continuous methods, which are less expensive
than the direct methods, but still not effective enough even for the matrices of small sizes.

Frequently, on practice it is needed to find only a couple of relevant eigen pairs. Those can be, for
example, the pairs corresponding to the biggest eigenvalue. For such kind of multi-parameter problems
there were provided some specific methods of subspace, which are based on applying the subspace
approach in combination with a dense method. For example, as one type of the dense methods, the
harmonic extraction methods [2] can be. These methods are designed for multi-parameter spectral
problem so, that they find the eigen pair in the specific subspace, and the found approximation is as
close to the exact eigen pair, as possible.

Another wide range of numerical methods unify the methods of spectral approximation [1]. A lot of
approximation algorithms of the matrix spectrum combine different mathematical tools: the projection
method, the acceleration Chebyshev method, the offset and invert strategies, etc. As soon as one eigen
pair is found, arise the question of calculation of the next pair. This goal can be achieved by using the
standard technique, known as the deflation technique.

One of the oldest methods of solving the eigenvalue problems is the power method. The idea of
power method is to generate the sequence of vectors Akv0 , where v0 is a non-trivial zero approximation
vector. The advantage of this method is its simplicity. However, the convergence rate can be too slow
in some cases.

In order to improve the convergence rate of standard methods, different techniques can be ap-
plied. For example, the polynomial filtering methods are used to accelerate the convergence of classic
numerical methods for eigenvalues and eigenvectors. These methods use the polynomial iterations
zq = pq(A)z0, where pq is a polynomial of power q, constructed based on the information about the
distribution of eigenvalues of the matrix A.

The main goal of the polynomial filtering is to enforce the projection scheme by using the starting
vectors or the starting subspaces so that to decrease the number of their components in the undesired
parts of spectrum, versus the components in the desired parts of spectrum.

Suppose that there is provided the Hermite matrix A with the eigenvalues λ1 > λ2 > . . . > λn and
the corresponding orthogonal eigenvectors u1, . . . , un.

If we would be interested in the major eigenvalue λ1, then we could apply the power method, under
the assumption that |λ1| > |λi| for i > 1. This means that to calculate the eigenvalues there will be
used the polynomial pq(t) = tq. But it is interesting to use some other polynomial — the one which
will allow to improve the convergence of the method. In other words, we’re interested in the iteration
like xq = pq(A)x0.

Unfolding the eigenvector x0 by the eigen basis results in

x0 =

n
∑

i=1

γiui.

Consequently,

xq = pq(A)x0 =

n
∑

i=1

pq(λi)γiui

= pq(λ1)γ1u1 +

n
∑

i=2

pq (λi) γiui (6)
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In case it is needed to find the first eigen pair, we can require that in (6) the component pq(λ1)γ1
is bigger than the other components pq(λi)γi, i > 1. If this property is true, it will be needed to scale
the polynomial pq, for example, pq(λ1) = 1. On practice the value λ1 is not known, but the scaling is
done based on the approximation λ̃1.

The parameters γi usually are not known either. Thus, we are looking for the polynomial pq, whose
absolute maximum value is the smallest one between the values of the polynomial in the points λi,
i > 1. As far as the values λi are unknown, a more realistic task will be to find the polynomial pq,
whose value in the point λ1 is equal to 1, and the absolute maximum value on the interval [α, β] of
all other eigenvalues is as small as possible. The mathematical formulation of this problem can be
described as follows:

min
{

pq∈Pq

pq(λ1)=1

max
t∈[α,β]

|pq(t)| .

The optimal polynomial is the scaled Chebyshev polynomial of first kind of the power q:

Cq(t) ≡ Cq

(

1 + 2
t− β

β − α

)/

Cq

(

1 + 2
λ1 − β

β − α

)

.

Using this polynomial it is easy to construct the final formula of calculating the next approximation
of the eigenvector

xq =
⌢

Cq(A)x0.

The major part of algorithms of solving the spectral problems involves the projection technique.
The projection process can be the base of the method as well as just a part of a complex algorithm,
needed to increase the efficiency of this algorithm. A simple example of the need of applying the
projection technique is the case, when the power method is applied to solve a spectral problem with
complex-valued dominant eigenvalue and real-valued matrix [1].

There is an entire class of methods for the spectral problems with the matrices of big dimensions.
The simplest one in this class certainly is the method of subspace iteration, which can be presented as
a generalization of the power method.

Originally, the idea of the method of subspace iteration has been developed by Bauer, and was
known as treppeniteration (staircase iteration). Suppose there is provided a system of m vectors that
form the matrix of size n×m: X0 = [x1, . . . , xm]. The next step is to calculate the matrix

Xk = AkX0

for a certain power k.
In most cases, if we normalize, as in the power method, the columns vectors all separately from each

other, they will all converge to the same eigenvector — the one, which corresponds to the dominant
eigenvalue. Thus, the system Xk will step by step loose its linear independency. The idea of Bauer’s
method is to restore the linear independency of these vectors by using the LR or QR factorization.

It is worth mentioning the techniques based on the methods of projection to the Krylov subspaces
— another important example of methods for the problems with the matrices of big size. The Krylov
subspaces are formed by the iterations of the simple power method. So, if being more precise, these
methods provide a possibility to calculate the approximate solution of problem in the following sub-
space:

Km ≡ span
{

v,Av,A2v, . . . , Am−1v
}

.

The known examples of this class of methods are the Lanczos algorithms and the Arnoldi methods.
An interesting approach to solve the multi-parameter spectral problem is to calculate the curves of

eigenvalues of the matrix of such problem. Starting with a simple pair of eigenvalue and eigenvector, it
is computed the curve of eigenvalues to which belongs the starting eigenvalue. After that, by using the

Mathematical Modeling and Computing, Vol. 4, No. 2, pp. 197–205 (2017)



On numerical methods of finding an approximate solution of multi-parameters eigenvalue problems 201

continuation methods, the other curves of eigenvalues are computed. This method is used, for example,
to find the approximate solution of the boundary spectral problem for the differential equation (5).

Continuing the discussion about the eigenvalue problems for the differential equations, it is inter-
esting to mention that there is quite a lot of spectral problems deriving from the discretization of
multi-parameter Sturm-Liouville problems for regular differential equations. Naturally, there is a set
of methods developed for this type of problems. Some new algorithms are presented in [6]. They are
based on the theorem of the matrix trace and on the differential theory of the QR decomposition.

The partial case of multi-parameter eigenvalue problems are the two-dimensional problems:

A1x = λB1x+ µC1x,

A2y = λB2y + µC2y,
(7)

where Ai, Bi and Ci are real-values symmetric matrices of size ni × ni, i = 1, 2, λ, µ ∈ R
1, x ∈ R

n1 ,
y ∈ R

n2 .
The problems of this type are the matter of analysis widely presented in the literature. It is

interesting to mention that most of the existing numerical algorithms for the two-parameter eigenvalue
problems [7, 8] require the problem to be right-defined.

The problem (7) is called right-defined (see, [9, 10]), if the following condition is fulfilled:

D(x, y) ≡

∣

∣

∣

∣

xTB1x xTC1x
yTB2y yTC2y

∣

∣

∣

∣

> γ > 0

for all the vectors x ∈ R
n1 , y ∈ R

n2 . If the matrices Ai, Bi and Ci are right-defined and symmetric, it
means that there exist linearly-independent eigenvectors of size n1 + n2 of the problem (7).

For the two-parameter spectral problem (7) it is possible to construct an associated eigenvalue
problem in the form of coupled system of equations. This require to build the following matrices of
the size N = n1n2 in the tensor product of the spaces V = R

n1 ⊗Rn2 :

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = A1 ⊗ C2 − C1 ⊗A2,

∆2 = B1 ⊗A2 −A1 ⊗B2.

As far as the tensor product of the symmetric matrices is symmetric, the matrices ∆i, i = 0, 1, 2
are symmetric. From the fact that the problem (7) is right-defined, it follows that ∆0 is an inverse
matrix, and the matrices ∆−1

0 ∆1, ∆
−1
0 ∆2 commutate, (see [11]). Such two-parameter problems are

called non-singular, and they are equivalent to the associated coupled problem

∆1z = λ∆0z, ∆2z = µ∆0z (8)

for z ∈ V , z = x⊗ y, [12].
The coupled problem (8) for the right-defined problem (7) can be solved by using standard numerical

methods — for example, the method of simultaneous diagonalization of the associated matrices [8,13].
This method is based on the fact that if there exists a complete system of eigenvalues in the space V ,
then there exists a matrix X such that XTX = I, and

XT∆−1
0 ∆1X = Λ = diag {λ1, λ2, ..., λN} ,

XT∆−1
0 ∆2X = M = diag {µ1, µ2, ..., µN} .

This ensures that the eigenvalues are arranged in a specific order and, thus, allows us to retrieve the
required pairs (λi, µi). Some numerical methods are developed for the problems, where the matrices
Bi and Ci are strictly positive or negative: the two-dimensional bisection method by X. Ji [14], or the
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M.Shimasaki’s method of continuation by parameter [15, 16]. The idea of the continuation method is
based on the construction of the operator-function

H : Rn1 × R
n2 × R× R× [0, 1] → R

n1 × R
n2 ×R× R,

H (x, y, λ, µ, t) ≡









(1− t)W1x+ tA1x− λB1x− tµC1x
(1− t)W2y + tA2y − λB2y − tµC2y

1
2

(

1− xTx
)

1
2

(

1− yT y
)









, (9)

where the Wi, i = 1, 2 are some symmetric matrices of size n1 ×n2 such that the following eigenvalues
problems

W1x = λB1x, (10)

W2y = µC2y (11)

have n1 and n2 different eigenvalues.
Obviously, the solution of the problem H(x, y, λ, µ, t) = 0 is also the solution of the two-parameter

problem

(1− t)W1x+ tA1x = λB1x+ tµC1x,

(1− t)W2y + tA2y = tλB2y + µC2y,
(12)

which coincides with the solution of the problem (7) if t = 1, and with the solution of problem (10)–(11)
if t = 0.

Since the problem (12) is right-defined and has N real-valued eigenvalues for each t ∈ [0, 1], there
exists N continuous curves, which can be parameterized by using the parameter t:

υi (t) = (xi (t) , yi (t) , λi (t) , µi (t) , t) , i = 1, 2, . . . , N,

such that υi(t) ∈ Γ, where

Γ = {(x, y, λ, µ, t) ∈ R
n1 × R

n2 × R× R× [0, 1]|H(x, y, λ, µ, t) = 0}

is the set of solutions of the operator-function (9).
To conclude, the continuation method for the construction of the curves υi(t), i = 1, 2, . . . , N , from

t = 0 till t = 1 can be implemented by the following algorithm1 [17].

Algorithm 1 The continuation method for a two-parameters spectral problem

1: In order to get the zero approximations for the eigenvalue (λ(0), µ(0)) and the eigenvector (x(0), y(0)), solve
the problem (10)–(11).

2: Put t = 0 and select the starting value of the step h.
3: Choose δ to be a constant value, and ε to be the precision value.
4: while t > 1− δ
5: Apply some known numerical method to calculate the approximation of the curve υ(t+h), by using υ(t)

as starting approximation.
6: Calculate M = max

(

‖x(t+ h)− x(t)‖
2
, ‖y(t+ h)− y(t)‖

2
)

.
7: if M > ε then

8: Calculate h = 2h
3

.
9: else if M < ε then

10: Calculate h = 3h
2

.
11: Calculate t = t+ h.
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The main principle of the continuation method is based on the property that if the parameter t
takes gradual values from the interval [0, 1], then υ(t) always is a good starting approximation for
υ(t+ h).

In order to be able to gradually build the curve from t = 0 till t = 1, in the step 5 of the Algorithm1,
it is necessary to use a locally convergent numerical method, which would converge to the eigenvalue
and the eigenvector of the problem (7). The Newton method can be used as such method. It is applied
to the non-linear two-parameter system

F (u) ≡









A1x− λB1x− µC1x
A2y − λB2y − µC2y

1
2

(

xTx− 1
)

1
2

(

yT y − 1
)









= 0, u = (x, y, λ, µ)T .

Applying the Newton method to the equation F (u) = 0, we obtain

F ′(uk) (uk+1 − uk) = −F (uk) (13)

where

F ′(u) =









A1 − λB1 − µC1 0 −B1x −C1x
0 A2 − λB2 − µC2 −B2y −C2y
xT 0 0 0
0 yT 0 0









.

We have to solve the following linear system, according to a step of the Newton method (13):









A1 − λkB1 − µkC1 0 −B1xk −C1xk
0 A2 − λkB2 − µkC2 −B2yk −C2yk
xTk 0 0 0
0 yTk 0 0

















∆xk
∆yk
∆λk

∆µk









=









− (A1 − λkB1 − µkC1) xk
− (A2 − λkB2 − µkC2) yk

1
2

(

1− xTk xk
)

1
2

(

1− yTk yk
)









(14)

and, then, after calculating the new approximations,

xk+1 = xk +∆xk,

yk+1 = yk +∆yk,

λk+1 = λk +∆λk,

µk+1 = µk +∆µk,

from the (14) we obtain

(A1 − λkB1 − µkC1)xk+1 = ∆λkB1xk +∆µkC1xk, (15)

(A2 − λkB2 − µkC2) yk+1 = ∆λkB2yk +∆µkC2yk, (16)

xTk xk+1 =
1

2

(

xTk xk + 1
)

,

yTk yk+1 =
1

2

(

yTk yk + 1
)

.
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For simplicity let us introduce the denotations:

νk = (A1 − λkB1 − µkC1)
−1B1xk,

wk = (A1 − λkB1 − µkC1)
−1C1xk,

pk = (A2 − λkB2 − µkC1)
−1B2yk,

qk = (A2 − λkB2 − µkC2)
−1C2yk,

(17)

and multiply the expressions (17) by xTk and yTk .
This way, we obtain the linear system

[

xTk νk xTkwk

yTk pk yTk qk

] [

∆λk

∆µk

]

=

[

1
2

(

xTk xk + 1
)

1
2

(

yTk yk + 1
)

]

(18)

for ∆λk and ∆µk. By solving this system, we calculate the values xk+1 and yk+1 from (15)–(16).
To finalize, let us present the algorithm of the Newton method for the right-defined two-parameters

spectral problem.

Algorithm 2 The Newton method for the two-parameters problem

1: Select the starting approximations λ0, µ0 and x0, y0.
2: for k = 0, 1, . . .
3: repeat

4: Calculate the vectors (17).
5: Calculate ∆λk and ∆µk from the linear system (18).
6: Calculate the vectors

x̃k+1 = ∆λkνk +∆µkwk, xk+1 = x̃k+1/‖x̃k+1‖,

ỹk+1 = ∆λkpk +∆µkqk, yk+1 = ỹk+1/‖ỹk+1‖.

7: Calculate the eigenvalues
λk+1 = λk +∆λk, µk+1 = µk +∆µk.

8: until
(

‖(A1 − λkB1 − µkC1)xk+1‖
2 + ‖(A2 − λkB2 − µkC2) yk+1‖

2
)1/2

> ε

We made a short overview of the practical applications of the multi-parameter spectral problem
and of some most known numerical methods and approaches to this problem. This list is not complete
as the analysis works are still ongoing and the new, more efficient methods, are being developed.
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Огляд чисельних методiв вiдшукання наближеного розв’язку
багатопараметричних задач на власнi значення

ЯрошкоС.1, ЯрошкоО.2

1Нацiональний унiверситет «Львiвська полiтехнiка»

вул. С. Бандери, 12, 79013, Львiв, Україна
2Львiвський нацiональний унiверситет iменi Iвана Франка

вул. Унiверситетська, 1, 79000, Львiв, Україна

Метою цiєї роботи є огляд наявних чисельних методiв та технiк розв’язування бага-
топараметричної задачi на власнi значення. Подано також вiдомi приклади застосу-
вання багатопараметричної спектральної задачi.
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