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1. Introduction

Many physical processes (e.g. diffusion, heat flux, electrostatic field, perfect fluid flow, elastic motion
of solid bodies, groundwater flow, etc.) are modeled using boundary value problems for Laplace
equation [1-3]|. The powerful tools for solving such problems are potential theory methods, especially
in the case of tired boundary surface or complex shape surface [4-6]. These methods are a convenient
for calculating desired solution in small domains [7,8]. In number of cases, application of potential
theory methods requires solving Fredholm integral equation of the first kind. In particular, one of the
cases is solving Dirichlet problem in the space of functions with normal derivative jump on crossing
boundary surface using simple layer potential [9,10]. When solving Neumann problem in the space
of functions with jump on crossing boundary surface using double layer potential, we also proceed to
integral equation of the first kind [11,12|. The need to solve integral equations of the first kind also
arises when the sum of simple and double layer potentials is used to solve the double-sided Dirichlet
or Neumann problem [13] or double-sided Dirichlet-Neumann problem [14] in the space of functions
that, same as their normal derivatives, have jump on crossing boundary surface. Many systems of
integral equations for the simple and double layer potentials that are equivalent to mixed boundary
value problems for Laplace equation, also contain integral equations of the first kind [15, 16].

In general, researches of projection methods convergence mainly focus on solving integral equations
of the second kind [4,6,17|. Defining well-posed solvability conditions for integral equations of the first
kind that are equivalent to boundary value problems for Laplace’s equation in Hilbert spaces [18-20]
allows us to use projection methods for numerical solution of such equations, thus avoiding resource-
consuming regularization procedures [21-23]. For detailed review of numerical methods for solving
integral equations, please see [2-4,6|. In [24,25], convergence conditions are defined for the series of
projection methods for solving Fredholm integral equation of the first kind for simple layer potential
that is equivalent to three-dimensional Dirichlet problem for Laplace equation while approximating
desired potential density with complete systems of orthonormal functions. However, if boundary
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Finite element approximations in projection methods for solution ... 75

surface has a complex shape usage of such approximations poses considerable difficulties for practical
implementation of numerical methods [7]. In this case, finite elements of different types should be used
for approximation of desired potential densities [26,27]. Derived approximations, among other things,
allow us to create effective algorithms for singularities removal in kernels and desired integral equation
densities [28].

The purpose of the paper is to define convergence conditions of projection methods for approximate
solution of Fredholm integral equations of the first kind by the example of integral equation for the
simple layer potential that is equivalent to Dirichlet problem for Laplace equation using approximation
of desired potential density with systems of finite elements of different types and orders.

2. Approximations of Hilbert spaces and the basic convergence theorem

Consider the operator equation
Au=f, welU, fe€F, (1)

where U and F' are the Hilbert spaces, A € L(U, F'). To solve equation (1) we apply the projection
method
QNAPNu=QNf. (2)

In formula (2) Py and Qn are projection operators from U and F' onto closed finite dimensional
subspaces Uy € U and Fy € F accordingly. Define operators Py and @Qu in the following way.
Denote by 7y the restriction operator from the space U to the finite dimensional subspace Vy C RV
and introduce in Vi the extension operator py as an isomorphism from Vy onto subspace Uy € U.
The norm in Vy is determined by the relation HUNHVN = |[pnun||y, un € V. Then Py = pyry and
we can determine the triple (Viv,pn,7n) as approximation of the space U. Such approximation are
called convergent if

li — =0.
i flu = paryully

Denote by sy the restriction operator from the space F to the finite dimensional subspace ® C RV,
The extension operator gy from ®x onto subspace Fiy = AUy C F introduce by the formula

anfn = Apnun, fy € Pn.

The norm in @y is determined by the relation || fyllg, = lavfnllp: fv € v Then Qn = gnsn
and we can determine the triple (®x, qn, sn) as approximation of the space F. Thus, the solution of
problem (2) is reduced to solution of the system of linear algebraic equations

Anun = fy, Any =snApn, An € L(Vy,Pn), fy=sn/[. (3)

Operators A are called stable if there is independent of N constant g > 0 such that for arbitrary
uy € Vy is performed inequality
pllunlly, <l[Avunllp, - (4)

Let us the pairs of operators (ry, py) and (sy, gn) are selected. Assume as an approximate solution
of equation (1) the function pyuy € Uy where uy is the solution of problem (3). Then we have the
next basic theorem of convergence [29].

Theorem 1. Let us the operator A is an isomorphism from U into F. Then the sequence pyupn
converges to solution u of equation (1) if and only if the approximations (Vi ,pn,rn) of the space U
are convergent and operators Ay are stable. In addition, error estimation of the approximate solution
is given by the ratio

lu—pyunlly < @+ [[Al/w) v — pyryully -

The choice of triples (Vn,pn,rn) and (Py, gy, sy) defines one or another projection method of
solving the equation (1) (Galerkin, smallest squares, smallest mismatch, collocation, etc.).
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3. B-splines approximations

Let us S = [0,a] x [0,b] C R?. Construct in the domain S a rectangular grid Sj, with the steps h; = a/n
and hy = b/k, n,k = 1,2,.... Introduce in the space H™(S), m = 0,1,2,..., the system of B-splines
of m-th degree

(ByV' ' " kzm4 L (5)

i=—m j=—m’

Denote by U the linear shell of system (5). Select restriction operator % : H™(S) — VA c RY
and extension operator p%: VA — UY < H™(S) in the form

(rv)ig = o = /S Bij(€)() dSe, i ==mD{n—1), j=-m@D{k-1), (6)
rBv =08 e V&, wve H™(S),
n—1 k-1
oy = 32 30 oWBy(©), N =t m)k+m) (7)

The next result is in order [29].

Lemma 2. Approximations (V3 ,p%,r}) of the space H™(S) are convergent and for arbitrary v €
H™(S) are performed the estimates

HU _pngUHHt(S) < Cho™ HUHHU(S) , 0<t<o<m, (8)

where constant C' > 0 does not depend on v.

Denote by G a bounded open domain in R? with boundary I'. Suppose that exists M open balls

M
BcR? Tcl|JB, BNI=T,#0, 1=1M,
=1

such that for each ball B; there is defined on B; m times differentiated real vector-function f!)(z) =
( 1(l), Z(l),fél)) such that y; = f®(x) carries a mutually unambiguous mapping of the ball B; onto
some open bounded set in R? where I'; is mapped on an open set S; C R?. In addition, the Jacobian

J — a(fl(l)7 Q(l)v ;gl))
l O(z1,x2,x3)

surface in R3 [30].
We associate to the partition I' = UM T, the partition of one {t;(z)}},, z € ', with the following
properties:

is positive and continuous if z € By, I = 1, M. Then the surface I is called m-smooth

wi(e) € CX(Ty), swpp{en} C Ty, 0<ey(a) <1, =T M, ) (z)=1,

and exists m times continuously differentiated mapping
Tl:Fl%SZZ[O,al]X[O,bl], Tfl:Sl—>Fl, [=1,M.

Then for arbitrary function u(x) defined on I' we can put into a mutually unambiguous correspon-
dance the set of defined in R? functions

{w@Yy, wl(@) =ulr '(€), €8,
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which have the compact support on S; and
w(e) = wi@yu(a), wel, u(@)e H™I), i vw(E)eH™(S), =TI,
and

ll gronry = Z [vll gy sy -

Construct in each domain .S; a rectangular grid Slh with the steps hgl) = q;/n; and hg) = b;/k;, and
define in each grid domain Slh a system of functions

By B k=m0 =T,M.

i=—m j=—m’

Assign to them the grid 'y, = U{‘i 1Tl_l(Slh) on the surface I' and system of functions

M M
{Bk; NB _ H {BZ-(]l-)(Tl(CC))}Z_,lijZ:;’ Np = lzl(nl +m) (ki +m). 9)

Denote I'y, ;, = I'y, N1, 11,l2 = 1, M, and suppose that the grid on surface I' satisfies condition
! L e —
supp { B (n(2))} ¢ Tipy i=—m(D)(m — 1), j=—-mD(k—1), k#l kil=101.
Since supp{B;, (z)} # supp{B;,(x)} for iy # iy, the functions of system {Bk(x)}ivfl are linearly
independent.
=N

Denote by ng the restriction operator from H™(I') onto finite dimensional space Vj NE and 7 B s
its restriction to H™(I';), that is,

PP = {~Nl}l b Tpw(@) =ryu(E),  Np= (ng+m)(k +m), (10)
where ’I“gl is the similar to (6) restriction operator from H"(S;) onto finite dimensional space Vév b

I=T,M,and V5? = Vi x V2 x ... x V™.
The extension operator ﬁgB from Vév B onto UgB C H™(T') is introduced by the formula

(pB un,)( Zul i(z), uNBEVéVB. (11)

From lemma 2 follows that

lim Hu pB rB

‘ = Z lim Hvl —pg’rg’le =0,
Np—o0 H™(T) =1 N;— o0 Hm(Sl)

i.e. approximations VNB,ﬁNB,T of the space H™(I') are convergent. Further, from estimates (8
B B

we obtain

) M
N
Hu B pBBTBBuHHt(r) - Z ‘

212 21.2(0— 2
vy, o 0h<”2||vl||m(sl = O [l oy
=1 =
0<t<o<m+1, t<m,

where 1S € Similar to extension operator Irom onto € Spaces constan >
here pj! is the similar to (7) extension operator from V4! onto the spaces H™(S)), constant C' > 0

_ 0,0
does not depend on u, and h = 12}2}}@{{% hy’}.
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Thus, it is proved

Lemma 3. Approximations (VB B p pB ,TB B) of the space H™(T') are convergent and for arbitrary
u € H™(T') are valid the estimates

~Np ~N —
Hu —pBBrBBuHHt(F) <Chot lull oy, O0<t<o<m, (12)

in which constant C' > 0 does not depend on u.

4. Lagrangian approximations

Assign to each element of the grid S;, of domain S
Pij = i, hi(i +1)] x [hoj, ho( +1)], i =0(1)(n—1), j=0(1)(k—1),

a smaller rectangular grid P;; with the steps €1 = hy/m and e2 = hy/m. Denote Sj, . = U”P and

1)
associate with the set of nodes Sh.,e a system of piecewise polynomial functions

{Lau©)1m (13)

satisfying conditions
Lpt(gls) = plét.s’ supp {Lpt(g)} = Ppta Ppt = {UPZ_] gpt € -Pl'j}) gls € Ppta (14)
i,J

where 6, is the Kronecker symbol.

Functions (13)—(14) form a system of Lagrangian finite elements of m-th degree in H™(.S). Denote
by U the linear shell of this system, Ny = (1 +mn)(1 4+ mk). It is obvious that the restriction of
system (13)—(14) onto an arbitrary rectangle P;; of the grid Sy, is a basis in the space of polynomials
P™(P;;) of degree not higher than m, defined on P;;. Then

Uy cu}. (15)

Choose the extension operator pgl : V]fvl — Uévl C H™(S), where VLN1 C RM | in the form

mn mk
) 0,0 0,1 ;mk
pL UL ZZU(Z] ’Ui\fl:(vgvl )705\71 )7"'7v](<f7;nm))' (16)
=0 j=0

Then, by virtue of the embedding (15), there exists a restriction operator ' : H™(S) — VN such
that approximations (VI{V Ll I L 1) of the space H™(S) are convergent and valid the estimates

N1
HU - pL rpto

~ypo—t
sy SOF 7 lllpog, 0<t<o<m, (17)

in which constant C' > 0 does not depend on v.
Thus, it is proved

Lemma 4. There is a restriction operator T]LVl: H™(S) — VLN1 such that approximations
(VLNl,pL ,rL ) of the space H™(S) are convergent and valid the estimates (17).

Assume that surface I' satisfy the conditions of p. 3. Construct in each domain S; the rectangular
grid Slh with the steps hgl) = a;/n; and hg) = b;/k; and set on each element lej of the grid Slh a smaller
grid with the steps egl) = hgl)/m and eg) = hgl)/m, [ =1, M. Define analogously to (13), (14) in each
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rid domain 5, e — U; ;P ° the system of Lagrangian finite elements
g J Yy

l nm kym
{Lz(j)(g(l))}iio jlzoa f(l) es;, [=1M.

Assign to the family Slh’s the grid I'p, . = Uf\ilel(Slh’E) on the surface I', where Tlfl(Pilj’»E) are

the elements of the grid I'y, ., | = 1, M. Denote by T; the set of nodes of the grid Slh’a, l=1,M,
T= U{\ilTl. We number all elements of the set T with the cross-cutting indext =1, K, K = Zl]\il K,
K; = (14+nym)(14+kym), and put in correspondence to each node x,, of the grid I'y, . the set of elements

{Plsc US SCpeTlil(Pz’le)},

element

{U Pl PlEEP*l_lM}

the set of indexes

Ty ={teT: 7 \(Pf) =, ¢ e P51=T10},

and function

= Li(n()), wely, swpp{Ly@)} =5, L{ED)e{LYED)my .
teTy

Denote by f]LVL the restriction operator from H™(I") into the finite dimensional space VLN L and by f]LVl
— its restriction to H™(I)), i.e

Pt = {FY O, () = rp i (€), (18)

where rfl is the restriction operator from H"(S;) into the corresponding finite dimensional space VLK L
Il =1,M, and Ny, is the number of nodes in the grid I', ..

The extraction operator ﬁgL from VIfV “ into the linear shell UéVL of the system {f/p(:c)}p 15 UéVL C
H™(T), introduce by formula
(ph =l Zu . upt e v (19)

From Lemma4 follows that

lim Hu — pLLT]LVLu
Np—o00

= lim — png]LVlvl
H™(S))

)

’Hm (1)

i.e. approximations (V ,pL ,rL L) of the space H™(T") are convergent. Further from estimate (17)
we obtain

M
u =
HY(I") ;

M
2
N, N, ~ — 2 ~212(0— 2
vyt < OO0 S e 5y = CR fulfpeqry
! =1
0<t<o<m,

l

where pg is a similar to (16) extension operator from Vljlvl into H™(S)), constant C' > 0 does not

_ 0,0
depend on w and h = 12}2}}@{{% hy’}.
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Thus, it is proved
Lemma 5. There is a restriction operator fJLVL: H™T) — VLN L such that approximations

(V]fVL,ﬁgL,f]LVL) of the space H™(I") are convergent and valid the estimates

o= i < CRT ey, 0<t<o<m, (20)

‘Ht(l‘)

in which constant C' > 0 does not depend on .

5. Galerkin method
Let us denote G’ = R3\G and introduce in G and G’ the Sobolev spaces [30]
H™(G) ={v € La(G): 0% € Ly(Q), |a] < m},
WG = {ve D'(G): (1+r)1=D9% e Ly(G), |a| < m},

where m > 0, and r = (Z?:l x?)lﬂ, r = (21,79, 13) € R3.

Consider the next boundary value problem: to find function
v E HF’TZIZO = {v € H™(@) U W@’ vlp, = vlp,,,, Av(z) =0, z €G, G'} (21)
satisfying condition
olp=f, fe H™TYAD). (22)

In [9] was proved the next

Theorem 6. Problem (21)—(22) has one and only one solution. We will search a solution of the
problem (21)—(22) in the form of simple layer potential

1 u(y) /
v(z) 4W/F‘x_y‘ s 1€GG

The unknown potential density is determined from the equation

(Au)(z) = % /F ’;L(_y;’dI‘y — f(), wel. (23)

The next result is in order [9].

Theorem 7. Operator A is an isomorphism of H*(T') onto H**(T'), s > —1/2. From the last
statement and the Banach theorem follows the validity of inequalities

v Nl ey < 1AW ey < B Nl ey (24)
in which constants ag and Bs, 0 < ags < (s, does not depend on u € H*(T').

Suppose that for approximation of unknown potential density u € H™(I") uses the system of B-
splines of the form (9), and Up, is its linear shell. We choose the operators 7n,: H™(I') — Vi,
and pny : Vv = Unp in the form (10) and (11) respectively and determine the restriction operator
SNp: Hm“(F) — ®pn, in the form sy, = 7n,. In this case, the system

G G ~ ~
ANBU’NB - fN37 ANB - TNBAPNBv fNB = TNva

implements Galerkin method of solving the equation (23). From Lax-Milgram lemma [31] follows that
matrix A%B is nondegenerate and, accordingly, the definition of operator gy, in the form gy, fx, =
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Apnyun, is correct. Taking into account the left side of inequalities (24), the bijectivity of mapping
PNg © VNg — Uny, the expressions for the norms in the spaces Vv, and ®n, in the case U = H™(T),
F = H™TYT), and equality Qn,APy,u = APy,u, we obtain the following inequalities

am gy, < A%, unsls, (25)

for arbitrary uy, € Vi, and oy, does not depend on uy,.
Then from the inequalities (24) and (25), Lemma 3 and Theorem 1 we obtain the validity of following
statement.

Theorem 8. For arbitrary f € H™tY(T'), m = 0,1,..., the approximate solution uﬁB of equation

(23) obtained by the Galerkin method under approximation of unknown potential density by the system
of functions constructed on the basis of B-splines of m-th degree converges to its exact solution, and
there is an estimate

< C(l + 61?/0%)
(67

(e

lu = uRg || ey W f oy, 0<t<o<m, (26)

where h is the maximum area of the grid element on I'.

Similarly, from the inequalities (24) and (25), Lemmab and Theorem 1, we obtain the validity of
following statement.

Theorem 9. For arbitrary f € H™Y(T'), m = 0,1,..., the approximate solution uﬁL of equation

(23) obtained by the Galerkin method under approximation of unknown potential density by the system
of functions constructed on the basis of Lagrangian finite elements of m-th degree converges to its exact
solution, and there is an estimate

het Hf”HU-H(F) , 0<t<osm, (27)

N

C(1 + Bi/au)
[Ju — uJLVLHHt(r) = #

where h is the maximum area of the grid element on I'.

6. Collocation method

To simplify the presentation, we assume that for approximation of unknown potential density u €
H™(T'), m > 0, of equation (23) a system of linearly independent functions {y;}3°, is chosen, Uy is a
linear shell of the system {api}ﬁil, ry: H™(T') — Vn, pn: VN — Un are the similar to described in p.
2 restriction and extraction operators. Denote by Xy the set of pairwise different points belonging to
the surface '

Xy ={z;}}L,, x;€T, j=1N,

and introduce in H™+1(I") restriction operator sy: H™TY(T) — ®x by formula
(snf)j = f(5;) (28)
in which

g € {9 €d(y;): 1£()] =yg§%;)\f(y)!7 yj € Xn}, O(y) ={yel: ly—y| <o}, (29)

in particular p(y*,d(y;)) > 0 for arbitrary y* € Xy, y* #vy;, =1, N.
If f € C(T'), then operator sy can be defined as usual

(snf)j=fly;), y; € Xn, (30)
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ie. g; =y;, 7 =1,N. It is easy to see that, with this choice of operator sy, a system of linear algebraic
equations
Ayun =snf, Ay =snApn, un € VN, (31)

implements the collocation method of solving the equation (23). The set X is called a set of collocation
points.
Denote Yy = {g; }jvzl and consider the system of functions

From the choice of the set X and conditions (29) follow that the functions of system {r; (m)}j\le are
linearly independent [32].
Define in L*°(T") the family of linear continuous functionals

Li(p) = /Fw(x)rj(w)dfz, peL®), j=1,N.
Denote by Ker(l;) the zero subspace of functional [; in L*°(I")

Ker(lj) = {¢ € L¥(T): Lj(¢) = 0}

and suppose that Ky = ﬂ;vzl Ker(l;). The degeneracy of matrix A% is equivalent to the linear

dependence of its rows or columns, that is, the existence of such sets ay = {Oéz‘}i]i L€ RY or By =
{B;}iL, e RY, SN a2 >0, Zjv:l 83 >0, that

/ (3 an))r @, =0, =T, (32
i=1

or

/ %(x)(i Biry(@))dT, =0, i=T.N. (33)
r o

Implementation of equations (32), (33) is only possible if Ky NUy # 0. From this follows sufficient
conditions for the invertibility of matrix A%;, which we formulate in the next statement.

Lemma 10. Let us the system of linearly independent functions {Soi}@']\il is chosen for the approxi-
mate solution of equality (23) and determined the set of collocation points Xy (and, consequently, the
set Ky is defined). Then, if

KynUy =0, (34)

then the matrix A$; of the system of collocation equations (31) is non-degenerate for arbitrary N.

A similar result is obtained if the restriction operator sy is chosen in the form

1
33 = st Loy TP (3)
and ) T
() = Y j=T,N.
1) = e 5(wy) /(;(y,,) PEr

It is obvious that under conditions of Lemma 10 the operator A%;, where sy is defined according
to (27)—(28) or (33), or in the case of f € C(I') according to (30), is stable in sense (4).
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Consider a discrete analog of condition (34). Let us the quadrature formula

N

/Fgo(x)ri(x)dfm s ZAjgo(acj)ri(xj), zjel, x;#wx, if j#i, (36)
j=1

is used to calculate the integrals

/@(x)m(w)dl“m, o(x) €Uy, i=1,N,
T

which is exact for integrals

A o(x)(x)dly,  o(x),1(x) € Un.

Consider the system of functions

N .
vi(z) =Y o pi(a), (37)
k=1

(4)

the coefficients a;.”, k,7 =1, N, of which we define from N systems of linear algebraic equations

=

N
Zal(;)@k(x]‘) = 7“1‘(.%']‘), i,j =1, (38)
k=1

Define the conditions under which the functions v;(x), i = 1, N, are linearly independent. From
(37) we obtain that

N N N .
> ctil@) = Y- (P el )or(x) =0
=1 k=1 =1
if and only if
N .
Sl =0, k=TN (39)
=1

N

Let us the set of colocation points Xy = {y;} j=1 C I'is chosen in such a way that

0<|xi_yi|<€a d<|xz_yj|a i’jzl’N’ J#Za O<€<N—1’

where {z; }jV: , are the nodes of quadrature formula (36). Then

N
ri(@) > Y i),

i=1,i#j

matrix Ry = {ri(xj)}fyjzl due to Hadamard condition is nondegenerate and from (38) we obtain that

vectors a, = {a,ij ) szl’ k = 1, N, are linearly independent. Hence, equality (39) holds if and only if

ci=0,i=1,N,ie. the functions of system {1;(z)}, are linearly independent.
Now, if the quadrature formula of form (36) is used to calculate the integrals in coefficients of
matrix A%, instead of the system of collocation equations (31), we actually solve a system with matrix

N

a5 = { [ i,

L
i,j=1
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where functions 9;(x), i = 1,N, are defined by formulas (37) and (38). The last matrix can be
degenerate if and only if there exists a nonzero element ¢(x) = ZZ]L a;p;i(x) € Uy, orthogonal to all
¥i(x), i = 1, N, which is impossible, since the system {1;(x)}Y; forms a basis in the space Uy.

Let us the system of B-splines of the form (9) is used to approximate the unknown potential
density u € H™(I') and Uy, is its linear shell. We choose the operators 7y, : H™(I') — Vn, and
PNg © Vg — Uny in the form (18) and (19) respectively and determine the restriction operator
sNp: H™TYT) — @y, in the form (28), (29). In this case, the system

C C ~ ~
ANBU'NB :fNB’ ANB :TNBAPNBa fNB :TNBfa

implements the collocation method for solution of equation (23). From Lax-Milgram lemma [31]
follows that under conditions (34) matrix A%, is non-degenerate and, accordingly, the definition of
operator gy, in the form gy, f v, = Apnyun, is correct. Given the left side of inequalities (24), the
biectivity of mapping pn,: VN, — Unp, the expressions for norms in the spaces Vi, and @y, in
the case U = H™(T), F = H™Y(T") and equality Qn, APy,u = APy u, we obtain the validity of
inequalities (25) for arbitrary un, € Vi, in which a,, does not depend on up,,.

Then from the inequalities (24) and (25), Lemmas 3,10, and Theorem 1 we obtain the validity of
following statement.

Theorem 11. For arbitrary f € H™ ('), m = 0,1,. .., the approximate solution uﬁB of equation

(23) obtained by collocation method under approximation of unknown potential density by a system
of functions constructed on the basis of B-splines of m-th degree and the choice of collocation points
that satisfies the condition (34) converges to its exact solution, and there is an estimate

C(L+ Br/ox)
[u = Ry ey < #

N

hot HfHHcrH(p) , 0<t<o<m, (4())

where h is the maximum area of the grid element on I'.

Similarly, from the inequalities (24) and (25), Lemmas 5, 10, and Theorem 1 we obtain the validity
of following statement.

Theorem 12. For arbitrary f € H™YT), m = 0,1,..., the approximate solution U%L of equa-

tion (23) obtained by collocation method under approximation of unknown potential density by a
system of functions constructed on the basis of Lagrangian finite elements of m-th degree and the
choice of collocation points that satisfies the condition (34) converges to its exact solution, and there
is an estimate

C~'1+B L), o
o=k ey < P ey 00

N

o< m, (41)

where h is the maximum area of the grid element on I'.

7. Error estimation of approximate solution of the Dirichlet problem for the Laplace
equation

Denote by uy(z) the approximate solution of equation (23), obtained by means of considered above
Galerkin or collocation methods, N = Np in the case of approximation by B-splines and N = N, in
the case of Lagrangian approximations. Denote

_ 1 [ un(y)
dm Jp |z —y|

vy (x dry, z€G,G,
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and estimate the modulus of value

> - [ ) - v )y

2~ ir, z€G.G, a=01,....
g fe—yl" v " “

=) — ox (@) = o

Let us
reRN{FeR: |F-y|<d, yeTl}. (42)

Using Holder inequality, we obtain

o~ y
%(v(x) — vN(x))‘ lu — UNHLQ(F \// 970 \x ary, zeG,G,

or, taking into account (42),

%(v(x)—vN(x)) < SarT llw = unll g,y reG,G, a=0,1,.... (43)

o ‘ mesT

Then from inequalities (24), (43) and Theorems 8-12 follow the validity of the next statement.

Theorem 13. For arbitrary f € H™ ('), m = 0,1,..., an approximate solution of the problem
(21), (22) obtained by Galerkin or collocation methods under approximation of unknown potential
density by systems of functions constructed on the basis of B-splines or Lagrangian finite elements of
the m-th degree, converges to its exact solution, and there is an estimate

o° C*(1 + fo/ao)h™
%(’U(II)) —UN((I,')) < Oém(sail ) HfHHm‘Fl(F)7 YRS G7 G,7 « :0717""

8. Conclusions

The paper describes the conditions and evaluations of convergence of Galerkin and collocation methods
for solution of Fredholm integral equation of the first kind for the simple layer potential in case of closed
boundary surface in a three-dimensional space. Approximation of potential density was performed
using B-splines and Lagrangian finite elements of various orders on rectangular grids constructed in
the desired function definition domain. Estimations were obtained for the error of approximate solution
of Dirichlet problem for Laplace equation that is equivalent to the integral equation for the simple layer
potential. The approach proposed can be used to define convergence of other projection methods (the
smallest squares, smallest mismatch etc.) for solving potential theory integral equations that are
equivalent to the boundary value problems for equations of mathematical physics and other types
of finite elements of various orders, constructed on both rectangular and triangular grids in desired
potential density definition domain.
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CKIH‘-IeHHO eJsIeMeHTHI anpOKcmmau,u Yy npoeKu,llemx MeTodax

pO3B A3aHHSA AesaKnx |HTerpaanmx plBHFle CDpe,u,ronbma nepworo

poay

Homimyx O.

Incmumym npukasadnux npobaem mexaniru i mamemamury im. 5. C. ITidempueana,
Hauionaavha axademisa nayx Yrpainu,
eys. Hayxosa, 3-6, 79060, Jlveis, Yrpaina

HocutireHo anmpoKcuMalriiitai BjaacTuBocTi B-ciuraiiuis Ta JarpamKeBux KiHIIEBUX €JIEMEH-
TiB y IiJb0epTOBUX MpOCTOPax (DYHKIN, BUSHAYEHUX Ha [TOBEPXHSAX Yy TPUBUMIPHOMY IIPO-
cropi. Becranosjieno ymoBu 36i2kHOCTI MeTOiB ['a/ibOpKiHa Ta KOJIOKAIIl PO3B’s3aHHsI 1H-
TerpaibHOro piBHsAHHA PpEIrobpMa MEPIIOro PoJLy i MOTEHIIAy TPOCTOrO Mapy, eKBi-
BajeHTHOTrO 3amaqi Jipixme mus pisaamaa Jlammaca B R3. BusHaueHo OmHKY MOXHOKH
HaOJIMKEHOT0 PO3B’sA3KY IIi€l 3a/1a4i, OTPUMAHOTO 32 JOIOMOIOI0 METO/IiB Teopil moTeHia-

Jy.

Kntouosi cnosa: nomenuyian, inmezpasvhe PieHAHHA, KOPEKMHA PO36 AZHICTNYL, AG2DAH-
orcesa anporcumayin, B-cnaatin, memod Laavopkina, memod xoaokawuii, 36iscHicmo.
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