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Abstract. The method of study of the influence of torsional oscillations of one-dimensional 
models of nonlinear elastic bodies, along which moves with a constant velocity continuous flow of 
inelastic homogeneous medium, into bending, is developed. It is believed that information on 
torsional oscillations is known from empirical studies. Based on the latter, the refined model of the 
dynamics of the process of the investigated object is constructed. The latter is a boundary value 
problem for nonlinear nonautonomous differential equations with partial derivatives. The imposed 
restrictions on power factors and the main parameters of torsional oscillations allow for the 
analytical study of the dynamics of the process to use the basic ideas of the asymptotic integration of 
equations with partial derivatives. With their help, we obtain a two-parameter set of solutions that 
describe the determinant parameters of bending vibrations of an elastic body. It is established that 
for the considered elastic body there can be resonance oscillations, which are caused not only by 
external factors, but also by internal – torsional oscillations. Regarding the law of the change in the 
basic parameters of the dynamics of the bending motion of an elastic body, its rotation around the 
vertical axis reduces the frequency of its own flexural oscillations of the body, and even small 
torsional oscillations cause an additional periodic action on the transverse. In connection with the 
above bending vibrations of the elastic body, which performs complex oscillations (torsion and 
bending), resonances are possible both at the frequency of the external periodic perturbation and at 
the frequencies of the torsional oscillations (internal resonances). 

The amplitude of the transition through the resonance: a) at the basic frequency of external 
perturbation takes less value for elastic bodies of greater flexural rigidity and for higher values of the 
relative motion of the medium; b) at the frequency of torsional oscillations for larger values of the 
angular velocity takes more importance; c) with “fast” transition through resonance at the frequency 
of external or internal perturbation is less than with “slow”. The obtained results can serve as the 
basis for the choice of operating parameters of elastic elements of machines that carry out complex 
oscillations. 

Keywords: nonlinear-elastic body; asymptotic methods; amplitude; resonance; complex 
fluctuations. 

Introduction 
The determination of the spectrum of eigenfrequencies, and thus, the conditions of the existence of 

their external and internal resonances, and the peculiarities of their passage, is an important problem in the 
study of various kinds of complex mechanical systems with lumped masses and distributed parameters. 
Such problems were partly considered in [1, 2] for linear or quasilinear analogues with lumped masses, but 
for nonlinear systems with distributed parameters the study did not find proper development due to the 
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existing complexity of constructing solutions of the corresponding mathematical analogues of their 
motion [3, 4]. This primarily concerns the effects of torsional oscillations on bending or longitudinal 
one-dimensional elastic bodies, or vice versa. The indicated problems are considerably complicated 
for such important classes of mechanical systems with distributed parameters that are characterized by 
a longitudinal component of the speed of motion [5–8]: the study of the dynamics of one or two-
dimensional elastic bodies that move with a constant or variable speed of motion and simultaneously 
carry out bending vibrations and longitudinal oscillations; the effect of torsional oscillations on the 
bending pipeline or a screw working organ along which a continuous flow of medium moves, etc. 
Such tasks are the subject of consideration of this work. For a partial solution of this problem in the 
paper, we make a physically grounded assumption of the existence of necessary information about the 
laws of changing the basic parameters of some oscillations (for example, twisting) and taking into 
account the mathematical models indicated by others. In this case, the use of existing analytical 
methods [9-13] for the construction and research of “refined” solutions, much simpler mathematical 
models allows us to estimate the influence of a wide range of external and internal factors on the 
dynamics of these systems. This approach, as shown below, is one of the most affordable in solving 
many important engineering tasks. 

Materials and Methods 
It is known [11] that the mathematical model of bending oscillations of an elastic rectilinear body 

that rotates along a fixed axis with a constant angular velocity Ω , provided that the continuous flow of 
medium (liquid, friable or viscous medium) along it is moving along with a relative linear velocity V  is 
the boundary problems for a system of differential equations: 
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in which (1) ( ) ( ), , ,u t z w t z  are the components of the moving vector of a point that coincides with the 
center of the cross section of an elastic one-dimensional body at an arbitrary time in projections on the axis 
of a fixed coordinate system OXYZ  (the axis  OZ  coincides with the geometric position of the centers of 
the body sections in its undeformed rectilinear state), 1 2,ρ ρ  are respectively the unit mass the length of 
the body and the moving environment, S  is the tensile force, Ω  is the angular velocity of the body around 

the axis, OZ , EI  is its stiffness to the bend, and 
3
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 are the 

functions that describe the strength of the resistance, the external periodic perturbations with the 
frequency µ , and other forces, the maximum value of which is significantly smaller than the maximum 
values of the right-hand side plots, as indicated by the small parameter ε , ( 0tγ µ θ= + , 0θ  is the initial 
phase of the indicated perturbation). In addition, their content implies that the specified functions satisfy 

the condition 
3 3

1 23 3
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t tz z
γ γ
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. If, however, the elastic body carries 
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torsional oscillations around the axis in accordance with the law, then the system of equations (1) is 
transformed into a kind 
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For the differential equations (2) boundary conditions of the form are considered 
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which correspond to the rotation of the elastic body in ideal bearings, the distance between which is equal to l . 

Solving Procedure 
The task is to comprehensively determine the influence of the main external and internal factors, the 

motion of the medium along the body, the angular velocity of its rotation around the vertical axis and the 
torsional oscillations on the bending vibrations, provided that the torsional oscillations are described by a 
known continuous function ( )tϑ . When solving a given problem it is considered that: a) the medium that 
moves along the body does not change its stiffness in bending and torsion; b) torsional oscillations, the 
nature of which is not considered, is of small amplitude and is described by the dependence [15] 
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=ωϑ , 0ϑ  is the frequency, ,...,2,1=k 0I  is the initial phase,and is 

the torque of inertia relative to the neutral axis of the elastic body, together with the medium, 0J  is its 
equatorial moment of inertia, and G  is the shear modulus. 

The constraints on force factors and torsional oscillations of the considered system, the continuous 
flow of the medium is an elastic body, allow for the construction of the solution of the boundary value 
problem (2), (3) under the condition (4) to use the basic ideas of asymptotic methods [1, 9, 10, 13 ]. 
Accodingly to them, first of all, let's look at their undisturbed analogues, that is, at the equation 

( ) ( ) 0,,0, 21 == wuLwuL  (5) 
under homogeneous boundary conditions (3). The principle of one-frequency oscillation for the nonlinear 
systems with distributed parameters and the basic idea of the D'Almer's method [16], allows us to interpret 
it as an overlay of the direct and reflected waves of the same frequencies, that is, 
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where b  is the amplitude of these waves; φ , ψ  are their initial phases; κ , ω  are the wave number and 
frequency, respectively. From the undisturbed differential equations (5), it follows that the parameters are 
bound by the dispersion relations 
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We note that somewhat simpler descriptions of wave processes for quasilinear and nonlinear 
mathematical models of “long” systems with distributed parameters (for which boundary conditions are not 
considered) are given, for example, in [9, 10, 12]. For the considered case, that is, from the boundary 

conditions (3) and the relations (6) and (7) follows: φ ψ= , , 1, 2,...s
s s
l
π

κ = = , and the frequency of the 

dynamic process of undisturbed motion is determined by the system parameters dependence 
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Thus, the undisturbed motion of the system in one of the forms of “dynamic equilibrium” is 
described by the dependence 
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and the parameters sb , sφ  for the given case are constant and are determined by the initial conditions. In 
the case of a more complex perturbation motion, these parameters will be determined additionally by the 
right-hand sides of the differential equations (2) and the law of torsional oscillations of the system. We find 
the main relations that determine them based on the distribution of the basic ideas of the methods of 
Bubnov-Galerkin and Van der Pol [1, 17]. In accordance with them, first of all we find 
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The basic idea of the Van der Pol’s method for the system with small nonlinearity is 
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Differentiating (10) with respect to tome variable and taking into account (11), we conclude 
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If we substitute in the base equation (2) in the place of unknown functions ( ) ( ), , ,u z t w z t  and their 

derivative dependences accordingly to (4), (9) - (12), we obtain a system of differential equations that 
binds unknown parameters sb  and sφ  
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where and a well-known function that corresponds to the value of the right-hand side of the differential 
equations (2), provided that they are in accordance with (6), (10) – (12). From the system of differential 
equations (13) we find 
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The resulting system of differential equations (14) allows us to assert that nonresonance and 
resonance oscillations may occur in the corresponding mechanical system. As for the latter, they exist 
under certain conditions at the frequency of external periodic perturbation and at frequencies of multiple 
frequencies of torsional oscillations. We consider initially a simpler, nonresonant, case of bending 
vibrations of the system under consideration. For the first approximation, the basic parameters of bending 
vibrations of an elastic body in the form close to the first form of “dynamic equilibrium”, as follows from 
the differential equations (14), are described by dependencies 
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Results and Discussion 
Thus, in the first approximation for the nonresonant oscillations of the system under consideration, 

the basic parameters of the bending oscillations of the system are not continuous oscillations of the tidal 
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oscillations. As to the resonance at the frequency of the external periodic perturbation, the amplitude of the 
transition through the resonance is described by the dependence 
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where 1ϕ  denotes the phase difference between the self-bending and forced oscillations, i.e. 1 1ϕ ψ γ= − . 

In Fig. 1, for various values of ( ) ( )2 1
1 ... cosr

tf u hδ γ+= +  the system parameters, the law of 
variation of the amplitude during the transition of the principal resonance at the frequency of the external 
periodic perturbation is presented. 

  
a b 

Fig. 1. The law of the change of the amplitude of transverse oscillations during the passage of resonance  
at the frequency of external periodic perturbation for different values of the angular velocity of the body  

and the velocities of the medium 

The obtained dependences show that for: a) the larger values of the uniform mass of the medium, the 
amplitude of the transition through the resonance is greater; b) for larger values of the angular velocity of 
the body's rotation, the actual frequency of bending oscillations is smaller at the same time, the amplitude 
of the transition through the resonance is smaller; c) at a higher speed of transition through resonance of 
the amplitude is less. 

A more complex case is the resonance oscillations, which are due to torsional oscillations. Let us 
consider them in more detail for the case when the forms of transverse and torsional oscillations are close 
in terms of the frequency s kϑω ω= . In this case, in the terms of the right-hand side of the general relations 
(14), which determine the influence on the dynamics of the system of torsional oscillations or the motion 

of the medium, the expressions 2cos sψ  and 2sin sψ  we replace on ( )1 1 cos 2
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so the system of differential equations (14), after the averaging over the linear variable and the phase of 
external perturbation transformed into a kind 
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The relations (17) show that, in the case of the fulfilment of the conditions 2 s kϑω ω≈  in the system, 
there will exist resonance transverse oscillations that are due to torsional oscillations. To describe them, in 
the same way as for resonant oscillations in the frequency of the external periodic perturbation, introducing 
into the equation (17) the phase difference 2 2 s kϕ ψ ϑ= − ( 2 2 )k sϕ ϑ ψ+ =  from (17) we obtain 
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If the function 
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 takes into account only the strength of the resistance and the 

external periodic perturbation, that is, expressed by the relation (16), then the transverse resonance 
oscillations are due to the torsional oscillations in the case are described by the differential equations 
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In Fig. 2, for different values of the parameters, the law of the amplitude changes during the 
transition of drowsiness on the frequency of the external periodic perturbation is presented. 

  
a b 

Fig. 2. Time variation of the amplitude of transverse oscillations during passage  
of internal resonance at different angular velocities of the body 
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Conclusions 
On the basis of the developed method of studying the influence of torsional oscillations on 

transverse elastic one-dimensional bodies, which carry out rotational motion around the vertical axis and 
motion along its continuous stream of inelastic medium, it is established: 

– the angular speed of the screw working body reduces the frequency of its own flexural oscillations 
of the body, and even small torsional oscillations cause an additional periodic effect on the transverse; 

– taking into account the above we conclude that for the bending oscillations of the elastic body, 
which carries out complex oscillations (twisting and bending) the resonances are  possible at frequencies of 
external periodic perturbation and frequencies of torsional oscillations; 

– the amplitude of the transition through the resonance at the fundamental frequency of external 
perturbation takes less importance for the elastic bodies of the greater stiffness of the nicks; 

– the amplitude of the transition through the resonance at the second frequency of torsional 
oscillations for larger values of the relative motion of the medium takes more significance; 

– the amplitude of bending oscillations in the “fast” transition through resonance at the frequency of 
external or internal disturbance is less than that of “slow”. 

The obtained results can serve as the basis for choosing the basic technological and operational 
parameters of the specified type of systems, and their reliability is confirmed by obtaining in the limiting 
case when the known results relating to flexural oscillations of the elastic body. The main idea of the 
described method can be generalized to some other classes of mechanical systems. 
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