UDC 004.031.6

A. Parkhomenko, O. Gladkova
Zaporizhyzhya National Technical University,
Software Tools Department

COMPLEX REQUIREMENTS ANALYSIS FOR THE HIGH-LEVEL
DESIGN OF EMBEDDED SYSTEMS

KOMIIJIEKCHUI AHAJII3 BUMOT ITPY BUCOKOPIBHEBOMY
IHPOEKTYBAHHI BBYIOBAHUX CUCTEM

© Parkhomenko 4., Gladkova O., 2014

In the paper the requirements analysis that must be considered at designing embedded
systems was performed. Describes peculiarities of the structuring requirements and developed
a model of requirements to the created embedded system. Methodology of creating
requirements, taking into account the processes of their definition and analysis was proposed.
The results of application of the developed requirements model during project implementation
the embedded system to control of mobile platform were presented.

Key words: embedded system, requirements classification, requirements analysis,
requirements model, methodology of creating requirements, regulatory documentation, mobile
platform.

Y po6oTi BUKOHAHO aHATi3 BUMOT, IKi HEOOXiTHO BPaXOBYBATH i Yac NPOEKTyBaHHSHA
BOynoBanux cucreM. Onucani 0co0JMBOCTI CTPYKTYPYBaHHSI BUMOI Ta pPo3podjeHa Moaelb
BUMOT [1J151 BOYAOBaHUX cHCTeM. 3alIPONOHOBAHO METOIMKY CTBOPEHHS] BUMOT 3 YPaXyBaHHAM
npoueciB iX BH3HAYeHHsA Ta aHadizy. HaBeneHo pe3yiabTaTH NPaKTHYHOr0 3aCTOCYBaHHS
po3po0bieHoi Moaedi BUMOr mpu peaididanii nmpoexkTy BOYJI0OBaHOI CHUCTEMH YIPABJiHHA
pyxoMom0 miargopmoro.

KuarouoBi ciaoBa: BOygoBaHa cucremMa, Kjaacu@ikaumiss BUMOI, aHAJI3 BUMOI, MOJeJb
BHUMOT, METOIMKA CTBOPEHHS BUMOT, HOPMATHUBHA JOKyMeHTAalisi, pyXxoMa miargopma.

Introduction

Embedded Systems (ES) is one of the most complex design objects for computer technology
developers [1]. Even a cursory analysis of typical requirements and constraints that must be considered
when creating the ES, confirms this:

- minimal own power (possibly self-powered);

minimal own size and weight;

toughness and rigidity of the design;

thermal control;

radiative and e ectromagnetic resistance (possibly working capacity in vacuum);
guaranteed time between failures;

term availability solutions on the market, etc. [2]

Requirements definition, analyze and correct distribution between hardware and software
components of the architecture at the stage of high-level design is a critical success factor in the
implementation of the ES.

However, as experts note in the near future the existing significant gap between the requirements of
the ES and the efficiency of the hardware and software design, the required amounts of verification and
testing devices will only increase. Mainly, the problem lies in the insolvency of traditional approaches to
the design of the ES amid of modern requirements for such systems. One of perspective directions in terms
of the creation of modern design methodologies ES, is a complex accounting of the requirements
specification and constraints within the overall project [1].

3

Analysis of the requirements types for the ES

As described in [3], the system design includes the following technical processes work with

requirements:
stakehol der requirements definition process;
regquirements analysis process.

Stakeholder requirements definition process result is a list of all stakeholders and their system
requirements, which are the basis for further analysis and identification of functional and non-functional
requirements of the system.

Requirements analysis process result is a complete transformation holder (stakeholder) requirements
in the technical vision of the developed system, i.e. a well-defined classification system requirements.
Requirements analysis process subsequently affects the architectural design, as well as the means to
implement it.

Today, problems work with the system requirements are discussed in [4,5,6]. Analysis of the
standard [6] showed that the term “ System Requirements’ means the combinations of ;

1) requirements for the system generally (business requirements, external interfaces);

2) requirements for the functions (tasks), which performs system (functional requirements, quality
attributes);

3) requirements for the types of support (constraints).

Thefirst type of requirements also includes description of the system structure, which includes a list
of its components. For complicated projects including a plurality of components (subsystems), it is
necessary to produce a placement of high-level requirements on these components [5].

The standard [7] gives a definition of an embedded system — a collection of hardware and software
components designed to perform a specific function or set of functions. Since the software (SW)
development is an essential part of designing the ES, necessary to adopt an integrated approach based on
the processes of the system and software engineering, and to determine both the system (high-level
requirements to the project) and the program requirements (i.e., requirements, distributed between software
components of the project). The first step to the joint set of standards that describe systems and software
life cycle processes is the international standard [4]. It establishes a strict connection between the system
and applied it in software, interpreting software as part of the system, by allocating requirements to the
software from the system requirements. The standard shows a difference between the analysis of system
requirements and requirements analysis of the SW product. In the general case, the construction of the
system architecture defines system requirements for the various components of the system. Analysis of the
requirements to software predetermines the requirements for them, based on the system requirements,
assigned to each program component.

Addition to the above processes work with the system requirements in the standard [3], also in the
standard [4] has special processes of software intended to create a specific program element of the system,
in particular the software requirements analyzing process. During this process, the requirements are
determined by the software elements of the system and their interfaces, the impact of software
requirements on the operating environment is installed, as well as compatibility and traceability between
the software requirements and system requirements.

In [7] highlights the fact that the input to the process of determining the requirements for the
software are the system requirements, the description of the hardware interface and system architecture (if
they are not included in the system requirements). A goal of the design process software consists to
devel op software architecture and requirements of the lower level on the basis of top-level requirements for
software. It follows that the definition of requirements for software development and the development of
the architecture of the software only after the hardware description of the project and its architecture.

Leffingwell [8] discussed in detail the requirements management process and methods for
developing software applications. Leffingwell requirements model consists of 3 clusters (levels)
requirements:

needs — userg/stakehol ders requirements;
features — system provides services to meet the needs of stakeholders;
software requirements — concretized software requirements.

Cluster “needs’ relates to the field of the users problem (customers) understanding, for the further
construction of the system that satisfies their needs. The following two clusters “function” and “software
requirements” refer to solving the user prablem.

As noted in [9], in a variety of software development methodologies, an approach based on the
definition of requirements groups to the software are used. This approach typically comprises group (type,
class) requirements, for example: system, program, functional, non-functional (e.g., attributes quality) etc.

A classic example of a high-level structuring requirement groups as requirements of the software
product, is presented in the book K.E. Wiegers [5]. Requirements model proposed by Wiegers for
designing software consists of three levels of requirements [5]:

business — why should developing a system;
user — describe the users of the system, as wdl as their work withiit;
functional — determine the functionality (behavior) of a software system.

Model envisages two types of requirements:

functional — that the system must do;
non-functional —what conditions must be met when working.

In this requirements model under the external interface understand “user interface’, i.e user
interaction with the software. For the development of the ES in the standard [7] provides a more expanded
interface definition — it is the interdependence between two or more objects that share and ensure
information or exchange them. As such objects may be: software configuration element (SWCE) — is a set
of software components. And hardware configuration element (HWCE) — is a set hardware. Accordingly,
the interfaces may be the following variants. SWCE/SWCE, SWCE/HWCE, SWCE/user, HWCE/user or
module HW/ module HW.

Thus, of the SW requirements model presented in [5,8] can be considered as a basis for developing a
requirements model, taking into account the specific features and aspects of the design of ES. However,
they must undergo extensive revision to take into account other types of requirements and work processes
with the system requirements presented in the standards [4,6,7].

Purpose of this work is to develop complex modd of the requirements for the ES, as well as
methodology of creating requirements for efficiency high-level design.

Structure and features of requirements model for the ES

Based on the performed analysis, a requirements
model for the design of ES was proposed. Schematic
representation of which is shown in Fig. 1. Like the
requirements model by Wiegers and by Leffingwell, has 3
levels, however, in contrast to the model Wiegers, does
not use the concepts of requirements functional type and
functional level. Since the ES represents set of hardware
and software, the proposed scheme shows the distribution
of levels in the model, on the requirements to hardware o
and software components of the system. \/ 4 Requiremer A\ /

In the proposed requirements model highlighted in : :
thefollowing levels:

stakeholder requirements — include requirements
al project stakeholders, such as customers and end users
of the product. Can be represented by: business requirements, use cases, quality attributes;

system — system requirements, comprising a combination of interconnected components
(hardware, software, users, etc.). Can be represented by: system requirements (the whole system),
constraints, interfaces, required operating conditions;

Hardwrare

Softwrare

Fig. 1. Requirements model for the ES

functional — function (functional characteristics) distributed among software and hardware

components of the system.

Table 1 shows the features of the proposed requirements model and the models Wiegers and
Leffingwell. Can emphasize such distinctions proposed model from Wiegers:

1. Onthe upper level are combined business requirements and user requirements.

2. On the introduction of the second level are placed high-level requirements to developed
embedded system and identifies the data requirements, interfaces, and system constraints.

3. On the lower level, considering features of the ES, decomposes the functional requirements on
the software and hardware components of the system.

Table 1
Distinctive features of requirements models
Proposed model By Wiegers By Leffingwell
3 levels of requirements: 3 levels of requirements: 3 levels of requirements:
— stakeholder requirements, — business requirements, — stakeholder needs;
— system requirements, — user requirements; — features;
— functional requirements. — functiond. — software requirements
2 types of functional requirements: 2 types of requirements:
— hardware; — functiond,;
— software. —nonfunctional.
Interface: user, SW/SW, SW/HW, | Interface: user, SW/SW, SW/user Additiona category: user interface
SW/user, module HW/module HW

For requirements model which was developed provides a methodology of creation requirements for
an embedded system (Fig. 2), which includes a sequence of steps: 1. Identify business requirements:
identification of the product concept which we want to create. 2. Identification of the users, combining
them into a groups and fixing their requirements. 3. Definition of use cases (scenarios) of the product by
describing the user's workflow. 4. Develop use-case: fixation of use cases and a thorough study of the
sequence of interaction between the system and external actors (example of an effective way of
formulating and documenting requirements of this type is shown below). 5. Emphasizing quality attributes:
identification of high-quality system performance characteristics of concrete actions. 6. ldentify: system
requirements, including the whole environment, constraints, requirements to the operating conditions,
interfaces. 7. Check the requirement specifications that have been developed for errors, completeness,
unambiguousness, consistent and others. Desirable that in checking specifications involving all
stakeholders. After that follow the steps of determining the functional requirements for HW (8) and SW
(9), which implies a more detailed identification and transformation of user requirements into a form useful
for developers. Fixation of functional software requirements in the specification of software requirements,
may be performed by presenting the expected behavior of the system in the form of an “event-reaction”
(example shown below). This form is convenient for the further development of test cases. 10. Checking
developed requirements specifications. 11. Development of test cases. description of the states and
transitions between states, as well as the conditions under which transitions from state to state. 12.
Checking developed specifications to system requirements, functional requirements and use cases for
errors, completeness, inconsistency, etc.

Creating requirements is an iterative process. The first three stages are usually carried out once (but
they need to be reviewed and revised), the remaining steps are repeated for each new version of the
product.

One of the important stages controls of the created requirements is traceability (rdationship). To
provide traceability, each requirement must be unique and identified to be able to refer to it. Best to
manage traceability, using requirements management tool. Can be identified such as requirements
management tools: IBM Rational Reguisite Pro, Borland CaliberRM, DOORS. For Rational Requisite Pro,
you can point out a number of advantages:

support Word to create project docu-

1. Identify business requirements
mentation; 2. Identification of the users and their requirements
. o . 3. ldentif
availability of templates for the preparation of ity tisecase
project documentation; e v

easy navigator between Microsoft Word and
powerful infrastructure of the database;

integration with the tools of object-oriented
modeling;

|4. Develop use-case |<-
e

|5. Quality attributes

the possibility of tracing the relationship of 6. 'g"i”“fy: . o
. . oy . .1 system requirements,
different levels requirements by Traceability matrix. 6.2 congtraints, -«
Traceability matrix created in IBM Rational Re- 6.3 requirements for operating conditions,
.. e . 6.4 interfaces.
quisite Pro allows the modification of some require-
ments easily determine which requirements affect this |7 T I_
change and what should be checked [10]. Traceability ' “ ®

created requirements in accordance with the scheme re-
quirements mode in Requisite Pro isasfollows (Fig. 3).

On the upper level there are Stakeholder
Requirements (ID of requirements thistype— STRQ), a
and the System Regquirements (SYST), made of
stakehol der needs.

Functional Requirements — it is functionality
provided by the system, usually formulated by a
business analyst, the appointment requirements — to
meet the needs of the customer. Functional require-
ments are divided on the various subsystems of project
on the basis the System Requirements. FEAT_HW —
functional hardware requirements;, FEAT_SW-
functional software requirements.

Use Case (UC) — a description of the system
behavior in terms of action sequences. Fig. 2. Methodology of creating requirements

Supplementary Requirement (SUPL) — other
requirements (usually non-functional), which can not
be described Use Cases. STRQ

8. Identify and document the functional requirements
for hardware

8.1 architecture devel opment

8.2 distribution requirements by component

9. Identify and document the functional requirements
for software Nl
9.1 architecture devel opment
9.2 distribution requirements by component

|10. Verification requirements specification I:_

|11. Development of test cases |

12. Verification the use cases, system and functional
requirements

I I g |

The application of the model requirements

The proposed requirements model, as well as the I
process of creating requirements was practicaly FEAT
applied in the implementation of the project to create
the Embedded Control System of Mobile Platform. The
following examples represent a traceability sequence of uc SUPL
requirements relating to a particular part of the system.

Example 1: Stakeholder requirements.

STRQ7: Change the maximum permissible Fig. 3. Traceability requirementsin Requisite Pro
speed of the mobile platform, depending on the
category of user (adults and children), aswell asthe level of management skill.

Example 2: Use-case.

UC3: “Switching speed of the mobile platform”.

Actors. Operator.

Output conditions: operator included main control unit (MCU) and made presetting race mobile
platform.

Normal direction:

1. Operator changes the speed mode mobile platform.

2. The system sends a command to the mobile platform of switching speed.

3. Movable platform receives the command and processes it.

4. Message is displayed on switching speed of the mobile platform in the selected mode.

An dternative direction: no

Exceptions: The command was not sent — system shows the error number on the display.

Example 3: System requirements

SYST4: The system should switch (increase or decrease) the maximum speed of radio-controlled
mobile platform.

When switching speeds, the system must output messages on the display of the speed mode that has
been selected.

Example 4: Constraints.

SUPL 2: Having two modes of installation of radio-controlled mobile platform the maximum speed:

— Kids mode — 6 km/h.

— Normal mode— 20 km/h.

In this case, the requirement is partitioned into functional requirements for hardware and software.

Example 5: HW requirements.

FEAT_HW?7: Engine mounted on a mobile platform should at least reach speeds of 20 knvh.

Functional requirement for the software is determined on the basis of the specified system
requirements and hardware specifications. Since our project on the mobile platform was installed engine,
maximum speed is 60 knv/h, the functional requirements for the software will ook like as it is written in
the following example.

Example 6: SW requirements.

Event: The speed setting on the main control unit in Kids mode.

Response: The installation 10 % speed of maximum speed of the machine. On the display MCU is
displayed inscription confirming that the rate of cars was changed “ Speed Mode: Kids”.

Event: The speed setting on the central control unit in Normal mode.

Response: The installation 30 % speed of maximum speed of the machine. On the display MCU is
displayed inscription confirming that the rate of cars was changed “ Speed Mode: Normal”.

Also, examples of Stakeholder requirements for ES control of mobile platforms that is created are
the following requirements:

STRQL1: abject (platform) to be remotely controlled;

STRQ3: create the effect of the user presence in the mobile FPV_Platform;

STRQ10: ensure the collection and storage of the system states for all time period.

Which were later formulated in the high-level system requirements:

SYST3: transfer of data from the MCU to the object should be carried out using the radio channel
at a distance of not more than 20 m;

SYST4: transmit video via radio channel from a camera mounted on FPV_Platform for users
video glasses;

SYST12: organize the storage of data about the current state of development on the flash memory
installed in the MCU (this requirement can be traced to the functional requirements for software: the
program should save the received data to the MCU in txt format delimited).

For successful implementation of the project by the requirements management system IBM Rational
RequisitePro was performed to devel op the necessary project documentation:

Glossary — all terms of the project;

Vision — complete description of the system and system-level functions (system requirements);

Use Case Specific — using scenarios and algorithms;

Functional Specification — functional requirements;

- Supplementary Specification — functional requirements, not related to the using scenarios or
nonfunctional (additional) requirements.

According to the results the work with requirements using Requisite Pro, developed a set of
documents including all requirements to ES of mobile objects which is developed. Once formulated
customer requirements and system requirements, the system architecture has been successfully devel oped,
analyzed of the requirements for HW and SW and SW architecture was devel oped.

Conclusions

Working with the requirements is very important when creating a project of embedded system and
achieves the goals for its implementation. However, existing for today standards, as well as work in the
creation and analysis of requirements describe only certain aspects of this problem and do not include all
the features of embedded systems design. Therefore, in this paper, based on requirements models Wiegers
and Leffingwell a requirements model for the ES has been developed. The model is realized 3 levels and 2
types of requirements for the system as awhole, and for its software and hardware components.

Proposed a methodology of creating requirements, allowing to organize the phased identification,
analysis, documentation and verification requirements, taking into account the features of the ES.

The practical application of the proposed model and methodology has allowed to perform efficient
development of the requirements and to successfully implement the project for embedded control system of
mobile platform.

1. ITnamynos A. E. BvicokoyposHnegoe npoexmuposanue scmpaugaemvix cucmem. Yacmo 1 : yueo.
nocobue | A. E Ilnamynos, H. I1. [lTocmnuxos. — CI16. . HUY UTMO, 2011. — 121 c. 2. Bempausaemvle
cucmemol [Dnexkmponnwiit pecypc]l Poowuk. — Peswcum oocmyna. WwwW/ URL: http:/imww.rodnik.ru/
product/spa/embedded-solutions/ 3. JCTY 1SO/IEC 14288:2004. Ingopmayiiini mexnonocii. Ilpoyecu
arcummesozo yuxny cucmemu (ISO/NEC 14288:2002, IDT). — Bseo. 01.07.2007. — K. . [epoccmanoapm
Yrpainu, 2004. — 48 c. 4. TOCT P HCOIMDOC 12207-2010 Information technology. System and software
engineering. Software life cycle processes(ISO/IEC 12207:2008). — Beeo. 01.03.2012. — Mocksa .
Cmanoapmungopm, 2011. — 104 ¢. 5. Wiegers K. E. Software Requirements. / Karl E. Wiegers. — 2nd
Edition. — Microsoft Press, 2003. — 544 p. |SBN:978-0-7356-1879-4. 6. I’ OCT 34.602-89. Hnghopma-
yuonnas mexnonoaus. Komnaexc cmanoapmoeé Ha asmomamuzuposannvie cucmemvl. TexHuueckoe
3a0anue Ha co30anue agmomamusuposaniou cucmemol. — Beed. 01.01.1990. — M. . UIIK Hzoamenvcmeo
cmanoapmos, 2004. — 11 ¢. 7. T'OCT P 41904-2002 [Ipoepammnoe obecneuenie 6CmpoeHHbIX CUCTEM.
Obwue mpebosanusi k pazpabomxe u 0okymenmuposanuio. — Beeo. 24.07.2002. — UIIK Hzoamenvcmeso
cmanoapmos, 2002. — 62 c. 8. Leffingwell D. Managing Software Requirements: A Use Case Approach /
Dean Leffingwell, Don Wirding — Addison-Wesley, 2003. — 402 page. — |SBN 0-321-12247-X. 9. OcHosbl
npocpammuou unxcenepuu | Dnexkmponnsiii pecypc]l SNEBOK. — Peowcum odocmyna: www/ URL:
http://swebok.sorlik.ru 10. Zielczynski P. Requirement Management Using IBM Rational RequisitePro /
Peter Zielczynski. — IBM Press, 2007. — 360 pages. — | SBN 0-321-38300-1.

