I'EOIAE3IA

EARTIH’S RADIAL PROFILES BASED ON LEGENDRE-LAPLACE LAW
A. N. Marchenko
(State University “Lviv Polytechnic”)

Abstract. The famous (and oldest) solution of Clairaut's equation or Legendre-Laplace law of density was used for
the parameterization of the hydrostatic/adiabatic Earth’s radial density distribution in the two standard forms:
continuous and piecewise radial cases. As a resull, the set of recursive formulae were found for the solution of
direct and inverse problems (on the ground of fundamental geodetic constants and seismic data simultaneously).

The mentioned piecewise Legendre-Laplace density is in a good agreement with the PREM-density model.

Introduction

Traditional consideration of the famous expression of
a planet’s Newtonian potential

V()= G m‘*’Tm & o

leads to well-knewn conclusion that all problems re-
garding the determination of a planet (Earth) gravita-
tional potential may be solved if the corresponding
volume density function o of this body is known. In
(1) G=6.673-10" cm’g"'sec™ is the gravitational con-
stant, dv is an element of the volume v; dm is an
clement of mass; / is the distance between the mass
element dm=pdv and the attracted point P with unit
mass. In practice we have another or inverse situation:
we want to determine this function p (to take info ac-
count our poor knowledge about densities and some
initial information about planets). First of all we want
to determine the planet’s radial densities p(¢), for in-

stance, from the solution of inverse gravitational prob-
lem with an additional application of the Earth’s seis-
mic data and other geophysical data.

Recently, instead of the standard polynomial repre-
sentation of a piecewise radial density some old hvpo-
theses for density distribution (see, Bullen, 1975) were
analyzed especially in view of Clairaut and William-
son-Adams equations (Marchenko, 1999; Marchenko,
2000). The latter leads to the special investigation of
the hydrostatic/adiabatic Earth. In particular, Dar-
win’s law (1884) of radial density was used for the
transformation to the famous Gaussian disiribution
that was called by the Earth s density normal law with
the treatment of Roche’s law as a truncated Taylor se-
ries expansion of Gauss' or Legendre-Laplace model
(Marchenko, 1999; Marchenko, 2000). The created ra-
dial profiles are in a good agreement with the PREM-
density model, including gravity distribution. For this

reason just Gauss’ normal model was applied further
for the representation and comparison of planet’s
radial densities profiles. The goal of this paper is a
study in the same way the oldest solution of Clairaut’s
equation, which is well-known as Legandre-Laplace
law of the radial density distribution.

1. Basic expressions for the stratified spherical Earth

As before, we shall assume the figure of the Earth’s in
form of a sphere with the certain mean radius R=6371
km. In our formulation the planet’s radial density will
be considered only as a function p( /) of the current
radius ¢ (0</ <R). Since we use a sphere instead an
ellipsoid with the flattening /=0, the gravitational
potential I will be treated also as the gravity potential
W (Moritz, 1990),

The planet mass A/ and its mean moment of inertia
I will be chosen as observed data, For latter use, we
shall rewrite several well-known formulae in the case
of a layered sphere of the radius 7, restricted planet
masses. If a stratification of the Earth leads to its
division into m shells, we shall represent a volume
radial density by one model within every shell
separately

p (), i=12,..m. @)
with a suvitable mathematical representation of the
functions (2). Then we shall consider these relation-
ships for a spherical stratified Earth. Expression for
the mass can be written now as
m=1 £,

M()=azy. [p.(xdx+ [ p, (xtds,

=14, £l

(£,=0), 3)

and the mean moment of inertia will be represented in
the similar way
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where dx is the elemenl of a line. The mean density
D(£) and the gravity inside a planet admit the follo-
wing standard representations

3 .
Dif)=—"——-ML(4), 5)
()= ()

g(0) = f‘f-.(’- D). ©)
In the case of the Edrth we shall use the seismic
velocities V), and V, as well-known function

D =d(0)=V(e): - %L"(ﬂ)ﬁ. ; ()

by applying their grid values in accordance with the
PREM-model (Dziewonski and Anderson, 1981)
which reflects the results of seismic radial tomography
of the Earth interior,

Assuming that such a piecewise density model
should fulfill some standard differential equations, our
nearest goal will consist of the computation of the
miegrals (3), (4) after the choice of an appropnate
mathematical expression for the density distribution
within each shell. The separation of the spherical pla-
net into convenient shells has to be choice at those
spheres, where discontinuities in the parameter @ or in
its derivative can be observed.

2. Auxiliary relationships for Legendre-Laplace model

According to (Bullen, 1973; Moritz, 1990, etc.) there
exist three famous solutions of Clairaut’s equation for
the radial density distribution p inside the Earth. First
one is Legandre-Laplace law, the second one is
Roche’s faw, and the third one is G. Darwin law. The
first faw of density distributions will be studied below.

2.1 Continunous radial density distribution

As well-known the radial density p may fulfil the so-
called Williamson-Adams equation for each shell and
it corresponds to the hvdrostatic/adiahatic Farth un-
der the following assumptions; the Earth is globally in
hydrostatic equilibrium; the temperature is adiabatic
in every shell; chemical composition and phase trans-
formations are homogereous in each shell. Now, by
applying the observed seismic velocities (7), in view
of the gravitational and hydrostatic rclationships Wil-
liamson-Adams equation can be written finally as

dinp(t) _ g(t) @
de 0]
As aresult, (8) is a formula to derive the radial density
from the seismic velocities data, fulfilled under the
assumptions listed above. In order to use (8) we will
try further to apply Legendre-Laplace law

(ﬁ) = sm(yx) , {(y=const), (9)

and to express the observed seismic data by the
corresponded function of a depth. Here x is the
dimensionless “radius-vector” x =¢/R regarding to
R, p.= const and may be considered as the density at
the origin. Note that Taylor expansion of (9) leads to
Roche’s model
2
P(x)=ﬂ0(l_Lx3 (=a+bx’, (10)
6 )
if we disregard other higher powers of x.
Next, in view of (%) the straightforward integration
of the expressions (3) and (4) admits the next remar-
kable expressions for the Earth’s mass

47:R >
M) = 2p'(0).
with the following expression for radial derivative

p'(0) = d‘z{ ) =[py cos(y-x)— (o)), (12)

and for the mean moment of nertia in the standard
way

(1)

1(;?):%M(f,)-{e3- 2p(r), (13)

6R1 l(mR2
> i
Y
and in the dimensionless form

2
1,(0) = g-hz i 6'?1 : ‘l'p(”) a4
30 v | v D)
Applying the last formula to a surface of the spherical
Earth (£ = R), where the observed density o(R)=p, is
known, we comc to the next expression

2 1} o et
;y L D 3

where D=D(R) represents the Earth’s mean density
(D=5.314 g/cm’). Thus, if the values D, p,, and I; are
known from observations we come to the solution of a
non-linear inverse problem by means of two closed
expressions for 2 basic parameters, The first one is
some qualitative characteristic of the global density
distribution in the form of a simple formula for the
coefficient yof Legendre-Laplace model

I;-IJ(R)—
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which equal to »=2.47541 for the next initial values:
D=5.514 g/lem’, p,=2 67 gfenr’, and 1,=0.329979. The
second one represents the guantitafive parameter of
the model (9)

N . a7

Po =TT ,
3-[sin(y) — y -cos(y)]

which can be computed on the ground of the expres-
sion (16) and y=2.47541, D=5.514 g/cm’. As a result,
this parameter is equal to p,=10.873 g/cm’ in the cass
of the continuous Legandre-Laplace distribution. The
solution (16)-(17) provides finally the exact agreement
of p,. the mean density 2 and the mean momernt of
mertia fy, but without such good agreement of the
density p, at the centre of the Earth’s masses. This
model agrees best of all with the continuous Roche’s
model that is reflected in Figure 1, were comparison
with piecewise PREM-model is done.

Note that the determination of 2 parameters of the
continuous Roche’s model is based traditionally on the
mean density [ and the mean moment of inertia /,
only. In fact, in the case of the continuous Legendre-
Laplace and Gauss' density model (also with 2
parameters), all standard 3=2+1 conditions (for
surface densityp, as well) can be replaced by one
relationship (16) for the corresponding qualifative
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characteristic v. The quantitative characteristic o, now
is the non-linear functien (17) of the computed y and
the Earth’s mean density.

2.2. Piecewise radial density distribution

Next we assume that the Earth’s stratification gives in
the form of its division into m shells, then we will re-
present the density distribution by one Legendre-Lap-
lace model] within every shell separately

p!(g)zgr M i=12...m. (18)
¥, x
Inserting (18) into (3) - (6) we comie to the recur-
rence formulae for a sequential computation of the
mass, the mean density and the mean moment of iner-
tia, respectively

J|J\/‘{i,m (f?) = Ml_.m—". (;’: m-1 ) o ‘Mm (’r}) »

(fm—] sj‘;I‘:_:]?m')’ (]9)

3
Dl,m (;}) 3 {F’%’J D],m—l (e m-1 )+ Dm (f) i (20)
[l:m (j-?) = "rl,m--l ({' -1 )+ "!m (p) ? (2 l}

where every integral in (3), (4) can be expressed by
means of the auxiliary relationships

P10y = 2D (5, 005y, 0) - p 02, 22)

Legendre-l aplace

h _PREM-model

Gauss' model |

. RS
4000 6000 km

Figure 1. Legendre-Laplace. Roche, and Gauss continuous densities regarding the PREM-model
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f’*/f.-(f)=-ff’[,m;(f NEAGIE
Mll(f):Ml(f)' (23)
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~27. [f:*“p‘,{_é) ~£3p; (f:‘l)]--M, (0}
1,(0) = 1,(¢), (25)

startng from the first shell (0</</ ). In these

formulae ¢ (=1.2,...m-1) are the fixed radius-vec-
tors, where discontinuities of the radial density are as-

sumed Formula for the gravity is based on the ex-
pressions (6) and (24):

gl.m(g) :ﬁﬁ}‘)l m(f) ( - l ol S p.’n)‘ {26)
a

For the formulae of the seismic parameter @ and
1ts jumps we shall find

dlnp(r’ (6 _ycot{yx) 1
o p,(( R r

and m view of Williamson-Adams equation (8) and
(27) for such model we get immediately

(27

dnCrp, (£3D,, (1R
(’Dl.:f:(;?): Ip”'(') - ( ] g
3pw (£)
(p.w-i sls glm)' (28}

the expression for @ again starting from the first shell.
As well-known. this parameter must be always posi-
free and the ratio must be positive also for each boun-
dary of two shells. that is

(15“((" ) P, 1(r } aof(‘( }

l Li+l E‘) foa(f ) !Orll(F )
t=12,...m, (29)
In particular. we come to conclusion that the deriva-
tves p/(# ). pl (#,) in (29) must be negative for

Legendre-Laplace model In addition we can compute
now a seismic jump of & at the ; - boundary as
AP =40, =01, )-a (¢ ,)

_4nGDL (), [pat) o, )] 0]

3 i:_p:*l(ﬁ.f p {[ ) |

These formulae may be used also as the additional
conditions for data processing, because the left-hand
side of (29), (30} is known from seismic data. Note al-
so that the density at the origin according to Legendre-
Laplace model is depended on the observed @ as

(0) > 4R(J'R

5is (31)
1

where @4 (0) corresponds to the first piece of the

seismic data @ at the origin. Relationships of the same

type for the piecewise Roche’s model and for the

piecewise Gauss’ model can be found in (Marchenko,

1999) and (Marchenko, 2000) respectively,

3. Piecewise Legendre-Laplace model

Roche’s model {10) can be chosen now within every
shell separately as initial iteration for further construc-
tion of the piecewise Legendre-Laplace density profile
(18), which should be agreed with the whole mitial
information about the seismic data and astro-geodetic
data. Regarding (he discontinuities in the seismic velo-
cities we are led to the following separation (Table 1)
into shells according to (Marchenko, 1999), where a
mathematical description of the Earth’s density is
based on the piecewise Roche’s model with the same
separation. This piecewise Roche’s model is in a good
agreement with the PREM-density, with the exception
of the crust shells; on the final step a “geodetic ver-
sion” of the piecewise Roche’s density profile with the
surface density p,=2.67 g/r:m3 {included into solution
as additional information) was build (Marchenko,
19993,

Thus, on the first step we can get a preliminary so-
lution for coefficients ¥ of each shell by the compari-
son (9) and (10) that leads to the nexi formula

==65/5 , (32)

which was used for the initial determination of y, (see
Table 1, column “initial iteration”), The coefficients &,
of the piecewise Legendre-Laplace density profile
(18) were adopted in this study as fixed values accor-
ding to the same previous Roche’s model (Table 1):
{5} =4a,. (7'3}
A process of the differential correction for the
creation of Legendre-Laplace model was applied on
the second step. This consists of the readjustment (by
iterations) of these independent pieces of density to
the piecewise Legendre-Laplace density distribution
by means of the closest approximation of the set of
scismiic data and other additional information about
fundamental geodetic constants.
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Table 1. Piccewise Legendre-Laplace density model (m=7)

| Toioa Final ¢,. | Density
it 5 ! , & L ! Y
Shelt & ‘ iteration y | iteration ¥ km i jump
| 13.061 | 2.02098 2.02334
2 | 12.483 | 2.00252 2.05393 | 1221.5 | 0.575
3 6370 | 1.55708 160817 | 3480.0 | 4.429
4 6.058 | 1.39760 168174 | 57010 | 0.354
5 5784 | 161810 1.77825 | 5971.0 | 0.395
6 6.057 | 1.69578 1.87310 | 6151.0 | 0.084
. 6.622 | 1.89230 | 211959 163466 | 0.420

Iu fact. the set of the coefficients & and  yield Le-
gendre-Laplace density (18) denoted in Table | as
“initial iferation”. The final version of the piecewise
Legendre-Laplace radial density is denoted in Table 1
as “final veration” (see Figure 2). This model was
constructed by means of the linearization of necessary
equations and the direct approximation of the obser-
ved seismic data @ in accordance with (Dziewonski
and Andeson, 1981). Note also that the discussed
problem represents a good example of 1ll-posed prob-
lem and in view of stability of the solution only diffe-
rential correction of y, was applied here withcut any
changes in &,. In practice we get a violation of the
requirement of stability. Usually a solution can be ob-
tained by the direct application of some additional
information about 1t. Thus, simultaneous determinati-
ons &, ¥ leads in the case of the piecewise Legendre-
Laplace model (or in the case of Gauss’ model) to a
“collapse™ of matrix inversion and our choice in this
study was the differential correction of the coefficient
7 only,

As a result, this non-linear inverse problem was
based on the expressions (18)<(31) and 3 additional
conditions for the Earth’s mean density, the mean mo-
ment of inertia, and the surface density. The latier was
adopted here as in the previous cases for the piecewise
Roche’s and Gauss' models: £,=2.67 g/cm’. As a mat-
ter of fact, the behaviour of differences in the Table 1
between the initial and final versions of the coeffici-
ents y of Legendre-Laplace models may be treated
here for every pieces by the application of the non-
linear Legendre-Laplace model instead of the initial
linear Roche’s model

Conclusions

In addition to the preceding results and conclusions,
{imally we shall characilerize some nice properties of
the considered Legendre-Laplace model, Roche s mo-

del (Marchenko, 1999), and GGauss ' (or normal model)
radial density distribution (Marchenko, 2000),

On the one hand, the confimuous radial density dis-
tribution (the Earth as one shell) in the forms of Ro-
che’s profile and Legendre-Laplace model have a best
agreement. which is reflected in Figure 1. Both these
models satisfy to Clairaul’s equation. Gauss® radial
profile satisfies to Williamson-Adams equation and it
describes best ol all a general trend of the Earth’s 1a-
dial density, which was represented here by the piece-
wise PREM-model of density.

On the other hand. the piecewise Earth's Legen-
dre-Laplace radial density distribution can be tested
with the same approach as in (Marchenko, 1999; Mar-
chenko, 2000). For the piecewise Roche's model we
have got the appropriate solution on the ground of the
golden section technique {step by step) with the read-
Justment of all pieces by parameters with some additi-
onal conditions. Nete that Roche’s radial distribution
connects with the inversion of the finear operator (see,
for instance (10)). Gauss' and Legendre-Laplace non-
linear models connect with the corresponding non-
linear operators and obvious difficulties in their inver-
sion (with high sensitivity to a stability of solution).
As a result, the differential correction of one coeffici-
ent 4, (for Gauss’ model) and y, (for Legendre-Lap-
lace profile) were used only as a possible way for the
solution of such ill-posed problem. So, in view of (10)
the coefficients a, of Roche’s model were fixed in
these last cases. Nofe again that simultancous deternu-
nations of all parameters (Abrikosov, 2000) of the
piecewise Legendre-Laplace or Gauss’ profile require
especially the additional information about the desired
solution, for example, a general trend of the Earth's
radial density.

Nevertheless all investigated piecewise Roche’s,
Gauss’, and Legendre-Laplace profiles are in a good
agreement with the standard PREM-model (taking
into account the considered assumptions about hydro-
static/adiabatic Earth listed before). Obviously, a final




TeonudaMika 1(2)/99

" ¥
| .
| fgfem ™)
12
57
!
{ PREM -density
4 ==
!
| Legendre-Laplace model
5
! km
o ; R fov ! e
Q 2000 4000 6000

Figure 2, Comparison of the final Legandre-Laplace model with the PREM-density

choice can be done afier the above-mentioned study
regarding a possible stabilization in the frame of the
regularization technique. In this step of investigations
of analysed models, Gauss’ profile is rather more pre-
ferable. On the one hand, this model admits the most
appropriate agreement with a general trend of the
Earth’s radial density. On the other hand, (indepen-
dently on other models) it leads, as the partial solution
of Williamson-Adams equation, to the simplest rela-
tionships for initial cocfficients on the ground of
seismic data.
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0. Mapuenko
PAMIATILHWM PO3TO/III I'YCTUHM 3EMITI HA OCHOBI MO IEJTT JIEKAH/IPA-JIATUIACA
Pezrome

Binome pinrenss pipsanng Kaepo y opui saxody Jlexanapa-Jlapraca, BHKOPHCTAHE [T mapaMeTpusauii paaians-
HOI'0 PO3MCALTY FYCTUHM 3eMi B paMkax rigpocratusno-paiadatuydel Teopil. BiasHaueHust pagianpuuit posnoain
TYCTHHH PO3T/IAHYTHH B ABOX BapiaHTAN. K HENMEPEPBHMI Ta sk KYCKOBO-HencpcpeHMid. B pesyisrati Gyau omep-
KaMl pexypeHTHi opMyH (Usl MnaseTd 13 CepuuHOr cTpaTH(ikaiiero), AR JalOTH PO3B 30K MpsAMoi i obep-
HEHOI 3371aY Ha OCHOBI C2HCMIYHMX 1 ACTPOHOMO-TE0JE3HMX AaHis. OTPHMAHMIT KYCKOBO-HCIICPCPBHUHA Pafiiaib-
HHUIT pO3NOAIN XOBPE MOroPKYETHCH 3 MOACIITC IYCTHHY PREM.,
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A.MapueHko
PATHAJIBHOE PACIPEJEEHHE MJIOTHOCTH 3EMJTH HA OCHOBE MO/IENTH
JEXAHIOPA-NATLTACA
Pesrome
Mssectroe pemenne ypasrenua Knepo B Qopue 3axona Jlexxanapa-Jlapnaca, HCHONL30BaHO s HAPAMETPH3ALME
PaaUATLHOTO PACIPENEICHMS NNOTHOCTH 3eMIIH B PAMKAX IHAPOCTATHHECKH-aAHabaTHIeCKOroi Teopus. OTMeHeH-
HOE Pa/IHATLHOE PACMPEACTEHUE TIIOTHOCTH PACCMOTPEHO B ABYX BAPHAHTAX: KAK HETIPEPLIBHOE, TAK U 66 KYCOYHO-
HCOPEPBIBHOE pacnlpeaeschne. B pesynbrare ObLI HONYHEH Psii PEKYPPEHTHBIX (JOPMYT (U1 ILTAHETHI CO cthepu-
YECKOH CTpAaTH(HKALKEH), JOCTABILIOWMX PEIUEHHE NPIAMOLT H OGPATHOI 3a/104 HA OCHOBE CSHCMMYCCKHX H acTpo-
HOMO-TEOACIHIECKHN. NAHHBIX. IT0JyICHHOE KYCOMHO-HENPEPBBHOS PAAMANBHOE PACTIPEACTIEHHE XOPOILO coracy-
€TC C MOMAELI0 TUTOTHOCTH PREM.



